advancing the science of water ®

    Topics of Focus

  • Biosolids

    In the United States alone, billions of gallons of water are treated each day at water resource recovery facilities. Once the water is clean, a different challenge remains: determining what to do with the solids that are removed during the treatment process. The resulting mixture is often a unique semi-solid blend of organic and inorganic materials, trace elements, chemicals, and even pathogens, so there is no across the board solution for handling and processing the combinations of constituents that may be present.

    Because these solids are often rich in nutrients, like nitrogen and phosphorus—which also happen to be the perfect ingredients for promoting healthy soil and plant growth—many facilities have turned to land application. Before these solids can be put to use for things like fertilizing farmland, however, they must undergo rigorous treatment to meet stringent regulations, at which point they become known as biosolids.

    Project #4915

    Characterization and Contamination Testing of Source Separated Organic Feedstocks and Slurries for Co-Digestion at Resource Recovery Facilities

    $528,992
    Completed

    Project Highlights

    A key challenge with source separated organic (SSO) feedstock co-substrate is that its composition, quality, and characteristics differ between geographical locations and can change over time. This causes challenges and uncertainties for pre-treaters, substrate brokers, facilities accepting this material, operators...

    Principal Investigator
    Tanja
    Rauch-Williams
    Research Manager
    Ms. Stephanie Fevig, PE
  • Climate Change

    Climate change is altering our natural hydrologic cycle, creating uncertainty when it comes to the quality and quantity of water sources. WRF’s research on climate change covers the key areas of climate risk assessment, climate adaptation, and mitigation strategies.

    Because the first step in preparing for climate change is understanding the potential and variable impacts these changes can have on water sources and treatment systems, WRF research tracks potential outcomes, considering a variety of possibilities, and provides resources and tools to help facilities identify and address risks and vulnerabilities in their operations and infrastructure.

    Implementing climate change adaptation strategies will be critical as the water sector moves forward. WRF’s research in this area helps utilities create better long- and short-term adaptation plans, respond more effectively to severe weather, and improve infrastructure and operations to meet changing needs, including the production of onsite energy systems and reliable back-up power to protect critical services.

    The water sector must also have a hand in mitigating the root causes of climate change. By pioneering approaches to improve energy efficiency, including process optimization, improved energy management, and the use of renewable energy, WRF is helping the water sector decrease activity that is driving these changes.

    For more information, contact Harry Zhang.

    Project #5188

    Establishing Industry-Wide Guidance for Water Utility Life Cycle Greenhouse Gas Emission Inventories

    $586,771
    In Progress

    Project Highlights

    In light of increasing pressure from the global community to reduce GHG emissions and more frequent extreme climate events, the water sector has begun to align itself with national targets for meeting the Paris Agreement and reducing GHG emissions. Numerous...

    Principal Investigator
    David
    Ponder
    Research Manager
    Harry Zhang, PhD, PE
  • Cyanobacteria & Cyanotoxins

    Aquatic microscopic algae and cyanobacteria (formerly known as blue-green algae) occur naturally in most surface waters. However certain nutrient and temperature conditions can cause them to multiply rapidly, leading to “blooms.” Under certain conditions, some species of cyanobacteria can produce toxic secondary metabolites or cyanotoxins, which may pose health risks to humans and animals. Even when cyanobacteria are not toxic, they can produce unpleasant tastes and odors.

    Cyanobacteria continue to be among the most problematic organisms in fresh water systems. Without clear guidance or consensus regulations in place, many utilities struggle with responding to cyanobacterial harmful algal bloom (cHAB) events. Since 1994, WRF has completed more than 40 research projects on these microscopic organisms and the cyanotoxins they produce, helping facilities detect, monitor, and manage these organisms—as well as communicate with the public.

    For more information, contact Sydney Samples.

    Project #4716

    Refinement and Standardization of Cyanotoxin Analytical Techniques for Drinking Water

    $696,597
    Completed

    Project Highlights

    There is uncertainty relating to the screening and confirmation of cyanotoxin samples. Water utilities need robust and dependable methods to monitor cyanotoxins in source water, through the treatment process, and at the tap, as well as to make appropriate decisions...

    Principal Investigator
    Y. Carrie
    Guo
    Research Manager
    Ms. Julie Minton
  • Disinfection Byproducts (DBPs)

    The use of strong oxidants to disinfect water has virtually eliminated waterborne diseases like typhoid, cholera, and dysentery in developed countries. However, research has shown that chlorine interacts with natural organic matter present in water supplies to form regulated and emerging disinfection byproducts (DBPs).

    To minimize the formation of regulated DBPs and comply with existing regulations, water utilities have increasingly been moving away from chlorine to use alternative disinfectants like chloramine, or installing more advanced and costly treatment processes, such as ozone or granular activated carbon to remove DBP precursors. However, while reducing the formation of halogenated DBPs, alternative oxidants have been shown to favor the formation of other DBPs (e.g., ozone producing bromate and halonitromethanes, and chloramines producing N-nitrosodimethylamine and iodinated DBPs). 

    For more information, contact Kenan Ozekin.

    Project #5085

    Impact of Haloacetic Acid MCL Revisions on DBP Exposure and Health Risk Reduction

    $273,859
    In Progress

    Project Highlights

    The U.S. Environmental Protection Agency (EPA) is considering changes to the disinfectant and disinfection byproducts (D/DBP) rule. Specifically, there may be a shift from the currently regulated five haloacetic acids (HAA5) to nine (HAA9), which would include four additional brominated...

    Principal Investigator
    Ben
    Stanford
    Research Manager
    Ms. Mary Smith
  • Energy Optimization

    For most water facilities, energy is one of the highest costs in their operating budget. Stricter regulations are pushing facilities to use even more advanced—and energy-intensive—treatment technologies. Optimizing energy use can provide huge cost savings and numerous additional benefits, including improving air quality, protecting the environment, and bolstering energy security. WRF has published more than 100 projects that explore ways to not only optimize current energy use, but to generate power as well—setting the course for a self-sufficient water sector.

    Project #5091

    Developing a Framework for Quantifying Energy Optimization Reporting

    $441,825
    In Progress

    Project Highlights

    Energy projects within the water sector are often discretionary and initiated based on projected annual energy savings metrics. The water sector lacks standard energy savings estimation procedures, as well as measurement and verification approaches and procedures that adhere to the...

    Principal Investigator
    Nancy
    Andrews
    Research Manager
    Mr. Ashwin Dhanasekar
  • Intelligent Water Systems

    As with other industries, newly developed technologies drive water utilities to adapt their day-to-day operations. Water networks have been a special focus, with new instrumentation options for water production, transmission, distribution, wastewater collection, and consumer end-points coming to market. Implementing these technologies can improve the efficiency and reliability of water networks, but with myriad options, utilities need guidance on which technologies are most worthwhile and how they should be implemented. 

    Project #5121

    Development of Hybrid Digital Twins for Predictive Nutrient Control

    $666,135
    In Progress

    Project Highlights

    Water resource recovery facilities (WRRFs) are under pressure to improve effluent quality and reduce capital and operational costs. One emerging cost-saving strategy is the use of advanced process control concepts for nutrient management that combine online measurements and real-time process...

    Principal Investigator
    Bruce
    Johnson
    Research Manager
    Harry Zhang, PhD, PE
  • Microbes & Pathogens

    Control of microbes in water systems is critical to achieving water quality and public health goals. While most microbes are not considered human pathogens, certain microbes can pose health risks or contribute undesirable tastes and odors. 

    Since the early 20th century, modern drinking water treatment has made great advancements in the detection, removal, and inactivation of bacteria, viruses, and protozoa. As technologies in the drinking water space continue to progress, new challenges have arisen in the form of opportunistic premise plumbing pathogens. 

    Wastewater and stormwater utilities also play an essential role in reducing the pathogen load to receiving waters used for recreation.  Additionally, more recent advancements in water reuse, especially direct potable reuse, demand more understanding of pathogen detection, removal, and inactivation in wastewater. 

    For more information, contact Grace Jang (drinking water & reuse) or Lola Olabode (wastewater).

    Project #5033

    Demonstrating the Effectiveness of Flushing for Reducing the Levels of Legionella in Service Lines and Premise Plumbing

    $526,924
    Completed

    Project Highlights

    Legionella are pervasive environmental bacteria that can incidentally cause severe and sometimes fatal infections upon inhalation. Because Legionella inhabit engineered environments and proliferate in warm, stagnant premise water systems, the majority of outbreaks are associated with preventable water system maintenance...

    Principal Investigator
    Cynthia
    Halle
    Research Manager
    Hyunyoung Jang, PhD
  • Resource Recovery

    In recent decades, the wastewater sector has moved away from the idea of wastewater treatment plants as waste disposal facilities, instead envisioning these plants as water resource recovery facilities (WRRFs). WRRFs can produce clean water, recover nutrients (such as phosphorus and nitrogen), and potentially reduce fossil fuel consumption through the production and use of renewable energy.

    For more information, contact Jeff Moeller.

    Project #5091

    Developing a Framework for Quantifying Energy Optimization Reporting

    $441,825
    In Progress

    Project Highlights

    Energy projects within the water sector are often discretionary and initiated based on projected annual energy savings metrics. The water sector lacks standard energy savings estimation procedures, as well as measurement and verification approaches and procedures that adhere to the...

    Principal Investigator
    Nancy
    Andrews
    Research Manager
    Mr. Ashwin Dhanasekar

Recent Updates

Events

Throughout the year, WRF hosts and participates in events that focus on critical water quality issues. From web seminars to research workshops, these events provide opportunities for you to learn about new research from water quality experts and to share ideas and connect with other industry professionals.

Advances in Water Research

January-March 2024
vol. 34 no. 1
In this issue:

This issue highlights the essential research The Water Research Foundation delivered in 2023 thanks to the valuable contributions of our researchers, participating utilities, and countless volunteers.

Join our mailing list and receive news and updates in your inbox!