Research

Our integrated One Water research touches the entire water cycle by addressing issues holistically and providing actionable solutions. WRF's research benefits all areas of the water sector, as well as agriculture, energy, clean air, watershed management, and other commercial industries. 

About our Research Programs

Our staff and Research Strategy Committee members have worked diligently to develop five comprehensive research programs designed to provide flexible funding and partnership opportunities to advance water research and innovation. Our focus is on applied research and innovative processes and technologies. We have a competitive selection process, proven quality control measures, and a nationally recognized expert peer review system.

Scenic waterfall

    Topics of Focus

  • Asset Management

    High-quality water service depends on having the infrastructure to meet the requirements of customers, utilities, and regulators. Because water services are asset intensive, utilities are constantly working to maintain these pipes, pumps, tanks, and systems, while also controlling costs and reducing risks. With deteriorating infrastructure, limited budgets, restricted flexibility in rates, and increasing expectations, utilities are on a continual quest for the most appropriate practices to meet these competing demands.

    141 Projects 10 Web Tools 5 Case Studies 17 Webcasts
    Project #4752

    Effect of Major Stress Events on Buried Pipe Service Life

    $409,350
    Completed

    Project Highlights

    The key issue addressed through this research was the effect of stress history on remaining pipe service life, particularly the effects of major stress events, such as an earthquake. This project developed an analytical framework, data, and methods to estimate...

    Principal Investigator
    Charles
    Scawthorn
    Research Manager
    Dr. Jian Zhang
  • Biosolids

    In the United States alone, billions of gallons of water are treated each day at water resource recovery facilities. Once the water is clean, a different challenge remains: determining what to do with the solids that are removed during the treatment process. The resulting mixture is often a unique semi-solid blend of organic and inorganic materials, trace elements, chemicals, and even pathogens, so there is no across the board solution for handling and processing the combinations of constituents that may be present.

    Because these solids are often rich in nutrients, like nitrogen and phosphorus—which also happen to be the perfect ingredients for promoting healthy soil and plant growth—many facilities have turned to land application. Before these solids can be put to use for things like fertilizing farmland, however, they must undergo rigorous treatment to meet stringent regulations, at which point they become known as biosolids.  

    89 Projects 2 Web Tools 1 Webcast
    Project #4871
    Aquatic plants in a laboratory

    Nationwide Meta-Omics Survey of Anaerobic Digestion and Fermentation Processes for Resource Recovery from Biosolids and Other Organics

    $223,250
    Completed

    Project Highlights

    With a shift toward more complex anaerobic carbon conversion processes, a better mechanistic understanding of the microbial communities (both structure and function), carbon conversion pathways, and the kinetics therein is needed. This knowledge might also necessitate the enhancement of current...

    Principal Investigator
    Kartik
    Chandran
    Research Manager
    Ms. Stephanie Fevig, PE
  • Cyanobacteria & Cyanotoxins

    Aquatic microscopic algae and cyanobacteria (blue-green algae) occur naturally in most surface waters, however certain nutrient and temperature conditions can lead them to rapidly multiply, leading to “blooms.” Under certain conditions, some species of cyanobacteria can produce toxic secondary metabolites or cyanotoxins, which may pose health risks to humans and animals. Even when algae is not toxic, it can produce unpleasant tastes and odors.

    Cyanobacteria continue to be one of the most problematic organisms in our fresh water systems—with nearly a third of the United States reporting blooms. Without clear guidance or consensus regulations in place, many utilities struggle with responding to events. Since 1994, WRF has completed more than 30 research projects on these microscopic organisms and the cyanotoxins they produce, helping facilities detect, monitor, and manage these nuisance organisms—as well as communicate with the public.

    15 Projects 1 Web Tool 7 Webcasts
    Project #4716

    Refinement and Standardization of Cyanotoxin Analytical Techniques for Drinking Water

    $696,597
    Completed

    Project Highlights

    There is uncertainty relating to the screening and confirmation of cyanotoxin samples. Water utilities need robust and dependable methods to monitor cyanotoxins in source water, through the treatment process, and at the tap, as well as to make appropriate decisions...

    Principal Investigator
    Y. Carrie
    Guo
    Research Manager
    Ms. Julie Minton
  • Energy Optimization

    For most water facilities, energy is one of the highest costs in their operating budget. Stricter regulations are pushing facilities to use even more advanced—and energy-intensive—treatment technologies. Optimizing energy use can provide huge cost savings and numerous additional benefits, including improving air quality, protecting the environment, and bolstering energy security. WRF has published more than 100 projects that explore ways to not only optimize current energy use, but to generate power as well—setting the course for a self-sufficient water sector.

    81 Projects 9 Web Tools 4 Case Studies 3 Webcasts
    Project #5062

    A Distributed Renewable Energy Opportunities and Policy Workshop

    $30,550
    Completed

    Project Highlights

    This project expanded on the results of project 4625 by holding a science to policy workshop connecting research, industry, and policy. The workshops engaged local, state, and national water and energy professionals in discussions on the opportunities for distributed energy...

    Principal Investigator
    Steven
    Conrad
    Research Manager
    Mr. Ashwin Dhanasekar
  • Per- and Polyfluoroalkyl Substances (PFAS)

    Per- and polyfluoroalkyl substances (PFAS), also commonly referred to as perfluorinated chemicals or PFCs, are a group of anthropogenic chemicals with past and current uses in industrial processes and consumer products. In 2006, the U.S. Environmental Protection Agency classified some PFAS as likely human carcinogens. 

    PFAS are used in firefighting foams, coating for food packaging, ScotchGard™, and Teflon™, among other products. PFAS are highly resistant to chemical decomposition and can enter source waters through industrial releases, wastewater treatment plant discharges, stormwater runoff, release of firefighting foams, and land application of contaminated biosolids. 

    11 Projects 3 Webcasts
    Project #4322

    Treatment Mitigation Strategies for Poly- and Perfluorinated Chemicals

    $306,672
    Completed

    Project Highlights

    The first objective of this project was to conduct a literature review covering the global occurrence and treatability of perfluorinated compounds (PFCs). The second objective was to conduct a limited, strategically targeted assessment to determine the fate of these compounds...

    Principal Investigator
    Eric
    Dickenson
    Research Manager
    Mrs. Alice E Fulmer
  • Reuse

    All communities need a supply of clean, safe water. Some communities, and the utilities that serve them, have the luxury of tapping into additional water sources when their primary supplies face quality or quantity issues. However, because traditional water sources, such as surface water and groundwater, are highly dependent on location, many utilities don’t have easy access to contingency supplies. As increased pressures from drought, extreme weather, and shifting populations make backup supplies more critical, many utilities are looking beyond traditional sources to diversify their supplies. Many communities are also grappling with political and institutional issues, like local control of water supplies, driving the need to identify new, local options to avoid the need to import water.

    All of these circumstances make water reuse an attractive option. Potable reuse purifies water from wastewater treatment plants through advanced treatment methods to meet drinking water standards, while non-potable reuse recycles municipal wastewater and water from impaired sources for activities that don’t involve human consumption, such as landscape and crop irrigation, industrial processes, and other uses.

    Orange County Water Case Study

    207 Projects 3 Web Tools 4 Case Studies 7 Webcasts
    Project #5041

    Demonstrating Virus Log Removal Credit for Wastewater Treatment and Reverse Osmosis for Potable Reuse at OCWD

    $512,752
    Completed

    Project Highlights

    The Orange County Water District (OCWD) and the Orange County Sanitation District (OC San) maintain a joint indirect potable reuse project: the Groundwater Replenishment System (GWRS). The GWRS Advanced Water Purification Facility treats secondary treated wastewater from OC San facilities...

    Principal Investigator
    Megan
    Plumlee
    Research Manager
    Dr. Hyunyoung Jang
  • Stormwater

    Precipitation fills our streams and lakes and soaks into the ground to replenish our aquifers. Most moderate rainfall is readily absorbed by soil, which acts as a natural filter as water moves through the cycle. But, in heavy storms, excess moisture can run off oversaturated ground. Because we’ve engineered so much of our land with impervious surfaces, that runoff can be excessive. Without the benefit of natural filtration, stormwater flows directly to waterbodies, storm drains, and sewer systems, taking with it any debris, chemicals, bacteria, eroded soil, and other pollutants it picks up along the way.

    While new technologies and green infrastructure help reduce pollutant levels, many solutions are best equipped to handle frequent, low-intensity storms, rather than the sporadic, powerful storms experienced more recently. To compound the problem, population growth and rising water demand have increased dependence on local water sources, including groundwater recharge—raising more concern over potential contaminants.

    76 Projects 5 Web Tools 1 Case Study 13 Webcasts
    Project #4852

    Economic Framework and Tools for Quantifying and Monetizing the Triple Bottom Line Benefits of Green Stormwater Infrastructure

    $398,592
    Completed

    Project Highlights

    Many cities are adopting green infrastructure (GI) programs to reduce polluted stormwater runoff and meet water quality standards related to combined sewer overflows, municipal separate storm sewer systems, and total maximum daily load targets. GI practices can also yield many...

    Principal Investigator
    Janet
    Clements
    Research Manager
    Dr. Harry Zhang, Ph.D., PE
  • Water Use & Efficiency

    In the United States, per-capita water use has been declining since the 1980s, largely due to efficiency improvements from product standards, codes, and third-party certification programs. Federal and state regulations also impact water use. The Energy Policy Act of 1992 restricted water use in common household fixtures and appliances to save energy. The recent drought in California resulted in Senate Bill 606 and Assembly Bill 1668, which limit indoor water use to 55 gallons per person per day until 2025.

    Water efficiency is an important way to increase a utilities’ water supply reliability, decrease the capital costs of building a new supply, ultimately reducing treatment and distribution costs. Because water use trends will continue to change, utilities should be aware of and track the drivers of water use so they can plan appropriately for their service area.

    18 Projects 4 Web Tools 5 Webcasts
    Project #4966

    Modeling Future Residential Outdoor Water Demand in Aurora, CO

    $27,000
    Completed

    Project Highlights

    This research applied an innovative methodology to water demand forecasting that provides key insights into the relationships between development decisions, water needs, and growth. This analysis of residential outdoor water use in Aurora, Colorado, used a novel housing typology to...

    Principal Investigator
    Mia
    Stier
    Research Manager
    Ms. Maureen Hodgins

Current Projects

WRF has over 300 ongoing research studies covering dozens of emerging topics.  

Completed Projects

WRF has published findings for over 2,000 completed projects.

All Projects

Explore our entire $700M portfolio of applied research.