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Executive Summary  

ES.1 Key Benefits 
• Developed an event detection framework promoting proactive and rapid responses to 

direct potable reuse (DPR) process upsets and errors. 
• An event detection system (EDS) based on this framework, implemented at a 

demonstration DPR facility, increased lead time prior to forced shutdowns and reduced 
response time.  

• Identified 22 parameters that provide a basis for early detection of critical control point 
(CCP) failures.  

• Classified CCP failures under one of three event types (monitoring point, process failure, or 
water quality), helping operators know which appropriate corrective action(s) should be 
taken. 

• Demonstrated that statistical process control is a viable approach to configuring test 
bounds and thresholds specific to the site and unit process that accurately identify 
anomalous data at an acceptable sensitivity. 

ES.2 Key Findings  
• The four-step framework of data storage, data screening, data flagging, and event detection 

presented in Figure ES-1 can be implemented for real-time, continuous monitoring of DPR 
unit processes and provide early detection of possible process errors and upsets. The 
project team identified 22 out of 8,000 possible CCP monitoring parameters, implemented 
within the software via supervisory control and data acquisition (SCADA) tags. These SCADA 
tags enable a variety of parameters (e.g., chemical concentrations, percent removals, 
percent changes, etc.) to be transferred into a database, which can be read into an event-
driven software. Events are categorized into three types: process failure, monitoring point, 
and water quality. Processes include ozone disinfection, membrane filtration, reverse 
osmosis (RO) filtration, and ultraviolet advanced oxidation (UV/AOP). The detection of 
events can be automated, provided the event happens in a predictable and systematic 
manner. 
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Figure ES-1. Event Detection Framework Steps. 

 
• Event detection logic that provides longer lead times is desirable, but it may be more prone 

to false positive and nuisance alarms. However, if event detection logic is configured with 
limited sensitivity, there is a higher likelihood that the event will not be detected in a timely 
manner. An iterative, site-specific approach is necessary to optimize the event detection 
system (EDS) and achieve the appropriate level of sensitivity. This can be accomplished by 
challenge testing the event detection logic using historical data sets containing examples of 
known events and adjusting the test bounds and minimum consecutive failures based on 
the results.  

• When used on a dataset with high-quality monitoring data, statistical modeling is effective 
for determining operating range bounds designed to provide early detection of possible unit 
process errors and upsets.  

• A multidisciplinary team consisting of process engineers, operators, programmers, and 
systems integrators is needed to develop and deploy this type of tool and framework. 
Knowledge and operational experience with advanced water treatment processes are 
critical for formulating meaningful limits and logical tests for event detection.  

ES.3 Background and Objectives 
Protection of public health and a high degree of treatment reliability and performance are 
critical components of DPR projects. The implications of water quality excursions in the product 
water are magnified due to the absence of a significant environmental buffer that results in 
shorter retention time before reaching consumers. DPR projects must be able to demonstrate 
performance reliability to be protective of public health, and a key component to increasing 
reliability is responding to emerging performance excursions before they exceed regulatory 
thresholds. Reliability is centered on the ability of a potable reuse system to protect public 
health (Pecson et al. 2015a). This can be achieved through redundancy of treatment and 
monitoring to ensure that treatment objectives are reliably met or more reliably demonstrated. 
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This project explored a software-based approach to enhance monitoring and ultimately 
increase reliability of potable reuse treatment trains.  

Currently, potable reuse systems are controlled by programmable logic controllers (PLCs) and 
computerized control systems like distributed control system (DCS) and SCADA systems. 
Sensors are installed throughout the systems to monitor process performance, and alarms are 
set so that an alarm is issued at a value close to the regulatory threshold and at the regulatory 
threshold. While these alarm limits are set to provide lead time so that operators are alerted 
before the regulatory limit is breached, operators are responsible for assessing if readings are 
real (i.e., not a false positive), determining what caused the alarm limit to be breached, 
implementing corrective actions based on troubleshooting and evaluating if the issue has been 
resolved. Minimizing the response time to go through these steps is important to prevent 
escalation of the issue and potentially greater consequences. Proactive detection and diagnosis 
of potential issues within the DPR treatment train were the principal areas of focus when 
developing the EDS (Figure ES-2).  

 
Figure ES-2. Response Time Scenarios. 

ES.4 Project Approach  
The project objectives and major deliverables were achieved through four primary tasks: 
Literature Review and Utility Surveys/Case Studies (Chapter 2), Event Detection System 
Framework Development (Chapter 3), Event Detection System Implementation (Chapter 4), and 
Challenge Testing and Event Detection System Validation (Chapter 5). The project team 
considered numerous approaches for developing the automated EDS and included the 
following: open-source, artificial intelligence (AI), machine learning, and statistical modeling. A 
review of prior work on these topics evaluated existing open-source data analytic programs 
(e.g., CANARY and Pecos), Python packages for machine learning and statistical modeling, and 
timeseries analysis methods for configuring structured event detection logic. Interviews were 
conducted with Orange County Water District (OCWD), Veolia, and Hampton Roads Sanitation 
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District (HRSD) to better understand how current monitoring and alarming systems are 
configured to reduce response time in indirect potable reuse (IPR) systems.  

To develop event detection framework for DPR applications, the project team first identified 
the necessary software capabilities. Next, a curated list of CCP monitoring parameters was 
developed to focus only on data that would affect the pathogen removal capabilities of each 
unit process. Lastly, the operational experience and knowledge of the project team was 
leveraged to identify events that would impact the ability of the process to protect public 
health. These events consisted of one or more Pecos quality control tests configured with 
operating range bounds and minimum consecutive failure thresholds for the CCP monitoring 
parameters.  

The EDS prototype was implemented at the City of San Diego’s 1 million gallons per day (MGD) 
North City Pure Water Demonstration Facility (NCPWDF) to test the functionality of the scripts 
and evaluate the sensitivity of the event detection logic for providing advanced notice of 
potential issues. An iterative approach was employed when challenge testing the 12 
implemented events with either simulated or naturally occurring process upsets. Pecos quality 
control test configurations within the EDS were adjusted as needed based on the challenge 
testing results.  

ES.5 Results  
The literature review and utility case studies confirmed that there is a need within the potable 
reuse industry for real-time data analytics that can provide advanced notice of potential 
process upsets and errors. Data-driven modeling (i.e., machine learning/AI) is most ideal for 
applications with extensive data, therefore it is not currently suitable for DPR facilities where 
data is limited because true CCP failures are rare. The EDS should be configured so that the 
results of its analysis are specific and actionable for operations staff. The project team found 
that this can be accomplished using statistical methods and existing open-source data analysis 
programs.   

The four-step event detection framework developed by the project team can be used as a 
blueprint for other process engineers to design an EDS specific to their site. The four steps are 
(1) data storage, (2) data screening, (3) data flagging, and (4) event detection. Data storage 
involves receiving raw values from the control and monitoring system. Next, data generated 
while the DPR facility is not in production (i.e., product water is not being distributed) is 
screened out of the data set that will be analyzed. The tool then analyzed the screened data 
using Pecos quality control tests configured by the project team for each of the CCP monitoring 
parameters. The flagged data points represent potential events that warrant further evaluation. 
In the last step, the flagged data points are evaluated, and if the Pecos quality control test(s) 
correspond with the event detection logic for one of the three categories (process failure, 
monitoring point, water quality), then the EDS generates an alert for operations staff to review. 
For more complex events, multiple CCP monitoring parameters are used as event criteria and 
evaluated simultaneously so that the appropriate issue can be identified with greater certainty. 
The framework facilitates site specific configuration of event detection software while providing 
a well-defined workflow approach to the development of such a tool in DPR applications.  
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The project team successfully implemented a functional EDS prototype at the NCPWDF, and the 
associated files can be found in a publicly available Github repository, which can be accessed 
via the 4954 project page on the WRF website. Figure ES-3 displays the prototype’s dashboard 
screen that was designed to communicate the status of the events configured for each unit 
process.  

 
Figure ES-3. EDS Dashboard Output. 

Figure ES-4 is an example report generated by the EDS during challenge testing when an ozone 
process failure event occurred in the timeframe that was being monitored. 
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 Figure ES-4. Partial Ozone Generator Failure Event Detection Report.  

Challenge testing using real and simulated process upsets validated the functionality of the EDS 
and enabled the project team to optimize the event detection logic so that events were 
accurately identified while nuisance/false alarms were avoided. 

ES.6 Related WRF Research 
• Monitoring for Reliability and Process Control of Potable Reuse Applications (1688) 
• Critical Control Point Assessment to Quantify Robustness and Reliability of Multiple 

Treatment Barriers of DPR Scheme (1700) 
• Integrated Management of Sensor Data for Real Time Decision Making (4759) 
• San Diego DPR (4765) 
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CHAPTER 1  

Introduction 

1.1 Introduction  
The main differentiator between direct potable reuse (DPR) and indirect potable reuse (IPR) is 
the loss of the environmental buffer. This loss is important because the environment provides 
many benefits to protect public health. As a result, DPR systems will need to adapt to 
compensate for these losses. The primary goal of potable reuse projects is to provide reliable 
protection of public health. Towards that end, the basic approach for IPR has been to both 
prevent issues from occurring and respond to those that do. To date, significant research has 
focused on how to replace these lost benefits in DPR with additional prevention and response. 
For example, additional treatment [e.g., ozone and biological activated carbon (BAC)] is being 
used to supplement reverse osmosis (RO)-based treatment in California’s draft DPR regulations 
to compensate for the loss of treatment in the environment. Additional treatment protects 
public health by further preventing off-spec water from being sent to consumers.  

One benefit that cannot be so easily replaced, however, is time. Unlike treatment, there is no 
easy way to replace the retention time provided by the environment. In all cases, a system’s 
ability to respond to a treatment issue (response time) must be faster than the time the water 
is retained in the system (retention time) so that systems can identify and respond to failures 
before the water reaches consumers. California regulations draw a bright line to define IPR: in 
both groundwater recharge and surface water augmentation, projects must provide at least 
two months of retention time in the environment. Environmental retention affords IPR projects 
significant opportunities to diagnose and respond to issues before water is distributed to 
consumers. The long retention times provided by aquifers and reservoirs offers significant 
response time to (1) detect treatment or water quality issues and (2) enact a response before 
off-specification water is consumed. Typically, systems have alarm limits in place to ensure 
diversion or unit process shutdown if regulatory limits are crossed. Operator response times to 
proactively prevent breaches of regulatory limits can vary for different types of events but is 
generally a function of how frequently processes are monitored, how quickly data is analyzed 
and evaluated to make decisions, how quickly a response is made, and how effective the 
response was to address the root cause of the issue. The accuracy and quality of the data 
generated by monitors can also affect how quickly issues can be mitigated. 

DPR projects may reduce that retention time from months to as little as hours, representing a 
thousand-fold or more reduction in the time available to identify and respond to events (Figure 
1-1). If retention time cannot be extended, then response time must be shortened. The entire 
process of integrating and responding to performance data must shift to real-time and 
proactive. To adapt, DPR projects will need to develop monitoring and control systems that 
allow them to rapidly process performance data, identify potential issues, and enact corrective 
responses before water is sent to consumers. Given the short timescales available in DPR, being 
able to integrate performance data and provide real-time automation of advanced treatment 
facilities is one of the greatest technical challenges for the implementation of DPR. 
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Figure 1-1. Difference in Retention Time versus Response Time for IPR and DPR. 

To assess this challenge, existing monitoring and control systems must first be examined to 
determine the extent to which they are capable of dealing with this significant loss of response 
time. If they are not currently capable, what other options exist for public health protection in 
DPR? One option would be to place more emphasis on preventing failures by providing greater 
redundancy in treatment and monitoring. Nevertheless, there will always be some risk of off-
spec water passing through. In light of this, a response system is critical for public health 
protection in DPR. While there is consensus that this response system is needed, is it possible? 
The goal of WRF project 4954 is to develop a framework for DPR monitoring and control that 
can rapidly identify and respond to events within the constrained timeframes of DPR.  

1.2 Summary of Monitoring Advancements in Water Research 
Foundation Projects 
As the industry develops updated monitoring and control systems for DPR, it can leverage the 
advancements already made in this field in IPR settings. The need to minimize response time in 
DPR projects has been recognized as an important topic and several studies funded by the 
Water Research Foundation (WRF) have been conducted to advance the industry’s use of 
monitoring data. A summary of projects making important advancements in public health 
protection through treatment, monitoring, operations, and risk assessment is provided in 
Figure 1-2. 
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Figure 1-2. Key WRF Projects Advancing the Field of Monitoring and Data Analysis. 

 
1.2.1 WRF 1688  
WRF 1688 addressed both IPR and DPR with a focus on the measurement of microbial 
contaminants (Snyder and Pepper 2016). This project reviewed online instruments in potable 
reuse—including accuracy, response time, and detection mechanism—and described best 
practices for these instruments.  The study found that online instruments commonly measure 
chemical contaminants or surrogates but not microbial contaminants.  Turbidity, conductivity, 
and total organic carbon (TOC) are commonly used to detect treatment failure. In addition, 
online fluorescence sensors and rapid tests for microbial contamination could supplement 
existing indicators, though the latter were deemed to currently be at an early stage of 
development.   

1.2.2 WRF 1700 
WRF 1700 described the process of integrating hazard analysis and critical control point 
(HACCP) methodologies into DPR including hazard assessment, water quality objectives, 
identification of CCPs and COPs, CCP/COP monitoring parameters, and CCP/COP response 
procedures (Walker et al. 2016). This work also developed approaches to understand and 
communicate the risk associated with a compromised CCP barrier. Some of the key principles of 
HACCP, as formalized in ISO 22000, evaluate CCPs and evaluate the following questions: 

• Is there a hazard at this process step? What are the hazards? 
• Do control measures exist for the identified hazard?   
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• Is the step specifically designed to eliminate or reduce the likely occurrence of the hazard to 
an acceptable level?   

• Could contamination occur at or increase to unacceptable levels?   
• Will a subsequent step or action eliminate or reduce the hazard to an acceptable level?   

The study also provided commentary on drinking water regulations and how they might set a 
precedent for reuse regulations. In some countries, surface water treatment plants implement 
HACCP by monitoring surrogate parameters of pathogens and implement a multi-barrier 
approach. In the U.S., existing Environmental Protection Agency (EPA) regulations for drinking 
water treatment use a combination of both CCP monitoring and end-point monitoring. Many 
advanced treatment processes currently used in potable reuse use online monitoring to verify 
the performance of the system in real-time such as turbidity monitoring on membrane filters or 
the use of the CT framework for chemical disinfectants. 

1.2.3 WRF 4759 
WRF 4759 developed a Decision Support System (DSS) and a Microsoft Excel-based Decision 
Support Tool (DST) using online sensors that are applicable to potable reuse systems (Neemann 
et al. 2019). The study evaluated EDS software packages for anomaly detection and discussed 
the idea of developing an Integrated Sensor Network (ISN) of both water quality and operations 
and maintenance data to detect failures in treatment. The study also evaluated use of 
commercially available monitoring sensors to identify failures for a pilot treatment train 
consisting of ozone and BAC. 

1.2.4 WRF 4765 
WRF 4765 combined the findings of several DPR research projects to assess how redundancy in 
treatment and monitoring could be used to promote the reliability of public health protection. 
One key research question was whether DPR systems could be developed that would provide 
continuous protection of public health. This uncertainty stemmed largely from the lack of full-
scale performance data from actual DPR systems. To help address this data gap, this project 
evaluated the City of San Diego’s 1 MGD North City Pure Water Demonstration Facility 
(NCPWDF) to assess the benefits of redundancy and monitoring to achieve reliable potable 
reuse (Trussell et al. 2017). Yearlong continuous monitoring of the treatment train, consisting of 
ozone, BAC, membrane filtration, RO, and UV/AOP, provided an extensive dataset to assess 
process performance. Routine performance monitoring was complemented with multiple 
challenge tests that assessed the benefits of the enhanced treatment train (Tackaert et al. 
2019). The performance data were used in a quantitative microbial risk assessment to 
demonstrate that a full-scale DPR treatment train could reliably meet performance goals and 
produce a water that provides public health protection equivalent to, or greater than, 
conventional drinking water supplies (Pecson et al. 2017). The study also discusses the 
importance and relevance of timely operating data when operating DPR. This involved filtering 
and querying of sensor data to verify that the processes and sensors were functioning correctly 
(Chen et al. 2020; Pecson et al. 2018).   

One key takeaway from WRRF 4765 was that processing data from DPR systems—which may 
produce more than 300 GB of data annually—cannot be done without complex and automated 
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data filtering (Pecson et al., 2017). This requires understanding (a) which CCP monitors are 
needed to assess the performance of the different unit processes, (b) how to set up filters to 
focus on unit process performance when the system is producing water (vs. when it is offline or 
in startup mode), and (c) how to compile and integrate these data to assess systemwide 
performance. The data processing required removing certain data points from the analysis, 
such as when the system was offline or shut down. As expected, there was significant deviation 
in sensor signals when the system was offline or when it was transitioning from an off-line state 
to steady-state production. If these signals were included in the dataset for analysis, it would 
appear as if there were many failure events. However, these false positives should be removed 
from the dataset in order to focus exclusively on the data generated when the system was 
actually producing and distributing water. Extensive data cleaning/filtering was implemented 
using an R-script to distinguish the data that was produced when the system was online and 
operational. The general framework used in WRF 4765 for filtering data is shown in Figure 1-3. 

 
Figure 1-3. Three Layers of Filters Used to Evaluate Process Performance Data in WRF 4765. 

 
The first layer of filtering was used to determine whether the process was actually online. This 
filter layer helped to remove most of the off-line data by identifying whether basic process 
functions were being conducted, e.g., that water was flowing through the system, that 
chemicals were being dosed, and that all critical components were online. Data that passed the 
first layer went on to the second filter, which provided a rudimentary check to determine 
whether the meters were online and functional. These types of meter error checks included 
assessing whether a non-zero reading was being recorded and whether the values were 
changing. Assuming the first two layers passed, the third layer assigned a log removal value 
(LRV) based off the process monitoring data. The data filters were capable of removing many 
data points that were generated during periods when the processes were not in production 
mode. 

Despite the effectiveness of the automated filters, additional manual processing was required 
to curate the dataset completely. While the filters were helpful for evaluating if processes were 
offline, there was still a significant number of suspected water quality events. When operators 
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cross-referenced periods of potential failure events with operational event logs and data 
trends, they found that the apparent “failures” could be attributed to other events occurring at 
the facility that were not indicative of process performance. These included both upstream and 
downstream events, such as maintenance events on other unit processes that ceased flow, 
power outages to the whole facility, or shutdowns to restart other unit processes. Based on the 
automated filters alone, these could appear to be failure conditions with potential public health 
implications. Manual evaluation of each event was therefore required to separate the false 
positives from the data that were truly indicative of process performance. This highlighted the 
importance of context in assessing the true performance of the system—knowledge of the 
performance of other unit processes may be necessary to interpret the data for a given process. 
Of the types of issues that arose that were specific to the process itself, the majority of suspect 
events could be correlated with the following scenarios: 

• Meter error/drift resulting in readings that were not representative of process performance 
• Erratic or elevated meter readings during operational changes (particularly flow changes) 

Given the lack of automated filters to review the data, manual categorization was performed 
for all suspected water quality events. Because the two scenarios identified above occurred 
routinely, a systematic routine for categorizing and confirming these scenarios was developed. 
With the aid of this routine, the time and effort to manually categorize these events was 
reduced; though it still remained tedious and time-consuming. Certain parameters were 
affected by these types of scenarios more than others, which generated a large number of 
trends that needed manual review. For example, the membrane filtration systems underwent a 
backwash (BW) every 30 minutes and the filtrate turbidity always spiked after a BW due to 
sample flow changes to the filtrate turbidimeters. At this frequency of flow changes, many 
“suspect water quality events” were generated which had to undergo manual review for 
categorization. The testing site for WRF 4765 only had two membrane filtration trains making 
the manual evaluation of the data relatively feasible; such an approach would be infeasible with 
the number of trains typically present at a full-scale facility. This effort highlighted that the data 
filtering developed for WRF 4765 needed improvement and further automation to better 
distinguish the true water quality events and reduce the need for manual filtering. 

WRF 4765 demonstrated that creating effective filters for CCP performance requires significant 
effort. Further refinement of the filters developed in WRF 4765 would be needed to reduce the 
number of false positives and eliminate (or greatly reduce) the need for the manual 
categorization of suspected events. The filters should be able to identify a number of scenarios 
both within a given unit process (e.g., meter drift and operational changes) as well as 
contextual information (e.g., the impact of failures of upstream and downstream systems). 
Refinement of filters can be difficult because it is important that the developed filters do not 
mistakenly categorize true water quality events as false positives. Development of new filters is 
an iterative approach and requires manual review to confirm if categorizations made by filters 
are accurate. 

Based on this study, the team made several conclusions about the challenges surrounding 
monitoring and control systems for DPR: 1) DPR systems will produce large quantities of 
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performance data, 2) it will not be possible to analyze the data and evaluate system 
performance manually, and 3) automated systems will be needed for DPR implementation. At 
the time, the project team concluded that the functionality needed for DPR monitoring and 
control did not exist but would be a key technical requirement for future implementation. In 
identifying these needs, WRF 4765 was an important springboard for the current project.  

1.3 Importance of Pathogen Control in DPR 
Reliable control of pathogens is the most important goal for potable reuse systems given that 
even brief periods of inadequate treatment can lead to infection and illness within the 
community. For this reason, the main focus of this project is on the unit processes—or critical 
control points (CCPs)—related to the control of pathogens. DPR systems must ensure that CCPs 
are either properly functioning (on-spec) or that any off-spec water is diverted prior to 
distribution. The treatment required or recommended for DPR varies across states. Some states 
are prescriptive about treatment while others are not, but all require reliable control of 
pathogens. As seen in Table 1-1, treatment trains are always composed of multiple unit 
processes. This multiple-barrier approach has been a fundamental aspect of public health 
protection for decades and provides a diversity of barriers to control against the full spectrum 
of pathogens (including virus, protozoa, bacteria).  

In light of this, DPR projects will need systems to evaluate the performance of multiple unit 
processes in real-time and provide reliable detection of events or potential events. Typically, 
potable reuse trains use many similar unit processes for pathogen control including physical 
barriers (microfiltration, ultrafiltration, reverse osmosis), chemical disinfectants (ozone, 
chlorine), and UV disinfection. As a result, DPR monitoring and control systems should be 
largely adaptable across locations even if the treatment requirements differ from one location 
to the next.  

Table 1-1. Summary of DPR Regulations and Project by State.  

State 
DPR Regulations 

Exist?* 
Required 

Treatment Train DPR Projects 
Project 

Name/Location 
Arizona Draft in progress 

(expected Dec 2023) 
Draft in progress No Scottsdale (has a 

permit but no 
project) 

California Draft UV light disinfection Yes (projects in 
plan) 

LA: Headworks 
DPR 

Demonstration 
Project 

Ozone 
BAC - follows Ozone 

unless exempt 
RO 

AOP 
Colorado Yes None Yes 

(demonstration 
facilities) 

Colorado Pure 
Water Mobile 

Demonstration 
Project 

Florida Draft RO and high-level 
disinfection - UV 

(can propose 
alternative) 

Yes, (pilots and 
demonstration 

designs) 

Polk County DPR 
Pilot 

Design only: 
Dania Beach DPR 

Project 
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State 
DPR Regulations 

Exist?* 
Required 

Treatment Train DPR Projects 
Project 

Name/Location 
Daytona Beach 
Demonstration 
Testing System 

New Mexico Draft in progress Draft in progress Yes Cloudcroft 
Oregon Yes, case by case 

basis 
RO and/or other 

advanced treatment 
systems 

No n/a 
 

Texas Yes, case by case 
basis 

RO and UV with 
Advanced 

Oxidation** 

Yes Big Spring 
Wichita Falls 

Washington Yes, case by case 
basis 

None None n/a 

*As of March 2023 
** Or a treatment unit that removes a similar wide range of chemical contaminants 

1.4 Response Time and Event Detection Systems 
Response time depends on event detection capability and the time it takes to resolve the issue 
(resolution time). The event must first be detected before corrective actions can be 
implemented to resolve the issue. Response to events can be reactive, responsive, proactive, or 
both proactive and responsive as shown in Figure 1-4. A reactive response is detection of the 
event when a CCP in the treatment process meant to protect public health has failed. In the 
worst-case reactive scenario, the resolution time exceeds the retention time and product water 
with compromised water quality is distributed to the public. In the responsive scenario, the 
event is still detected at the time of CCP failure but since the response time is shorter than the 
retention time, the treatment system remains protective of public health. Ideally, the response 
falls under the proactive or proactive and responsive scenarios. In both scenarios, the event is 
detected prior to a CCP failure. The time between event detection and CCP failure can be 
characterized as the “lead time” and ideally the issue is resolved prior to an actual CCP failure. 
Even if the issue is not resolved within the lead time, the early detection grants additional time 
to resolve the issue so that resolution time does not exceed the retention time. The goal for 
future event detection systems will therefore be to 1) increase the lead time and 2) decrease 
the resolution time. 
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 Figure 1-4. Response Time Scenarios. 

In defining failure events, multiple types of events may occur. Based on the project team’s 
operational experience and events that occurred during WRF 4765, the events were distilled 
into three event categories: 1) treatment, 2) water quality, and 3) monitoring. The first type of 
failure is when a treatment process itself is not functioning properly, so the expected pathogen 
removal is either partially or completely impacted. Next, the upstream water quality may 
degrade beyond what the treatment process is designed to treat. In that case, despite a 
properly functioning treatment barrier, the finished water may still be of unacceptable quality. 
The third failure mode relates to a monitoring failure. In the first two failure modes, it is 
assumed that the data collected by the online analyzers reflects the true state of the system. 
However, several conditions may impact analyzer accuracy, e.g., online analyzers may drift, 
require calibration, or may fail to collect data entirely. In the case of a monitoring failure, it is 
not clear whether or not the CCP is working properly because the data does not reflect reality.  

Therefore, the project team defined three categories of events in this work: 1) treatment 
process, 2) water quality, and 3) monitoring point failures. A process failure is a measure of 
whether treatment equipment is functioning properly. An ozone generator failure, a membrane 
breach in membrane filtration, and a RO seal failure are all examples of potential process 
failures. A water quality failure is a measure of whether there are upstream water quality 
changes that require attention. Degraded water quality might be due to a disruption in 
upstream wastewater treatment processes resulting in changes to the ozone demand or the 
introduction of a chemical peak. A monitoring point failure identifies online analyzers reporting 
potentially poor-quality data. For instance, a stagnant reading on a sensor or values drifting 
beyond typical ranges. 

While advanced water treatment technologies are generally reliable (Pecson et al. 2017), these 
types of events can still occur based on the project team’s operational experience and findings 
from WRF 4765. An example of a monitoring failure that occurred at an actual reuse facility was 
when a meter value was left in hold while performing meter maintenance and not returned to 
monitoring mode. In this example, the control system will see a constant value. This prevents 
the control system from being able to adjust operations and issue alarms since monitoring is 
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not reflective of actual process performance. In addition, since the held value is not 
representative of process performance, reporting during this period is also inaccurate since the 
held value is recorded in historian, not the raw meter readings.  

Water quality excursions may also occur due to external factors outside of operator control, like 
chemical peaks. There are certain chemicals that are difficult to remove even with advanced 
water treatment technologies like formaldehyde and acetone. Illicit discharges to the 
sewershed of these types of chemicals have occurred at IPR projects (Debroux 2021). In these 
types of scenarios, if the volume of chemical discharge is large enough, the advanced water 
treatment train will not be able to remove these chemicals to acceptable levels and the only 
option is to divert the product water to protect public health. Diversion would likely be 
automated to occur based on a high TOC level setpoint for these types of events. To diagnose 
the cause of the event and resolve the event after diversion has occurred, the operator must 
determine if a chemical peak truly occurred or if elevated TOC was due to TOC meter issue and 
RO membrane integrity breach. After identifying the cause, the operator can respond 
accordingly to address the root issue and resolve the matter before resuming production of 
purified water.  

Process failures can also occur if a critical component has failed. For example, UV lamps are 
expected to have a useful life of approximately one year before they fail, though failure can 
occur before one year has elapsed. If enough UV lamps fail in a reactor, the desired treatment 
objectives might not be met and would be considered a process failure. Operators rely on the 
control system to inform them that an UV lamp has failed since there is no other way of 
checking while UV system is in operation. UV lamps must be replaced before the critical 
number of failed lamps is reached. From these examples, it is clear that monitoring and 
response is dependent on the monitoring system and operator response.  

If an event detection system for DPR can differentiate and identify the different types of 
failure—treatment, water quality, or monitoring—it can more rapidly point operators to the 
cause of the issue. Knowing both that there is an issue, and the cause of the issue can help to 
reduce the resolution time.  

1.5 Goals and Summary  
The goal of this project was to develop a software-based event detection system to integrate 
high-frequency data from DPR facilities and to further inform reliable operations. The event 
detection system is intended to complement industrial control systems logic, alerts, and alarms 
implemented by systems integrators.  

The event detection system seeks to address the short response times available in DPR by 
providing advanced warning of potential issues and data-based insight into the cause of the 
issues. By giving operators additional lead time and more rapid resolution times, the event 
detection system will help ensure that response times are faster than the short retention times 
of DPR. The framework developed in this project was applied to ozone, membrane filtration, 
reverse osmosis (RO), and ultraviolet advanced oxidation process (UV/AOP). While the 
configuration of treatment trains may differ between potable reuse projects, the framework 
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can be applied to any process in any potable reuse train. This generalizable framework is 
intended to inform reuse stakeholders about the needs of DPR, including utilities, technology 
vendors, supervisory control and data acquisition (SCADA) integrators, and consulting firms 

.
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CHAPTER 2 

Utility Interviews and Literature Review 
The project team evaluated the monitoring and alarming systems currently in use and software 
tools available for event detection. Interviews were conducted with utility staff working in IPR 
Projects to investigate current industry practices. The results of these interviews informed a 
literature review of existing software tools and best practices for proactive monitoring and 
event detection that could be applied to DPR.  

The literature review draws on the following disciplines: 1) event detection for engineering 
applications, 2) data science, and 3) manufacturing and industrial process control. To increase 
the lasting usefulness of this research, the project team limited the scope of the review to 
open-source solutions. 

2.1 Utility Interviews 
To better understand how current monitoring and alarming systems and advancements in 
monitoring and alarm systems are configured to reduce response time, utility interviews were 
conducted for staff currently working with IPR systems. Interviews were conducted with the 
following groups: OCWD, Veolia, and Hampton Roads Sanitation District (HRSD). 

An overview of the findings from the interviews is provided in Table 2-1. All facilities utilize a 
control framework that involves the monitoring of CCP performance with online meters. 
Control limits are defined for all CCPs, and most limits are fixed, static values that may be 
periodically updated. None of the facilities dynamically set control limits.  To minimize the 
impact of any single monitor on plant performance, all facilities have redundancy for one or 
more of the critical instruments. While the systems collect a high amount of performance data, 
much of the processing of the data is done by the operators rather than through automated 
processes. For example, operators are responsible for: 

• Identifying abnormal meter behavior and initiating follow up investigations 
• Spotting false positive readings from monitors  
• Creating strategies (e.g., alarm delays) to minimize the impact of erroneous readings 
• Developing compliance reports (though some steps in the process may be automated) 
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Table 2-1. Summary of Findings from Utility Surveys. 
Survey Topic OCWD Veolia HRSD 

Reuse system description Train: MF–RO–UV–
UV/H2O2–stabilization 
Capacity: 100 MGD. 70 
MGD to groundwater 
recharge, 30 MGD to 
seawater intrusion 

barrier 

Train: MF–RO–UV–
UV/H2O2–stabilization 
Capacity: 3 Advanced 

water purification 
facilities with 61 MGD 

capacity (48 MGD 
available). Only one 

facility running at the 
time of the interview 

Train: Floc/Sed-O3-
BAC-GAC-UV-Cl2.  
Capacity: 1 MGD 

research center. Up to 
100 MGD with 

implementation of full-
scale facilities. 

Key control parameters • MF: turbidity, 
membrane integrity 
test (MIT) 

• RO: TOC, electrical 
conductivity (EC) 

• UV/AOP: UV 
transmittance 
(UVT), electrical 
energy dose (EED) 

• Water standards. 
Currently only 
distributing for 
industrial users, yet 
meets drinking 

• Ozone: 
concentration-
time (CT) 

• Granular activated 
carbon (GAC): 
turbidity 

• UV: dose 
• Cl2: CT 

Operating Criteria • MF: filtrate 
turbidity < 0.15 
nephelometric 
turbidity unit (NTU) 

• MF: MIT > 0.2 
psi/minute triggers 
work order 

• RO: Permeate TOC 
< 0.1 mg/L 

• UV: Feed UVT > 
95% 

• UV: Dose > 101 
mJ/cm2 

• TOC: limit based on 
control chart 
statistical analysis 
of historical 
operational data 

• Facilities use COPs 
and CCPs. These are 
related to ISO 
22000 in Australia 
for Drinking Water. 

• Several alarms for 
CCPs based off of 
rate of change (e.g., 
ammonia). These 
are periodically 
reviewed and 
manually adjusted 
based on statistics. 

• Ozone: virus LRV > 
3.5 

• GAC: < 0.15 NTU 
• UV: dose > 186 

mJ/cm2 
• Influent: TOC < 15 

mg/L 
• Influent: EC < 

2,000 µS/cm 
• Influent: turbidity 

< 5 NTU 
• Influent: total 

nitrogen < 5 mg/L 
• Effluent: TOC < 4 

mg/L 

Redundancy in critical analyzers Redundant TOC 
analyzers for RO 

permeate 

Redundant oxidation 
reduction potential 

(ORP) probes ahead of 
RO 

Redundant TOC 
analyzers for GAC 

effluent 

Frequency of validation/ 
calibration of instruments 

Regular calibration/ 
validation done in-

house for most 
meters/probes. Service 

contract for TOC 
analyzers. 

Daily/weekly/monthly 
calibration/verification 

of all online 
instrumentation. 

Performed by in-house 
staff and external 

consultants/ vendors for 
more sophisticated 

analyzers. 

Weekly/monthly (as-
needed) 

calibration/verification 
of all online 

instrumentation. 
Performed by in-house 

staff. 
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Survey Topic OCWD Veolia HRSD 
Procedure for documenting 

instrument service 
Tracked in Maximo Tracked in Maximo  

Operational response to 
abnormal instrument behavior 

Operators trained to 
spot anomalies and 

troubleshoot as part of 
SOP for responding to 

alarms. If sustained, can 
trigger sampling events. 

Operators make 
decisions based on 
trends. Can trigger 

sampling events. SCADA 
does list 

responses/action items 
to fix issues based on 

alarms/warnings. 

Operator to 
investigate. 

Confirmation with 
bench top readings. 

Instrumentation staff 
are available 24/7. 

Must confirm issue is 
fixed. 

Compliance reporting 
procedures and purpose 

• Monthly reports to 
DDW 

• Max and average 
values for each day 
in reporting period 

• Some automation 
from excel macro, 
but manual analysis 
required 

 

• Reporting is 
primarily made to 
SNP Water, which is 
made available to 
Department of 
Health (DOH) 

• Exceedances are 
identified to the 
DOH on an annual 
basis and analytes 
are also made 
available to DOH 

• Internal reports are 
developed on a 
daily basis (process 
reports) for 
operational 
purposes and rolled 
up to monthly 
reporting 

• Some automation, 
but require manual 
to finalize 

• Quarterly 
regulatory 
reporting for the 
EPA's 
Underground 
Injection Control 
Program 

• Identifies 
operations and 
reasons for 
process being 
offline when 
applicable                                            

• Describes CCPs 
compliance for 
reporting period 

 

Predictive analytics Not implemented. There 
is a cybersecurity 

concern for cloud-based 
systems. Such analytics 
would need to be done 

locally. 

Not implemented. Not implemented. 

Dynamic or static alarm levels Mostly static. Some 
parameters, like TOC, 

are statistically 
informed using prior 

historical data 

Dynamic: rate of change 
metrics that are 

specifically re-evaluated 
with some frequency 

Mostly static. 
Correlations developed 
based on site-specific 
influent water quality 

and influence on 
product water quality 

(e.g., influent 
conductivity influent 

on bromate 
formation). 

Frequent false positives or 
nuisance alarms 

Operators are trained to 
spot false positives. 

Operators are trained to 
spot false positives. 
Daily process info is 

Alarms triggered after 
two consecutive 

readings to diminish 
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Survey Topic OCWD Veolia HRSD 
reviewed by plant 

operators and 
management. 

false positives. Lessons 
have been learned on 
how to diminish false 

positives. 

Responses from the utilities surveyed revealed certain aspects of existing monitoring/reporting 
systems that may need additional advancement for DPR applications: 

• False positive water quality events are common. The following strategies are utilized to 
identify and minimize their impact: 
1. Train operators to spot false positives 
2. Use alarm delays to minimize false positives 

• All utilities surveyed responded that generating compliance reports is mostly automated, 
but manual analysis is needed to finish reports. 

• Static versus dynamic alarms: two utilities surveyed use static limits exclusively for 
generating alarms. The third also employ some dynamic, rate-of-change metrics to trigger 
alarms. 

2.2 Event Detection Systems for Engineering Applications 
In the wake of the September 11th terrorist attacks, the US federal government focused on 
identifying potential vulnerabilities in the nation’s infrastructure, including drinking water. In an 
attempt to identify water contamination events in the distribution system, Sandia National Labs 
and the EPA jointly developed an open-source EDS called CANARY (U.S. EPA 2012). After the 
release of CANARY, Sandia National Labs built another EDS called Pecos designed to monitor 
solar photovoltaic systems (Klise and Stein 2016). Although Pecos was not designed for the 
water sector, it is an EDS tool that shares many features in common with CANARY. Among 
open-source products for EDS within engineering, CANARY and Pecos fit many of the 
requirements for an EDS for DPR. They both support real-time data analysis, are well 
documented, tested, and maintained, and are published in peer-reviewed literature. Both 
CANARY and Pecos were designed to analyze high volumes of sensor data, identify anomalies in 
the data, create alerts for operators, and improve data quality. 

CANARY (U.S. EPA 2012) uses three water quality event detection algorithms described in the 
literature: timeseries increment, linear filter, and multivariate nearest neighbor (Klise and 
McKenna 2006a; b). These algorithms are combined with what is known as a binomial event 
discriminator (McKenna et al. 2007) to identify suspicious data points. Moreover, the user can 
choose to run the event detection analysis on water quality sensors individually or as a group. 
The probability of a true event is evaluated by CANARY by evaluating the series of suspicious 
data points. If the probability of a true event exceeds a user-defined threshold, CANARY issues 
an alarm that an event is occurring.  To provide additional flexibility, CANARY enables users to 
develop their own event detection algorithms using MATLAB (U.S. EPA 2012) and more 
recently, Java (Hall et al. 2017). 

There are some known applications of CANARY in industry. For example, CANARY has been 
integrated into distribution system models by hydraulic modeling vendors for water quality 
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event detection (Hall et al. 2017). One study was published describing the use of CANARY to 
identify events during normal operations of a decentralized membrane bioreactor (MBR) 
system and during simulated failure events (Leow et al. 2017). Failure was simulated by 
performing sludge bypass events to simulate membrane integrity failure by pumping mixed 
liquor into the effluent lines of the MBR system. Simulated events were detected by CANARY 
and were correctly detected as process failures. Alarms detecting process failure were also 
generated during normal operating conditions and it was found that 89% of the alarms were 
false positives. Retroactive review (i.e., not real-time and performed manually by a human) of 
the data by the researchers found that the false positives could be attributed to normal MBR 
operations (backflushes, membrane cleaning, etc.), sensor maintenance and calibration, and 
change in feed water quality. While sensor signals may have deviated from the normal baseline, 
all of these events occur routinely, and deviated readings do not represent process failure or 
unacceptable water quality. In addition, there were also 23 alarms that were generated during 
the normal operation period in which the causes are unknown. Of these 23 alarms, 13 of the 
events had trends that were similar with trends of known events, suggesting detection of true 
events. More recently, CANARY has also been used to identify spill events related to natural gas 
production (Wickline and Hopkinson 2020). This study however found that the EDS capabilities 
of CANARY were not suitable for detecting the simulated spills due to size of the spill relative to 
the watershed size, sensor location, and type of contaminant. This suggests that outliers must 
exceed a minimum threshold for event detection and may not be sensitive to capture all 
events. 

Originally developed for the operation of photovoltaic cells, Pecos is industry-agnostic and has 
been applied to water science and engineering applications, including marine hydrokinetics 
(Klise and Stein 2016). The primary purpose of Pecos is to analyze the quality of real-time data 
streams and generate visualizations and reports to communicate that information. Data can be 
flagged by Pecos using a suite of “quality control tests” to identify missing, duplicate, or corrupt 
data, data outside a user-defined range, or abrupt change. The tests are designed to be simple 
yet highly flexible. For example, Pecos provides EDS developers with the ability to specify the 
minimum number of failures before flagging the data. If a single data point is outside a user-
defined range, the developers may not want that to be reported as a failure. A single value may 
be the result of brief issue in sensor data quality that does not require attention. Instead, the 
developers may determine that five consecutive out-of-range values is preferred to avoid false 
positives.  

To further minimize false positives, Pecos provides “time filters” to ignore data associated with 
system downtime. For instance, for photovoltaic data, Klise and Stein (2016) apply a time filter 
that is applied whenever the sun elevation is less than 10 degrees. This time filter pauses 
quality control tests when the sun sets and implements the tests when the sun rises. For water 
treatment applications, similar time filters can be applied during maintenance activities, such as 
a membrane backwash.  

Pecos and CANARY have similar functionalities, and either could be applied to high-frequency 
data analysis in water reuse. However, there are key differences between these two 
approaches. CANARY is an application with a user interface and was developed using Java and 
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MATLAB. MATLAB is a proprietary programming language and requires a license to use. Pecos, 
on the other hand, is a Python software package which provides programmers with an EDS 
toolkit. Python is now the de facto programming language in many industries for data analysis, 
including environmental engineering. Moreover, its popularity has consistently trended upward 
in recent years (The Economist 2018). Pecos tools can be used alongside other Python-based 
tools, such as those used for machine learning, AI, and statistical modeling.  

2.3 Machine Learning, AI, and Statistical Modeling 
There is a wide range of machine learning and statistical modeling Python packages that can be 
used to analyze and forecast water reuse data. Popular packages for these applications include 
scikit-learn (Pedregosa et al. 2011), TensorFlow (Abadi et al. 2015), and SciPy (Virtanen et al. 
2020). For forecasting time series data, Facebook’s Core Data Science team openly released 
Prophet, which is used across many of Facebook’s applications (Taylor and Letham 2017). In 
addition to predicting future performance, machine learning may provide insights about 
measurement errors, such as sensor drift.  

A Kalman filter is an algorithm used in control systems to correct for sensor measurement 
errors. Water sector applications include modeling distribution system water quality and urban 
drainage systems (Bartos and Kerkez 2021; Rajakumar et al. 2019) and estimating nutrient 
composition in pilot wastewater treatment plants (Nair et al. 2019). FilterPy (Labbe Jr. 2015a) is 
a popular Python package focused on Kalman filters and similar techniques. These tools can be 
used to evaluate individual sensor signals and also be supplemented with custom Python code 
to cross-reference other parameters for confirmation of true anomalies (i.e., events) as 
opposed to other causes like normal process changes or meter errors. 

2.4 Statistical Process Control 
Another option to identify events or anomalies is through the use of statistical process control 
techniques from manufacturing such as control charts (Kaelin et al. 2008; Nilsson et al. 2007). A 
study by Nilsson et al. (2007) identified two methods for identifying changes in process 
performance including the Shewart method and cumulative sum control charting (CUSUM). 
Both rely on statistical process control methods that identify outliers based on the comparison 
of current performance to the mean (or other similar statistic) and a control limit boundary. 
The control limit boundary can either be set as a fixed value or statistically estimated based on 
historical performance. For example, the probability of a process falling outside of a control 
limit that is three standard deviations from the mean is only 0.3%. Thresholds could be set to 
determine when a system is no longer in control, e.g., nine consecutive readings outside of the 
range. The benefit of the statistical approach is that it provides system-specific thresholds that 
may allow deviations to be identified and minimizing false positive readings.  

2.5 Software Selection 
In reviewing open-source software, the project team identified promising tools across multiple 
sectors, including engineering, data science, and industrial process control. Considering the 
requirements of DPR data analysis and event detection, the following factors were identified as 
high priority for software selection: 
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• Software must be built using a modern programming language that is free to use.  
• Software must provide flexibility to allow adaptation to different treatment trains and 

regulatory standards. 
• EDS must provide transparency about how events are detected to improve quality control 

and encourage trust. 
• Few CCP failures ever occur, so detecting failures is inherently a data limited problem. The 

EDS must not require a high volume of training data (i.e., failure events) to perform well. 

By comparing these requirements with the available software, Pecos was identified as the tool 
best suited for developing an EDS for this project. Pecos was developed to monitor and 
generate reports based on real-time data streams, such as industrial control systems. This 
Python-based tool is modern, flexible, and provides a series of logic-based tests that are clearly 
structured and understood. For example, concepts from statistical process control can be 
implemented using Pecos tests. Because CCP failures are rare, data-driven approaches like 
machine learning/AI were deemed unlikely to perform well for this project. Moreover, those 
approaches would not provide a clear rationale to the operator or engineer about why an event 
was detected. 
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CHAPTER 3 

Event Detection Framework 
Due to the lack of environmental buffers in DPR, treated water from these facilities can reach 
customers in minutes or hours, which can be defined as the retention time. Therefore, CCP 
failures must be detected and resolved in less than the retention time to avoid sending out off 
specification water to customers. The event detection framework aims to identify software-
based solutions to support proactive and rapid responses to DPR failures. To do so, the 
framework is designed to increase lead time and decrease time for event detection and 
resolution (Figure 3-1). 

Lead time is the duration between when an issue is detected and when a failure occurs. If the 
event is detected in advance, operators can safely resolve an issue before it becomes a threat. 
Event detection is the amount of time for software to identify an emerging or confirmed event. 
This step is dependent on several factors: 

• Speed of data storage: time required to store data 
• Frequency of analysis: how often event detection logic is run (e.g., 1-minute, 5-minute) 
• Data screening: time required to identify data associated with process downtime 
• Detection logic: time required to identify issues in CCP monitoring parameters, to detect 

events, alert operators, and create visuals 

Event resolution is the amount of time needed to correct the problem after identifying an 
event. Ideally, the CCP failure would be resolved at the root cause, such as correcting the 
applied ozone dose, but it could also be resolved by diverting the product water before it 
reaches customers.  

There are several factors that contribute to lead time, event detection, and event resolution 
(Figure 3-1). Lead time can be increased by identifying early indicators of failure; however, it 
may be difficult to determine these indicators without a first-hand experience of near misses at 
the facility. Event detection time, on the other hand, is within the control of the staff 
implementing the logic. Detection time can be decreased by running analyses more frequently 
and optimizing code to run faster. Compared to lead time and event detection, the timing of 
event resolution is perhaps the most uncertain.  

If a CCP failure is detected and the root cause is not clear, operators may divert water to waste 
to avoid the risk of sending off specification water to customers. This approach will minimize 
time for event resolution but will result in waste, process downtime, and impacts on 
distribution system operations. If the problem can be identified quickly, these adverse effects 
can be minimized. Event resolution time can be decreased by providing actionable information 
to an operator. For well-characterized failures, control logic can be added to automate the 
response. 
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Figure 3-1. Factors Impacting the Time Needed to Identify and Respond to an Event. 

A multidisciplinary team is required to implement event detection software, including process 
engineers, operators, IT staff, systems integrators, data engineers, and software developers. 
Consulting each group throughout development is recommended to avoid unexpected barriers 
and costs and to keep the user experience in mind: 

• Process engineers and operators provide context for how the software should be 
configured based on DPR regulations, engineering principles, and ease of use for operators. 
Engineers may also participate in acceptance testing to determine whether software meets 
required specifications.  

• IT staff must be consulted about purchasing software licenses, cybersecurity practices, 
database configuration, and network architecture. Databases are preferred to alternatives 
like Excel spreadsheets for critical business operations because they store data more 
efficiently, have security measures in place, and allow for multiple people to access data at 
once. Network architecture is how devices like sensors, databases, servers, and computers 
are connected to one another. Utility networks are often divided into two main categories: 
1) a SCADA network for control of treatment infrastructure and 2) a business network for 
routine tasks like sending emails and storing documents. 

• Systems integrators are responsible for programming the critical monitoring and control 
systems at a facility. Integrators can add new calculated values or online analyzers in SCADA 
system, refine control logic, and update alerts and alarms.  

• Data engineers clean, transform, and move data to where it needs to be. 
• Software developers can implement event detection logic and develop data visualizations 

and user interfaces for end users, like operators.  

The event detection framework developed in this project includes the following four-step 
process: data storage, data screening, data flagging, and event detection (Figure 3-2). For data 
storage, the team must identify which SCADA tags are needed to detect and resolve events and 
the frequency to store and analyze SCADA data (i.e., 1-minute, 5-minute). They also must 
identify where and how the data is stored within the network architecture and determine the 
storage requirements for the database.  

Technical conversations about networking and data storage will require input from the entire 
team. Process engineers and operators should clearly articulate what they want to be able to 
do. For instance, “As an operator, I want to get alerts about potential CCP failures on my 
phone.” The IT staff may respond that text alerts are not possible with the current network 



Integration of High-Frequency Performance Data for Microbial and Chemical Compounds Control in Potable  
Reuse Treatment Systems 23 

architecture because there is nothing in place to securely export data from the SCADA network. 
As an alternative, IT may recommend sending alerts to the HMI at the facility. When discussing 
databases, engineers and operators should provide an inventory of the tags that need to be 
monitored, the frequency data should be pulled, and who will need access to the data. With 
this information, IT staff can determine the database that is optimized for that task. 

After storing the data, it must be screened to avoid detecting events when treatment processes 
are not in production. Data screening is critical to focus operators on real events and avoid 
nuisance alarms. Once the data is cleaned to avoid false alarms, logic is developed to label data 
that may indicate poor or deteriorating performance at a CCP, known as data flagging. Lastly, 
event detection logic is developed to identify emerging or confirmed CCP failures based on one 
or more data flags. Operators are notified of detections through alerts sent to HMI, texts, or 
emails.  

Events are defined by one or more flagged CCP monitoring parameters to strike a balance 
between lead time, false positives, and actionable response to an issue. The more flags, the 
more specific the event notification can be. A single flag may indicate that there is an issue but 
not why it is happening. Is the problem due to upstream changes in water quality, a process 
failure, or a monitoring error? By defining events based on a combination of flags—those 
related to indicators of CCP failures and the root causes—operators are notified that the 
system is approaching a regulatory threshold and why it may be occurring. 

In the next sections, the four-step process—data storage, screening, flagging, and event 
detection—is described in more detail. 

 

 
Figure 3-2. Event Detection Framework Steps.
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3.1 Data Storage 
At a DPR demonstration or full-scale facility, there may be thousands of SCADA tags logging 
data in the historian. For an event detection workflow, only a small fraction of those tags must 
be stored and analyzed. These most important tags for this study include 1) CCP monitoring 
parameters (i.e., online analyzers that track whether a CCP is performing properly) to 
demonstrate compliance and 2) operational status indicators that describe whether processes 
are in or out of production. Although not included in this study, online analyzers often record 
information about data transmission, power usage, and sensor maintenance events. This data 
could also be stored and used to inform an EDS. Less commonly, sensors can perform self 
diagnostics to detect anomalous values, drift, or other unexpected behavior.  

After selecting the SCADA tags, the team must determine the appropriate frequency for storing 
the data (e.g., 1-min, 5-min). The choice of frequency represents a tradeoff between speed of 
detection and storage costs and capacity. Because data completeness and rapid response is 
essential, 1-minute timesteps may be considered as a good starting point for DPR applications 
to provide frequent data logging and keeping data storage capacity needs reasonable.  

For reliability and performance, databases are recommended for the storage of event detection 
data. IT staff can guide the selection and implementation of databases, but they will need input 
about what data is stored and who needs access. Data engineers should provide input on the 
format of the data, such as the column names and data types. How large the database needs to 
be will depend on the type of data, how frequently it is collected, and how long it needs to be 
stored. Different types of data take up different amounts of storage. For instance, integers 
require less storage than values that require decimal-level precision. The greater the number of 
decimals needed, the greater the storage requirements will be. 

To identify what database is appropriate, consult IT staff at the utility about existing licenses, 
storage costs, preferred database configurations, and access controls (e.g., passwords, 
read/write privileges) for the database. Furthermore, IT staff will need to provide input about 
whether the database should be on-premises or in the cloud, such as Microsoft Azure, Amazon 
Web Services, Google Cloud. If on-premises, the database may be located within the SCADA or 
business network. The SCADA network is reserved for critical systems connected to the 
treatment process, so cybersecurity controls are more stringent than the business network, 
which is used for common business operations like shared file storage and email.   

To facilitate conversations about network architecture, consider all inputs and outputs of the 
event detection framework. For instance, to integrate alerts and alarms directly into the human 
machine interface (HMI) the operators use to monitor treatment processes, the database may 
need to be within the SCADA network. Alternatively, if located in the cloud, alerts and alarms 
could be sent to operators via text or email. 

3.2 Data Screening 
When a treatment process is down for maintenance, the event detection logic should be 
suspended until that process comes back online. To track downtime, the status of pumps and 
unit processes are recorded using operational status codes. For instance, consider a membrane 
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process that cycles between different states: offline, in production, backwashing, membrane 
integrity testing, clean in place (CIP), etc. These states are often logged as integers (e.g. 0, 1, 2, 
3, …) as the membrane status tag. When the membrane is backwashing, the status would 
record 2 until the BW sequence is complete. Because the public will only be exposed to water 
when the system is “in production,” the data screening step can be used to limit downstream 
analyses to periods when the membrane system is in state “1” status. 

These status codes generally align well with treatment operations; however, some situations 
require correction. For instance, if data has been aggregated—for instance, by taking the 1-
minute average of 5-second observations—status codes (integers) may be converted to a 
decimal, such as 0.5 if the process switched between 0 and 1 halfway through that minute. This 
approach distorts status data making it more difficult to identify and remove the appropriate 
values. As an alternative, 1-minute instantaneous values, either the first or last 5-second 
observation recorded during the minute could be stored.  

Hydraulic lags are another common issue that status codes may not account for. For example, 
in the first few minutes after membranes return to production, anomalous values may be 
recorded by online analyzers. Consider a turbidimeter that is connected to membrane piping to 
measure effluent turbidity. That effluent pipe may also convey water for BW or chemical 
cleans. After completing a BW and returning to production, residual BW water needs to be 
flushed out of the turbidimeter sample line. Until that occurs, the turbidity readings may not be 
representative of effluent water quality. In such cases, time lags might need to be incorporated 
into status codes to avoid false positives in event detection. Adding or modifying codes will 
require assistance from a systems integrator. A well-designed data screening step will identify 
only the relevant performance data for use in downstream steps. 

3.3 Data Flagging 
After screening data for periods of downtime, the data is ready for analysis. The data flagging 
step labels values that may indicate poor or deteriorating performance for CCP monitoring 
parameters. Individual flags may not require action; however, they provide insights into the 
types of issues that are evolving. If an event is detected, the flags provide details to operators 
about what is causing the CCP to fail. 

To flag CCP monitoring parameters, three types of logical tests were considered: range (above 
or below bounds), stagnant data, or abrupt change (Figure 3-3). A range test identifies when 
parameters go beyond specified threshold. Range tests are useful because they may provide 
operators with advanced warning of an issue (i.e., before a parameter reaches either a 
regulatory limit or another defined limit, such as one based on historic records of performance). 
Range tests are also the simplest tests—they are understandable and easy to verify that tests 
are working as expected.  

Stagnant data test checks whether values are repeating for an extended period. For continuous 
values, like conductivity or pH, stagnant data could result from many causes, such as data 
transmission failure, a meter placed on hold during maintenance, or a meter malfunction. 
These types of scenarios compromise the accuracy of CCP monitoring. It is important to note, 
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however, that repeated values are expected and acceptable for some data tags. For example, 
operational setpoints or status codes (e.g., membrane filter status discussed previously) would 
be expected to maintain a constant integer value. 

Lastly, abrupt change tests check whether values are rapidly increasing or decreasing over time. 
These tests could indicate an issue such as the sudden loss of a disinfectant residual or the 
entrance of a peak of chemicals, both of which may require operator intervention. Compared to 
range and stagnant data tests, the abrupt change test is perhaps the most difficult to define. 
When considering abrupt changes in data, one must define the rate-of-change threshold and 
the time window to consider. If a single data point changes rapidly, should that be flagged, or 
should the logic require multiple values to avoid false positives? What if there is a missing value 
or process downtime? How should the abrupt change logic consider missing or screened 
values?   

 
Figure 3-3. Logical Tests for CCP Monitoring Parameter Data Flagging.  

3.4 Event Detection 
Flags serve as the building blocks for event logic in the framework, in which events are defined 
by one or more flags simultaneously occurring. For example, for an ozone CCP, there may be a 
regulatory limit for microbial pathogen LRV. To provide advanced warning about that limit, a 
range test may be implemented when LRV approaches the limit or falls outside of a typical 
operating range. If the LRV data is flagged by a range test, it indicates that LRV has dropped 
below a threshold but not why that occurred. Ozone LRV is calculated based on several 
parameters, including temperature, hydraulics, and ozone application. Is the downward trend 
in LRV due to upstream changes in water quality, changes in retention time, ozone dosing, or a 
monitoring error? By defining an event based on a combination of flags—those related to 
indicators of CCP failures (pathogen LRV threshold) and the root causes (water quality, process, 
or monitoring failure)—operators can address the root cause of the failure. 

In the ozone LRV example, the lead time is associated with how close to the regulatory limit the 
LRV data is flagged. By adding a larger safety factor, lead time will increase but nuisance alarms 
(false positives) will also be more frequent. Response times can decrease if events describe 
what the problem is and why it is occurring so operators can quickly resolve the issue. If the 
root cause of the event is well understood, response times can be decreased even further if the 
detection and control logic can be programmed directly into SCADA (via a systems integrator). 

Lower bound

Upper bound

Stagnant data Abrupt change

Va
lu

e

Time



Integration of High-Frequency Performance Data for Microbial and Chemical Compounds Control in Potable  
Reuse Treatment Systems 27 

Although many events are characterized by multiple CCP monitoring parameters, some events 
require only one parameter. Consider UV disinfection in a reuse treatment train. UV dose is a 
regulated parameter, so if the UV dose drops, it could result in a CCP failure. In this case, the 
indicator of failure (UV dose) and the root cause of the failure (UV dose) are the same. The 
operator should be notified that there is an issue with the UV equipment or the dosing setpoint 
to resolve the problem.  

3.5 Guidance for Process Engineers 
To guide the development of an EDS, the project team has developed the following 
brainstorming exercises for process engineers and their teams to track which CCP failures need 
to be detected and what data is required.   

• Initial evaluation: exercise to identify CCP failures and related data 
1. CCP: list unit processes 
2. Critical limits: list limits related to each CCP 
3. CCP monitoring parameters: list parameters that must be monitored to confirm CCP 

performance 
4. CCP status indicators: list SCADA tags that indicate whether unit process is in production 

or out of service 
5. Monitor failure: describe most likely scenarios that would result in a CCP failure due to a 

metering issue 
6. Water quality failure: describe most likely scenarios that would result in a CCP failure 

due to upstream water quality degradation 
7. Process failure: describe most likely scenarios that would result in a CCP failure due to 

equipment malfunction or damage 
• Prioritization and gap analysis: exercise to prioritize which CCP failures should be included 

in event detection and whether the required data is available 
1. Prioritize events: identify CCP failure events that provide the most value for operators 
2. Data gaps: identify whether existing SCADA tags are sufficient to implement prioritized 

events 
3. Systems integrator collaboration: if possible, add tags to fill data gaps 

3.6 Event Detection Framework Summary 
Key takeaways from Chapter 3:  

• The event detection framework is defined as a four-step process: data storage, data 
screening, data flagging, and event detection. 

• The aim of the framework is to promote a proactive and rapid response to emerging CCP 
failures through software. 

• Implementing event detection for potable reuse requires a multidisciplinary team, including 
process engineers, operators, IT staff, systems integrators, data engineers, and software 
developers. 

• Representatives from each discipline on the team should be consulted throughout the 
development of the EDS to clearly define goals and expectations. 



28 The Water Research Foundation 

• Data storage lays the foundation for event detection and relies heavily on coordination with 
IT staff, systems integrators, and data engineers. 

• Process engineers and operators should communicate their understanding of the regulatory 
requirements and system operations to inform the development of data screening, data 
flagging, and event detection logic.  

• Events should be defined such that, when detected, operators are notified that a CCP failure 
may be approaching and the likely cause of the failure. 

The following section, Chapter 4, describes the implementation of the event detection 
framework at a DPR demonstration facility in California. The discussion includes a detailed 
description of the hardware and software specifications, the rationale behind tag selection, 
data screening logic, data flagging and event configuration, and the user interface and visuals 
developed for operators. 
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CHAPTER 4 

Framework Implementation: City of San Diego   
The developed framework discussed in the preceding chapter was used to build an EDS for 
deployment at the City of San Diego’s (City’s) 1 MGD NCPWDF. While the NCPWDF was 
originally intended to demonstrate the effectiveness of the City of San Diego’s surface water 
augmentation IPR project, the site was an ideal testing ground to implement the prototype due 
to the similarity of the process train with California’s default DPR treatment train. The deployed 
EDS was intended to validate the framework detailed in Chapter 3.  

EDS development benefited from access to historic operational and water quality data from the 
NCPWDF. The historical data was used to inform the data flagging test parameters for event 
detection. In the absence of historic data availability, test parameters would be set based on 
regulatory or operational limits. Not all data sources benefitted from historic data due to 
seasonal or other fluctuations preventing the test inputs for some data sources from being 
easily determined. For example, ozone residual concentrations at a given monitoring location 
differ greatly based on the setpoint dose of ozone to achieve 1-log removal of Cryptosporidium, 
as well as variations in water quality that impact target ozone CT for disinfection. On the other 
hand, parameters such as RO permeate TOC are more stable and better suited to apply historic 
data analysis to inform the flagging thresholds.  

In the case of (1) having historic data or (2) needing to use existing limits as a known reference, 
the task of optimizing data flagging for event detection is an iterative process which uses data 
from a known or simulated event occurrence to tailor the given event detection sensitivity. The 
EDS was configured to analyze plant data in real-time while proactively identifying and 
categorizing events within each of the unit processes. Achieving proactive and targeted event 
detection should reduce troubleshooting and provide operators with greater time to respond 
and resolve the event.  

In addition to summarizing the facility’s characteristics, the discussion below details the 
development of the deployed event detection criteria for each unit process at the NCPWDF 
using the four-step framework of (1) data source selection, (2) data screening, and (3) data 
flagging, and (4) event detection.  

4.1 Facility Description and Design Criteria   
The NCPWDF’s treatment train consists of ozonation and BAC (added in 2014) upstream of MF 
and UF skids operating in parallel. The combined filtrate from the MF and UF processes is the 
feed to the RO process that has two parallel 0.5 MGD trains—Train A and Train B. RO permeate 
is the feed water to the UV disinfection and AOP process. Figure 4-1 provides an overview of 
the NCPWDF treatment train. 
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Figure 4-1. NCPWDF Treatment Train Diagram. 

Each individual treatment process contributes to the removal and/or inactivation of pathogens 
from the water. The 4 critical control points (CCPs) for pathogen removal are ozone, MF, RO, 
and UV/AOP. To protect public health and meet the overall pathogen removal goals in the 
product water, each CCP must individually meet its treatment goals. The following discussion 
outlines the design of each CCP in the treatment train. Table 4-1 summarizes how each unit 
process CCP achieves pathogen credit as a log-removal value.  

Table 4-1. Unit Process Pathogen Removal Summary. 

Unit Process  
Mechanism of Pathogen 

Treatment  LRV Crediting  
Ozone  Oxidative disinfection  Concentration-Time based disinfection calculation.  

Membrane Microfiltration Physical barrier  Membrane integrity directly tested daily via pressure 
decay across the membranes. 

Filtrate turbidity continuously monitored to indirectly 
assess removal.  

Reverse Osmosis 
Membrane Filtration 

Physical barrier  TOC and EC removals used as surrogates to 
determine pathogen removal. 

UV/AOP Oxidative inactivation  UVT and UV Dose thresholds must be met to achieve 
any pathogen removal credit.  

Pathogen removal achieved by the ozone process is quantified with pathogen-specific LRV. In 
California, per the draft DPR regulations, the maximum LRV that can be granted for a pathogen 
through a single unit process is 6-logs (State Water Board 2021). Of the three indicator 
pathogens—virus, Giardia, and Cryptosporidium (V/G/C)—Cryptosporidium is the most resistant 
to inactivation via ozonation. Therefore, Cryptosporidium LRV is the key metric used to assess 
the ozone system’s performance and dictates operational dosage. The ozone dose is set to 
meet a target Cryptosporidium LRV of at least 1-log. If the ozone system meets the target LRV of 
at least 1-log Cryptosporidium reduction, then the maximum 6-log reduction of virus and 
Giardia are also obtained since the ozone CT requirement for 1-log Cryptosporidium is higher 
than for 6-log virus and Giardia (U.S. EPA 2010).  

The major components of the ozone process are the ozone generator, the injection system, and 
the pipeline contactor. Ozone is generated onsite at the NCPWDF and is then injected into the 
process stream to inactivate pathogens and oxidize chemicals present in the water. The ozone 
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generator has a capacity of 190 pounds per day (ppd) at 10% ozone by weight. After ozone is 
injected into the main process flow, it travels for approximately 100 ft in an 8-inch pipe, after 
which it enters the pipeline contactor, made of 24-inch diameter PVC pipeline with 360 feet in 
total length (Figure 4-2). At 1,100 gallons per minute (gpm), the contact time provided is 
approximately 7 minutes. Flow straighteners are used at each turn to maintain plug flow 
hydraulics by redistributing the flow and minimizing short-circuiting. The design criteria for the 
NCPWDF ozone process are listed in Table 4-2.  

Table 4-2. NCPWDF Ozone System Design Criteria. 
Parameter Units Value 

Ozone Generation and Injection System 
Design Flow MGD 1.6 

Generator Capacity PPD 190 at 10% wt. 
Maximum Applied Dose mg/L 14.3 

Manufacturer  Wedeco 
Ozone Contactor 

Pipeline Diameter Inches 24 
Pipeline Length feet 6 x 60 ft segments 
Total Volume gallons 7800 
Contact Time minutes 7.5 (at 1.5 MGD) 

 

  
Figure 4-2. Ozone Pipeline Contactor at NCPWDF. 

 
After the ozone product water is filtered via BAC filtration, the water is sent to MF and UF skids 
operating in parallel.  

The NCPWDF uses pressure-driven membrane modules (Figure 4-3) which contain thousands of 
hollow membrane fibers. A feed pump supplies the driving pressure needed to pass influent 
water through the pores in the hollow fibers. Treated water is referred to as filtrate. 
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Membrane filtration systems physically remove suspended solids and select pathogens from 
the process water through size exclusion. Pathogen LRV can be obtained based on the pore size 
of the membranes, which is 0.1 µm for MF and 0.01 µm for UF. Although the NCPWDF 
treatment train includes both MF and UF systems that operate in parallel, MF was the focus of 
event detection framework configuration and implementation. The framework implementation 
process described herein for MF is also applicable to UF due to the similarities shared between 
the two processes. 

Membrane filtration systems can demonstrate greater than 4-log removal of Cryptosporidium 
and Giardia through membrane integrity tests (MIT) and continuous monitoring of filtrate 
turbidity. Although viruses can be removed by the membranes, United States regulatory 
agencies typically do not grant virus LRV credit. Table 4-3 summarizes the design criteria for the 
MF process at the NCPWDF. 

Table 4-3. NCPWDF MF System Design Criteria. 
Parameter Units Value 

Net Product Flow MGD .625 
Nominal Pore Size µm .1 

Number of Modules  50 
Area per Module Square feet 538 

Instantaneous Flux GFD 29 
Recovery % 93 

Chemical Cleaning Frequency  >3 months 
Manufacturer  Pall Corporation 

Membrane Material   Polyvinylidene fluoride 
 

 
Figure 4-3. Membrane Filtration Skid at NCPWDF. 

MF filtrate is sent to the RO system at the NCPWDF. The RO system consists of two trains that 
both receive combined membrane filtration filtrate as feed water. Train A is a 2-stage system 
and Train B is a 3-stage system. 

RO membrane treatment separates dissolved solutes such as salts, contaminants, and pathogens 
from water through a highly selective semi-permeable membrane. Pressure is applied on the 
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feed water side of the membranes to overcome osmotic pressure and force water across the 
membrane to generate a permeate stream. The portion of water that remains on the feed side 
is called concentrate. Table 4-4 summarizes the design criteria for the NCPWDF RO process and 
Figure 4-4 displays a photo of the RO skid. 

Table 4-4. NCPWDF RO System Design Criteria.  
Parameter Units Train A Train B 

Net Product Flow MGD 0.5 0.5 
Membrane Manufacturer and 

Type 
 Toray TMG20D-400 Toray TMG20D-400 

Number of Elements  105 108 
Element Area ft2 400 395 

Elements per Vessel  7 6 
Number of Vessels  10:5 (Stage 1:Stage 2) 10:5:3 (Stage 1:Stage 2: 

Stage 3) 
Instantaneous Flux GFD 12 12 

Recovery % 75-80 75-80 
Chemical Cleaning Frequency  >3 months >3 months 

System Manufacturer  EnAqua EnAqua 
 

 
Figure 4-4. RO Skid at NCPWDF. 

The UV/AOP system is the final process step in the advanced treatment train. During the 
UV/AOP process, sodium hypochlorite is dosed as a chemical oxidant in the presence of UV light 
to produce hydroxyl radicals that break down recalcitrant organic compounds. The UV dose 
also inactivates pathogens and is credited with 6.0 logs of V/G/C removal if operational criteria 
specified by regulatory requirements are met. The system has been designed to remove 1.2 
logs of NDMA to comply with discharge permit requirements and 0.5 logs of 1,4-dioxane, a 
treatment objective for AOP, using a sodium hypochlorite dose of 1 mg/L and a minimum UV 
dose of 850 mJ/cm2. The design criteria for the UV/AOP system are summarized in Table 4-5 
below and a photograph of the reactor at the facility is shown in Figure 4-5.   
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Table 4-5: NCPWDF UV/AOP System Design Criteria.  
Parameter Units Value 

Design Flow MGD 1.0 
Reactor Manufacturer  Trojan UV 

Number of Lamps  72 
Watts per Lamp W 240 

Total Power kW 17.3 
Design UV Transmittance  >95% 

Electrical Energy per Order for 
NDMA 

kWh/kgal 0.18 
 

Electrical Energy per Order for 
1,4-dioxane 

kWh/kgal 0.46 

AOP Oxidant  Sodium Hypochlorite 
Oxidant dose mg/L 1.0 

Design UV dose for 6-log 
pathogen inactivation 

mJ/cm2 278 

Design UV dose for AOP mJ/cm2 850 
 

 
Figure 4-5. UV/AOP Reactor at NCPWDF. 

The UV/AOP system is fully automated and controlled by a programmable logic controller (PLC) 
and power distribution center. The target UV dose is calculated based on the measured process 
water flow, UV transmittance (UVT), UV lamp status, and UV intensity (UVI). Provided that 
these parameters remain within the bounds of the system’s design, the applied UV dose will 
continuously be at or near the target setpoint regardless of fluctuations in feed water quality 
because the process controls will adjust the power delivered to compensate for changes. 

Establishing software and data handling practices was necessary to detect potential failure 
events preemptively across each CCP using a custom software tool at the NCPWDF, additional 
software and data handling practices were necessary.  

4.2 Software and Data Workflow 
The project team chose to implement the event detection system on-premises, as opposed to 
the cloud, based on the City’s IT preference to keep NCPWDF data within the SCADA network. 
The workflow is presented in Figure 4-6 with a description of each step provided in Table 4-6 
below. The NCPWDF PLCs transmit data to a Windows computer that displays real-time facility 
information to an HMI screen. On that computer, data management software, called 
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KepServerEX (with the KepWare Data Logger add-on) connects with the PLCs and records the 
data to a database (Microsoft SQL Server Express). The data is logged to the database every 
minute for each SCADA tag. 

 
Figure 4-6. Software and Data Workflow for the Implemented EDS at NCPWDF. 

 
The Python scripts, data, and additional documentation are freely available in a Github 
repository, which can be accessed via the 4954 project page on the WRF website. There are two 
modes for the Python scripts that perform event detection: 1) live mode and 2) historical mode. 
The live mode script performs event detection analysis in near real-time (configured to run 
every 5 minutes using Task Scheduler). This analysis displays data from the past hour of 
operations. After the script is run, the event detection dashboard (HTML/CSS) and log files are 
updated, and if an event was detected, an alert is sent to the computer as a desktop 
notification. An alert is only triggered if there is a new event—one that was not occurring the 
last time the script was run—to avoid nuisance notifications. Historical mode allows the user to 
specify the date and time the event detection analysis begins and ends. While live mode 
supports the tool’s primary function, rapid event detection, historical mode allows users to 
investigate past data and test new event logic on known event occurrences in past data.  

The organization of the Python code is detailed in Table 4-6 and aligns with the event detection 
framework outlined in Chapter 3, including data storage, data screening, data flagging, and 
event detection. Additional features were included in the EDS to log information about the 
system performance, visualize monitoring data for operators to review, and notify operators if 
events are detected. Table 4-6 describes the primary Python package used to implement each 
step. Python packages are coding toolkits that can be easily shared and reused by other 
programmers. One of the most popular packages is Pandas, which simplifies the process of 
reading, cleaning, and transforming data. The scripts rely on more than a dozen packages, but 

SCADA Network

HMI Computer

PLCs

SQL 
Database

HMI 
Computer

KepServerEX

Python Script

Desktop 
Notification

Event 
Dashboard

1 2 3

6

4a 4b

5b5a

Task 
Scheduler

1

2

3

4a

4b

5a

5b

6

Connect PLCs to HMI

Data management software 
installed on HMI

Log data to SQL database 
(every minute)

Run script in live mode for real-
time analysis (every 5 minutes)

Update dashboard and log file for 
live mode

Run script in historical mode for 
flexible, on-demand analysis

Update dashboard and log file for 
historical mode

If new event detected, send 
desktop notification



36 The Water Research Foundation 

the core features are implemented using Loguru, Pandas, Pecos, and Plyer. Pecos is central to 
the data screening, flagging, and event detection aspects of the EDS. 

Table 4-6. Python Script Steps for Live and Historical Modes. 

Step Description 
Primary Python 

Package 
1. Initialize 

logging file 
Create a log file to record the script’s progress to 
provide a comprehensive record. The file tracks 

detected events, database connectivity, data quality, 
and errors in the code. Throughout the script, four 

types of messages are recorded: info, warning, error, 
and critical. 

Loguru 

2. Import and 
clean data 

Read in data from database and tag information. Then 
clean and transform data by checking for missing data, 

calculating absolute value of error tags and/or 
difference calculations, and create calculated columns 

(i.e., primary event tags) for events associated with 
multiple tags. 

Pandas 

3. Screen data Using treatment status data, screen data associated 
with downtime. If status tags are not available, 

assume the process is online. 

Pecos 

4. Flag data and 
detect events 

Implement quality control tests to flag data. Detect 
events based on CCP monitoring parameters that have 

been flagged. 

Pecos 

5. Update event 
detection 
dashboard 

Create dashboard using images and HTML for data 
visualization. A CSS file is used to customize the look 

and feel of the dashboard. 

Pecos 

6. Alert if new 
events are 
detected 

Send desktop notification if any new events have 
occurred since the last time script was run. 

Plyer 

Pecos was developed to provide insights into the quality of data collected by sensor 
technologies. The package includes several features, which are defined by its developers as 
“quality control tests” and “time filters.” Quality control tests provide a structured approach to 
setting limits on acceptable performance, such as stagnant values, abrupt changes, and out-of-
range measurements. For NCPWDF implementation, data flags and event detection logic 
focused on what the project team defined as “range tests” and “stagnant data tests.” A range 
test is violated when a value is above or below a threshold. A stagnant data test is violated 
when a value remains constant when variation is expected. To screen the data during 
downtime, time filters are used to indicate when quality control tests should be suppressed. 

Quality control tests are used during data flagging and event detection. Tests were developed 
for all CCP monitoring parameters to identify unusual or unacceptable behavior at monitoring 
locations. When that behavior occurs, those values are flagged using Pecos and visualized using 
automated reporting tools. An event is defined by one or more CCP monitoring parameters 
being flagged at the same time. To implement event detection logic using quality control tests, 
an “event tag” is created if more than one monitoring parameter is needed to identify an event. 
If the event tag is flagged, an event is detected. An event tag is an aggregation of all the 
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conditions that must be met for an event to occur. For examples of event tags, refer to 
subsequent sections on data flagging and event detection for ozone, MF, RO, and UV/AOP. 

To visualize events and associated CCP monitoring parameters, a dashboard was developed to 
investigate flagged values. The event detection dashboard created by the Python scripts is a 
web application composed of HTML, CSS, and image files. Typically, web applications are 
hosted and viewed in a web browser over the Internet. Because the EDS created for NCPWDF 
was deployed within the SCADA network, no internet connection is available. However, the 
dashboard is still accessible on the computer without internet access. To access the dashboard 
offline, users must navigate to the folder that contains their Python scripts. If the scripts have 
been run with default settings, a file named dashboard.html will be in the same folder. By 
opening this file in a web browser (i.e., double-clicking the file), the dashboard will appear and 
will function like a website. Whenever the script has been run, the browser must be refreshed 
to show the latest results. If this project were deployed in the cloud, the dashboard could be 
hosted on a website and refreshed in real-time.  

The events that were configured in the script and the SCADA tags that support the event 
detection logic are described below for each CCP unit process and plant-wide. 

4.3 Ozone Configuration 
4.3.1 Ozone Data Selection 
Pathogen log-removal values are the metric by which the ozone process is assessed. Thus, 
detecting CCP failure events is done by monitoring pathogen LRV. To give context to the 
relevant data sources for the EDS, the calculation of pathogen LRV is described below.  

The measurements required for the calculations to determine LRV are process water flow rate, 
dissolved ozone residual concentrations at a minimum of three sampling locations—referred to 
as ozone sampling points (OSPs), and water temperature. These three measurements and the 
associated intermediate calculations used to determine Cryptosporidium LRV are considered 
CCP monitoring parameters. The NCPWDF ozone contactor has 14 total OSPs numbered in 
order of increasing distance from the injection point. Meters are installed only at OSP 4, OSP 7 
and OSP 10 for continuous monitoring of the dissolved ozone residual. 

The general steps for calculating pathogen LRVs achieved by ozone are: 

1. Calculate hydraulic detention time (HDT) using the water flow rate. 
• Between the injection point and OSP 4. 
• Between OSP 4 (1st monitoring location) and OSP 7 (2nd monitoring location). 
• Between OSP 4 and OSP 10 (3rd monitoring location). 
• Between OSP 4 and the end of the contactor. 

2. Calculate and select the ozone decay rate constant. 
3. Calculate Concentration-Time (CT).  
4. Calculate pathogen LRVs using CT and the inactivation rate constant specific to each 

pathogen.  
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The following discussion details step-by-step the continuous calculation of pathogen LRVs 
carried out by the plant’s control system.  

First, HDT between the various points within the contactor listed above are calculated using the 
Equation 4-1 below. This value is a simplifying assumption that is later corrected with a baffling 
factor as seen in Equations 4-5 and 4-6 below. 

𝐻𝐻𝐻𝐻𝐻𝐻 (min) = Volume of pipe section (gal)
Water flow (gpm)

                              (Equation 4-1) 

Next, the ozone decay rate constants are calculated. Ozone decay follows a first-order reaction 
after the initial rapid decay reactions caused by ozone demand present in the feed water have 
occurred. A first-order reaction assumes that the rate of residual decay is proportional to a 
constant. The ozone decay rate constant is commonly referred to as the ozone decay 
coefficient. To determine the decay coefficient, the ozone residuals at two locations within the 
contactor and the HDT between these two points must be known. The concentration at non-
monitored points can then be predicted using the decay coefficient. 

The equations for calculating the ozone decay coefficient between OSP 4 and OSP 7 (k1,2) and 
OSP 4 and OSP 10 (k1,3) are presented below in Equation 4-2 and Equation 4-3, respectively. The 
subscripts indicate the monitoring points between which the decay is evaluated. For example, 
the subscript “1,2” indicates that the ozone decay coefficient was evaluated using the first and 
second sampling points (OSP 4 and OSP 7). 

𝑘𝑘1,2 =  
ln�𝐶𝐶1𝐶𝐶2

�

𝐻𝐻𝐻𝐻𝐻𝐻1−2
               (Equation 4-2) 

𝑘𝑘1,3 =  
ln�𝐶𝐶1𝐶𝐶3

�

𝐻𝐻𝐻𝐻𝐻𝐻1−3
         (Equation 4-3) 

 
where:  C1= Ozone residual at OSP 4  

C2=Ozone residual at OSP 7  
C3=Ozone residual at OSP 10 
HDT1-2= Hydraulic detention time between OSP 4 and OSP 7  
HDT1-3=Hydraulic detention time between OSP 4 and OSP 10 

The following first order decay equation is then used to predict the concentration of any 
location downstream of a sampling point: 

C = C0e−kt          (Equation 4-4) 
 
where:  C = Concentration at time t downstream of C0 

C0 = Upstream ozone concentration  
k = Ozone decay coefficient  
t = Process water travel time between monitoring locations of C0 and C 
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Third, the ozone CT is evaluated. The truncated extended-integration method is used to 
evaluate the CT through the ozone contactor. Typically, CT is not granted in the dissolution and 
reactive zones of the ozone system where much of the applied ozone dose is consumed by the 
rapid-rate reactions of the process water. At the NCPWDF, the dissolution zone starts at the 
point of ozone injection and ends at the off-gas point. The reactive zone starts at the off-gas 
point and ends where OSP 4 is located. CT in the dissolution and reactive zones is 
conservatively determined by assuming that the ozone concentration throughout the 
dissolution and reactive zone (injection site to OSP 4) is equal to the ozone residual measured 
at the first sampling location (OSP 4). Calculation of CT for the remainder of the contactor is 
performed using integration. 

A visual representation of CT calculated using the truncated extended integration method is 
shown in Figure 4-7 below. The CTrect corresponds to the CT granted in the initial dissolution and 
reactive zone. CTcurve corresponds to the CT granted using the continuously calculated residual 
throughout the system using the ozone decay coefficient. 

  
Figure 4-7. Visual Representation of Evaluating CT using the Truncated Extended Integration Method. 

 
The total CT for the ozone system is the sum of CTrectangle and CTcurve. Equations 4-5 and 4-6 for 
evaluating the CT of the rectangle and curve portion are presented below: 

CTrectangle = �T0
T
�
0−1

× C1 × HDT0−1      (Equation 4-5) 

 
CTcurve = �T0

T
�
1−end

× � C1
−k∗

� × ��e−k∗×HDT1−end� − 1�     (Equation 4-6) 

 
Where:  C1 = ozone residual at OSP 4 (the first monitoring location after injection) 

�T0
T
�
0−1

= Baffling factor from injection point to OSP 4 (the first monitoring 

location). 
�T0
T
�
0−end

 = Baffling factor from OSP 4 to the end of the contactor 

k* = Maximum between k1,2 and k1,3 (see above)  
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HDT0-1 = Hydraulic retention time between the injection point and OSP 4. 
HDT1-end=Hydraulic retention time between OSP 4 and the end of the contactor 

Lastly, once the total CT is known the pathogen LRVs are calculated by multiplying the CT by a 
temperature-dependent inactivation rate constant specific to each pathogen. The larger an 
inactivation rate constant, the more effective a given ozone dose will be at inactivating the 
pathogen. The relationship used to find the inactivation rate constants of each pathogen at a 
given temperature are shown below in Equations 4-7, 4-8, 4-9. 

kc  =  0.0397 × 1.09757T        (Equation 4-7) 
kg  =  1.038 × 1.0741T        (Equation 4-8) 
k v =  2.1744 × 1.0726T        (Equation 4-9) 
 

where:  kc= Cryptosporidium inactivation rate constant 
kg = Giardia inactivation rate constant  
kv = Virus inactivation rate constant  
T = Water temperature, °C 

To evaluate the LRV, the CT is multiplied by the inactivation rate constant—as shown below. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 LRV =  kc x CT       (Equation 4-10) 
𝐺𝐺𝐶𝐶𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺 LRV =  kg x CT        (Equation 4-11) 
Virus LRV =  kv x CT       (Equation 4-12) 

Ozone system monitoring is composed of hundreds of measured and calculated sources of data 
(i.e., tags). However, only a handful of tags are necessary for quickly and accurately assessing 
the ozone process performance. These tags are referred to as CCP monitoring parameters in 
this report. Identifying the essential tags for inclusion within the EDS was a crucial step in 
development. Although each of the hundreds of tags provides insight and information about 
the ozone system’s operation, the selected tags shown in Table 4-7 are those which relate to 
the calculation of Cryptosporidium LRV as detailed above—and thus directly correspond to 
process performance and ensuring adequate public health protection. 

Table 4-7. Ozone CCP Monitoring Parameters. 
Parameter Units Importance to System Monitoring 

Dissolved ozone residual at OSP 
4, 7, and 10 

PPM • Used to assess meter functionality and 
process water quality 

• Used to calculate ozone demand, ozone 
decay coefficient, CT, and LRV 

Ozone generator production PPD • Used to assess process functionality 
• Used in the ozone demand calculation 
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Temperature deg F • Used to calculate pathogen inactivation 
rate constant for LRV calculation 

Water flow gpm • Used to calculate HRTs for CT calculation 

Ozone demand PPM • Calculated using ozone generator 
production and dissolved ozone residual at 
OSP 4 

• Used to monitor water quality changes of 
the feed water 

Ozone decay coefficient min-1 • Calculated using the dissolved ozone 
residual at OSP 4, 7, and 10 

• Used in CT calculation 

CT PPM*min • Calculated using HDT, OSP 4 ozone residual, 
and ozone decay coefficients with the EPA 
truncated extended-integration method 

Pathogen Removal LRV • Quantifies treatment of the system  
• Calculated using CT and a pathogen-specific 

inactivation rate constant  

Although not directly included in the multi-step calculation of Cryptosporidium LRV, ozone 
demand is a tag that was determined to be beneficial for assessing process health and 
treatment within the event detection framework. The ozone demand corresponds to the initial 
rapid-rate reactions of the process water and is correlated to changes in LRV. As detailed in 
Equation 4-13, the calculation of demand requires fewer measured inputs and intermediate 
calculations than LRV, which facilitates an ease of demand verification within the event 
detection logic discussed below. 

Ozone Demand �𝑚𝑚𝑚𝑚
𝐿𝐿
� = Applied Ozone Dose − OSP 4 Ozone Residual   (Equation 4-13) 

Figure 4-8 depicts the location of each of the CCP monitoring parameter used by the EDS with 
the ozone system. 
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Figure 4-8. Schematic Overview of the Ozone Process with CCP Monitoring Parameters Detailed in Red. 

The introduction of calculated tags into the EDS enabled multiple CCP monitoring parameters 
to be compared at once. The calculated percent differences listed in Table 4-8 were 
incorporated to monitor ozone generation and evaluate the accuracy of ozone residual meter 
readings. Each of the process parameters uses a reference measurement or setpoint to 
evaluate the accuracy and/or proper functioning of the online measurement. The development 
of these additional data tags is a crucial aspect of the event detection framework. These tags 
provide context to the operations of the ozone system and verify the veracity of the CCP 
monitoring parameters. The event criteria outlined in Section 4.3.3 incorporates the calculated 
parameters in Table 4-8. 

Table 4-8. Ozone Process Calculated Parameters. 
Parameter Units Description 

Ozone Generator Production 
Difference 

unitless • OSP Meter Rolling Average 

OSP Meter Difference unitless • Decimal error difference between the 
primary and the reference ozone residual 
meter at OSP 4 and at OSP 7 

• Used to assess meter functionality and 
drift 

OSP Meter Rolling Average PPM • Arithmetic mean of the previous 120 
minutes of ozone residual measurements.  

• Used to detect meter drift when 
redundant meter is non-operable 
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4.3.2 Ozone Data Screening 
To detect events within the ozone system, data collected during periods of non-operation or 
abnormal production must first be removed from analysis. During BAC filter BW, the process 
water flow decreases through the ozone contactor. The decrease in flow temporarily increases 
the HDT, and thus the CT and subsequent LRV values also increase. The known temporary 
increase to LRV is removed from event detection analysis so that the tool does not incorrectly 
identify anticipated operations as an event. Thus, in addition to screening data collected during 
periods when ozone is shut down, ozone data is screened from event detection analysis while 
BAC filter(s) are in BW. Data screening is performed with the following lines of code shown in 
Figure 4-9.  

 
Figure 4-9. Ozone Data Screening Code.  

The code above elucidates the simplicity of configuration and application that the Pecos 
package provides—only 4 lines of code are required to execute the data screening of BAC BW 
data. A complete copy of the Python code that was implemented at the NCPWDF can be found 
in Appendix D. 

Table 4-9 details the integer value assigned to the various statuses of the ozone system via the 
status tag. Ozone system data logged during periods when ozone is in any status other than “2” 
is screened and thus not included in analysis by the EDS. 

Table 4-9. Ozone Data Screening Description. 
 Description 

Ozone Process Status Integer value used to indicate the ozone process status: 
• 0 = Off 
• 1 = Local On 
• 2 = Remote On 
• 3 = Standby 
• 4 = Manual Purge 

 
When the ozone system is called to run, the generator ramps up production to meet an 
operator set dose in PPD. After the start-up sequence the ozone system will operate to 
maintain a constant ozone dose. When the ozone operations mode is switched from “OFF” to 
“REMOTE ON”, there is a brief period in which there is process water flow, but ozone is not 
being dosed. This does not constitute a process failure since it is an expected part of the start-
up process of the ozone system and is accounted for in the plant-wide status data screening 
delay timer discussed in Chapter 4.7. 
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4.3.3 Ozone Data Flagging and Event Detection 
For each of the unit processes, the project team identified the common failures (i.e., events) 
that could occur. These events were prioritized for onsite implementation at the NCPWDF 
because they are expected to occur at a higher frequency than other issues based on historical 
operations and expertise. Table 4-10 below summarizes the event criteria specific to the ozone 
process designed to detect potential failures of the process, monitoring points, and pathogen 
removal goals. Additional ozone event detection logic for further development and 
optimization of the EDS is outlined in Appendix C.1. 

Table 4-10. Ozone Events Included in Deployed Event Detection Tool. 
Event Tags Description 

Process Failure Events 
Ozone Generator Failure • Ozone generator 

production 
• Ozone production set 

point 

The percent difference between the ozone 
generator’s production SP and actual PV is 

greater than a maximum threshold indicating 
failure of generator to meet the required ozone 

gas production. 
Monitoring Point Events 

Ozone Meter Drift at OSP 4   • Dissolved ozone 
measured at OSP 4 
primary meter   

• Dissolved ozone 
measured at OSP 4 
redundant meter 

The primary online meter is known to drift 
below the actual ozone residual if not calibrated 

regularly, while the redundant meter at the 
same location exhibits more stable readings. 

Percent difference between the meters is used 
to characterize a failure event indicating that 

the primary meter needs maintenance or 
calibration. Ozone Meter Drift at OSP 7  • Dissolved ozone 

measured at OSP 7 
primary meter 

• Dissolved ozone 
measured at OSP 7 
redundant meter 

Water Quality Event 
High Ozone Demand • Ozone demand  

• OSP 4 primary meter 
• OSP 4 redundant 

meter1 
• Ozone generator 

production 
• Ozone production SP 

This event detects an increase in the ozone 
demand caused by changing water quality. OSP 

4 ozone residual monitoring and ozone 
generator production are first verified as 

reporting within expected operating range. 
Thus, the probable cause of the increase in 

ozone demand can be attributed to a change in 
feed water quality, and not the result of process 

or monitoring point failures. 
1While redundant meter is non-operational, the calculated rolling average is used. 
 

4.3.3.1 Ozone Process Failure 
An ozone process failure results from the ozone generation system failing to meet the ozone 
dose specified by the operator. Although the ozone generator and its affiliated components can 
be compromised or need maintenance for a variety of reasons, the event detection framework 
is focused on events with the potential to compromise pathogen removal goals. When ozone 
dose is inadequate, the corresponding CT will be too low to achieve the ozone process LRV 
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goals. For this reason, detecting a declining trend in ozone production before absolute failure 
occurs will enhance DPR system reliability. To detect this failure, a calculated tag was created 
within the SCADA and PLC of the NCPWDF that continuously determined the percent difference 
between the ozone production set point (SP) and production value (PV). The difference 
between the ozone generator PV and SP was observed to be consistently less than 3% during 
normal operations based on historic data. The event criterion for an ozone process failure was 
configured using a Pecos range test. If the percent difference between SP and PV increases 
above 5% for longer than 15 minutes (15 consecutive data points in the SQL logger), the EDS 
generates an alert for an ozone process failure. While the occurrence of this is unlikely, this 
event criteria was included in the deployed EDS to validate the detection of all three types of 
failure within each unit process of the DPR train. The results of the challenge test for this event 
are found in Section 5.2.1.1 below. 

4.3.3.2 Ozone Monitoring Point Failure 
Data that is being inaccurately reported by problematic meters within the ozone system will 
compromise the ability of the operations staff to evaluate the treatment performance of the 
ozone system, and specifically the pathogen LRVs. Therefore, early detection of a loss in meter 
accuracy is an important feature of the event detection framework that provides increased 
response time for meter calibrations or other service actions. This ensures that continuous 
treatment performance is maintained.   

The main source of meter error is the gradual loss of meter sensitivity due to fouling of the 
inline probe sensor. This is especially true in DPR treatment trains where ozone is the first unit 
process in the advanced treatment train, and thus is receiving a constantly changing 
wastewater matrix. When dissolved ozone meters lose sensitivity, the meter will read lower 
ozone residuals resulting in incorrectly low LRV values. Low meter values are not always 
indicative of false meter readings since water quality changes can also cause low meter values. 
When low meter values are due to water quality changes, a dose adjustment can increase 
meter values to meet the LRV treatment objective. If meter fouling has occurred, dose 
adjustment may not rectify the low meter values. Thus, the event detection criteria were 
designed so that a loss of meter sensitivity within the ozone system is detected from a 
comparison between the primary and the reference meter at the same OSP instead of basing 
the event solely on low ozone residual measurements. The comparison is calculated using the 
percent difference calculation shown below (Equation 4-14), with the more stable reference 
meter as the value that the primary meter is compared against.  

% Difference between OSP meters = �(primary meter−redundant meter)
redundant meter

�     (Equation 4-14) 

Monitoring point failure is detected by applying a range test with an upper bound of 15% to the 
calculated percent difference values at OSP 4 and 7. In full scale ozone system monitoring, each 
OSP will be equipped with a reference meter and thus this approach should be applied to all 
metered OSPs. The threshold for detection is specific to the monitoring location and 
instrument, since the propensity for a given meter to drift can vary between manufacturers and 
is influenced by the process being measured. At the NCPWDF, operator experience and analysis 
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of historical data found that the primary and reference meter operate within 10% of each other 
if each meter is calibrated and maintained adequately. For this reason, a 15% threshold for 15 
minutes was used as an early indicator that the primary meter is drifting from the reference 
meter. This test configuration provides early event detection without generating false alarms. 
The reason the reference meter is not used as the primary meter is because it measures ozone 
residual every 2.5 minutes via colorimetric analysis, whereas the primary meter is an inline 
amperometric probe which measures the dissolved ozone concentration every second. The EDS 
processes data points every 60 seconds, and thus the inline probe is the preferred data source 
for LRV monitoring. Once the meters differ by 20%, the operations staff must bring the meter 
back to accuracy immediately because this would be considered a CCP failure where the 
primary meter’s readings are no longer accurate. 

A historical example used to inform the ozone monitoring point event configuration occurred 
on June 3rd, 2015, when the primary meter at OSP 4 drifted out of calibration. Figure 4-10 
demonstrates the efficacy of the 15% bound for the early detection of meter drift using this 
historic example. The green line at 6:20pm indicates when the EDS would have alerted 
operations of the drift exceeding 15%. The red line at 8:22PM is where the drift begins to 
exceed 20%. The data series of both the primary and the reference meter is included (shown in 
orange and blue respectively), as well as the calculated percent difference between the two 
(shown in grey). 

  
Figure 4-10. Historic Data Example of Ozone Residual Meter Drift at OSP4. 

The EDS would have provided operations staff with approximately 2-hours of lead time in this 
historical example. Because a full-scale DPR facility’s HRT is on the order of several hours, the 
addition of 2 hours of response time is beneficial to preventing off specification product water 
and/or loss of production. The precise amount of lead time provided will vary between failure 
occurrences based on the rate of primary meter drift, but the benefit of early detection remains 
the same. 
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4.3.3.3 Ozone Water Quality Event 
Although upstream WRP processes provide pretreatment for the AWPF, the water quality is 
constantly changing as it exits the WRP and enters the ozonation process. Water quality 
alterations can lead to the ozone system’s operations not meeting treatment needs, in which 
case, the ozone dose should be increased to meet the increased ozone demand in the water. As 
detailed above, Cryptosporidium LRV is the primary CCP monitoring parameter of the ozone 
system. The system must always provide at least 1-log removal regardless of changes in feed 
water quality. The EDS identifies water quality changes that could potentially compromise 
ozone treatment goals before the 1-log removal minimum is crossed. 

The ozone demand was selected as the indicator of potentially compromising water quality 
changes. Ozone demand requires fewer intermediate calculations than the LRV calculation 
making it the preferred CCP monitoring parameter because there are less inputs that influence 
the measurement. To preemptively detect a water quality event, the ozone demand value is 
flagged when outside of an upper threshold using a range test. The upper threshold decided 
upon for preemptive detection of water quality events in the prototype deployment at 
NCPWDF was 6.5 ppm at a 15-minute minimum failure duration (15 consecutive data points in 
the database logger). This upper bound was informed by historic statistics and iteratively 
adapted using operational observations. Ozone demand is calculated (as detailed above in 
section 4.3.4.2) as the difference in ozone applied dose and the concentration at the first 
monitoring location (OSP 4), so the calculated demand value is expected to differ due to water 
quality changes primarily. Therefore, the statistical method provides useful insight for the event 
detection bound since the influencing variables that could be prone to errors are minimized. 

This logic for ozone water quality event detection may be consistently applied across all DPR 
facilities, yet site specific bound determination is needed for full-scale deployment as each feed 
water will exhibit varying ozone demand. 

To confidently detect a water quality event with increases in demand, the values being used to 
determine demand must first be checked for their accuracy. The water quality event detection 
logic first confirms that the ozone generator is producing within 5% of the setpoint dose. The 
OSP 4 primary meter is also checked to ensure it is reporting within 15% of the reference 
meter. Verification of meter accuracy and adequate process operation performance is 
accomplished with range tests on the OSP 4 meter and the ozone generator percent difference 
tags. OSP 4 is the only ozone residual monitoring location that needs to be checked for accuracy 
since it is directly included in the calculation of demand. These range tests will flag continuously 
when the system is operating as expected so the presence of these flags represents normal 
operations.  

After the EDS confirms that there are no process failures or monitoring point events actively 
occurring, an increase in demand above the threshold of 6.5 ppm for greater than 15 
consecutive minutes can be identified as a water quality event. Similar conditional logic for 
detecting water quality changes, by first checking that monitoring and process measurements 
are within expected ranges, can be applied to other CCP monitoring parameters such as 
Cryptosporidium LRV. 
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The conditional, multi-parameter framework for detecting changes in ozone water quality is 
visually depicted in Figure 4-11. The event detection logic was designed this way to provide 
guidance for the necessary corrective action and avoid false alarms in the event that high ozone 
demand is being caused by issues unrelated to feed water quality. 

 

 
Figure 4-11. High Demand – Ozone Water Quality Event Detection Logic. 

 
The above referenced range test thresholds are configurable and are subject to change based 
on the ozone feed water quality at each DPR facility. The key takeaway is the logical framework 
that achieves early detection and provides operations staff with insight can reduce response 
time. 

The lines of code shown in Figure 4-12 contain the three range tests that the event is 
configured with, as well as the range test for the event tag. The code shown gives an example 
of the syntax of a multi-condition event detection framework, and the resultant event tag. 
 

 
 Figure 4-12. Ozone Water Quality Event Detection Code. 
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4.4 Microfiltration Configuration 
4.4.1 MF Data Selection 
The following discussion outlines how pathogen removal is determined through the 
microfiltration (MF) process and thus what CCP monitoring parameters are necessary to include 
in the EDS.  

A membrane integrity test (MIT) is conducted daily to directly assess membrane integrity. 
During a MIT, the MF system is first drained and then pressurized with air to a pressure 
specified in the MIT procedure. The pressure drop is measured over a 5-minute period and 
compared to the baseline pressure drop for the intact skid to evaluate if there are breaches or 
damaged membrane fibers. The baseline pressure drop for MF membranes is product-specific 
and requires demonstration testing prior to operation. 

Pathogen LRV is calculated using the product-specific correlation between pressure drop and 
pathogen LRV.  At least 4-log removal of Cryptosporidium and Giardia should be demonstrated 
per treatment objectives from the State and Federal Long Term 2 Enhanced Surface Water 
Treatment Rule (U.S. EPA 2010).    

California’s Division of Drinking Water (DDW) requires that integrity testing of the MF system at 
the NCPWDF demonstrate the ability to detect a 3-µm hole in the membranes using daily MITs. 
The pressure decay rate and water temperature are measured during the daily MIT and are 
used to calculate a pathogen LRV using the Equation 4-15 below: 

LRV = log � Qp×ALCR×Patm
ΔPtest×Vsys×VCF

�         (Equation 4-15) 

where:  Qp = design capacity filtrate flowrate (gpm) 
ALCR = air-liquid conversion ratio 
Patm = atmospheric pressure (psia) 
ΔPtest  = manufacturer-provided rate of pressure decay associated with a 3-µm 
membrane breach (psi/min) 
Vsys = volume of system pressurized with air (gal) 
VCF = volumetric concentration factor 

During operation, several terms in the formula above can be estimated using continuous 
measurements of other parameters. The ALCR can be estimated by measuring water 
temperature and transmembrane pressure (TMP). This means a continuous LRV can be 
calculated to indirectly monitor for indications of membrane integrity issues, but a daily MIT 
must still be performed to directly validate membrane integrity. 

Direct integrity testing using pressure decay must result in at least 4-log reduction or the 
membrane is considered to have failed the MIT and the required pathogen control is not being 
met. To meet the expected minimum LRV at this facility, the ∆Ptest term can be back calculated 
using the system-specific variables to determine the upper control limit (UCL) for the pressure 
decay rate.  
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Unlike the ozone process where pathogen LRV is continuously measured for regulatory 
compliance, the MF process reports only a daily pathogen LRV using the pressure decay rate 
measured by the MIT. Due to the shortened retention time for DPR projects, a daily assessment 
of MF process performance is too infrequent to detect sudden changes in pathogen removal 
before inadequately treated water leaves the facility. Filtrate turbidity is a continuously 
measured parameter used as an indirect measurement of membrane integrity. For this reason, 
it is considered the primary and only CCP monitoring parameter for the MF process as outlined 
in Table 4-11 and shown in the schematic below (Figure 4-13). 

Table 4-11. MF Process CCP Monitoring Parameters. 
Parameter Units Description 

MF Filtrate Turbidity NTU • Used to assess 
process and meter 
functionality 

 

 
Figure 4-13. Schematic Overview of an MF Module. 

Another reason that MF filtrate turbidity was considered the only CCP monitoring parameter 
necessary for inclusion in the EDS is that it is the primary continuously monitored MF 
parameter that is subject to regulatory requirements. The California State Water Resources 
Control Board’s Regulations Related to Recycled Water for membrane filtration processes 
requires that filtrate turbidity not exceed 0.2 nephelometric turbidity units (NTU) for more than 
5% of the time in a 24-hour period and always be below 0.5 NTU (SWRCB, 2018). For a 24-hour 
period, 5% of the time equates to 72 minutes, which means filtrate turbidity cannot exceed 0.2 
NTU for more than 72 minutes on any single day of continuous operation. The Membrane 
Filtration Guidance Manual requires a direct integrity test (i.e., MIT) to be performed if filtrate 
turbidity exceeds 0.15 NTU for more than 15 minutes (U.S. EPA 2005). This will be a typical 
requirement for full-scale California potable reuse projects. 
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4.4.2 MF Data Screening 
Once the MF system is called to run, a production cycle is initiated. A production cycle consists 
of a period of production where filtrate is generated and is followed by a BW to remove the 
accumulated particles that have been rejected by the filter fibers. The duration of each 
production cycle is approximately 30 minutes. Data from periods where the system is 
backwashing, performing integrity tests, or undergoing chemical cleans (i.e., CIPs) are not 
representative of system performance. The EDS does not consider data recorded during these 
times. 

The MF system records the process status as integer values corresponding to manufacturer-
defined descriptions. The recorded process status data is used to identify periods of time when 
the data should be ignored or removed. For MF, the only time the data should be analyzed is 
when the process status is ‘Forward Flow’ (or status = 1). Table 4-12 summarizes the MF 
process status tags. 

Table 4-12. MF Data Screening Tags. 
Status Tag Description 

MF Process Status Integer value used to indicate the state of MF: 
• 0 = Off 
• 1 = Forward Flow 
• 2 = Reverse Filtration 
• 3 = Air Scrub 
• 4 = Strainer BW 
• 5 = MIT 
• 6 = CIP 
• 7 = Flush 
• 8 = Enhanced Flux Maintenance (EFM) 
• 9 = Fill 
• 10 = Paused 

The Python script for the EDS was configured with a time filter for the MF process so that data 
is analyzed only from when the status tag value equals 1 (production mode). The lines of code 
below (Figure 4-14) provide details as to how this was implemented at the NCPWDF. 

   
Figure 4-14. MF Data Screening Code. 

4.4.3 MF Data Flagging and Event Detection 
The pathogen LRV for the MF process is directly monitored once daily using a MIT. The MIT 
results are easy to interpret and trends in pressure decay that approach regulatory thresholds 
are likely to be noticed and corrected by plant operations. However, daily MIT results are too 
infrequent to provide advanced notice of compromised treatment performance. Filtrate 
turbidity is an online measurement that can be used as an indirect monitor for membrane 
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integrity. Although filtrate turbidity monitoring is generally not considered by regulators to be 
sufficient for verifying pathogen LRV on its own, it is an ideal CCP monitoring parameter for 
real-time event detection when used alongside daily MITs because it can be monitored 
continuously. This enables changes in process performance to be tracked on the scale of 
minutes and hours, rather than days, which is essential for DPR monitoring. Table 4-13 below 
summarizes events defined for the MF process. 

Table 4-13. MF Events. 
Event Tags Description 

Process Failure Events 
Sustained High Filtrate Turbidity MF Filtrate Turbidity Turbidity exceeds threshold of 0.15 

NTU for at least 15 consecutive 
minutes (per U.S. EPA 2005) 

Monitoring Point Events   
Stagnant Data MF Filtrate Turbidity   MF Filtrate Turbidity is monitored for 

erroneous readings or if the 
turbidimeter is accidentally left in hold 

Since the goal of this monitoring system is to detect events prior to exceeding regulatory 
thresholds for shutdown or diversion, the first MF process event employs the Membrane 
Filtration Guidance Manual limit of 0.15 NTU for more than 15 minutes as the basis for filtrate 
turbidity monitoring (U.S. EPA 2005). With this approach, the EDS notifies operations in real 
time that a direct integrity test is needed and provides advanced notice that MF filtrate is 
trending toward an exceedance of the 0.2 NTU regulatory threshold that should not occur more 
than 5% of the time. The 0.5 NTU regulatory threshold already has a high-high (HH) alarm 
programmed into the NCPWDF SCADA system to trigger a shutdown if exceeded, so it is not the 
focus for the design of this monitoring system. 

The second event for detecting a stagnant MF filtrate turbidimeter is a common example of a 
monitoring point error where the measurement being reported may not be representative of 
the current conditions. When turbidimeters undergo maintenance, it is standard practice for 
the operator to hold the measurement output at a constant value while performing the 
maintenance to avoid triggering any alarms related to turbidity. Although some turbidimeter 
models contain a “time-out” feature that will return the meter to measurement mode if it is left 
in hold for a specified time. The detection logic of this EDS is relevant for meter models that do 
not have this functionality. Furthermore, turbidimeters may report stagnant values due to 
other unforeseen reasons, including communication losses for example. If the turbidimeter is 
not returned to the measurement mode once maintenance is completed, the static filtrate 
turbidity value being reported could mislead operators into assuming that system performance 
is normal. The stagnant data test is applied to MF filtrate turbidity. The parameters for the 
stagnant data test are the stagnancy threshold and minimum number of consecutive failures. 
The stagnancy threshold was determined based on the typical variation in historical data, and 
the minimum number of consecutive failures was specified based on how often variation 
typically occurred in the historical data. Alternatively, redundant turbidimeters could be 
implemented with a stagnant data test monitoring the calculated meter difference between a 
primary and reference meter. This approach would be similar to the detection of an ozone 
monitoring point failure described in Section 4.3.3.2 using Equation 4-14. 



Integration of High-Frequency Performance Data for Microbial and Chemical Compounds Control in Potable  
Reuse Treatment Systems 53 

A water quality event for the MF process was not configured since it was reasoned that water 
quality changes with the potential to impact the MF process would be detected upstream in the 
ozone process first. The MF process acts as a physical barrier to particulates and pathogens, and 
as discussed, its proper functioning is assessed using MITs and filtrate turbidity measurements. 
Water quality changes would not impact the filtrate turbidity or MIT results. Thus, water quality 
changes would likely not compromise the membranes’ acute treatment goals, and are rather 
related to process optimization (i.e., flux) and cleaning requirements. For these reasons, in the 
absence of an ozone water quality event, it is expected that the most probable source of declining 
trends in MF process performance would be due to a process failure or monitoring point error. 

4.5 Reverse Osmosis Configuration 
4.5.1 RO Data Selection 
Pathogen LRVs for the RO system are determined based on the LRV of surrogate parameters 
such as TOC or electrical conductivity (EC). TOC and EC indirectly monitor system integrity via 
online analyzers located on the RO feed and permeate lines provide continuous measurements 
of each parameter (Figure 4-15). 

  
Figure 4-15. NCPWDF RO System Online EC and TOC Monitoring Locations. 

 
Permeate TOC is measured at a combined line from Train A and B whereas EC analyzers are 
located on the individual Train A and B permeate lines. When implementing the EDS, only Train 
A was considered for simplicity, but the same event detection logic is also applicable to Train B. 
Generally, RO achieves greater than 1.5-log removal of TOC and greater than 1-log removal of 
EC, so the preferred surrogate for pathogen log reduction is TOC. If TOC monitoring data is 
unavailable, EC is used as the surrogate for pathogen LRV. The LRV of surrogate parameters 
used for determining pathogen removal through RO is calculated using the formula below. 
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LRV = log � Cfeed
Cpermeate

�     (Equation 4-16) 

 
Where:  Cfeed = feed concentration of surrogate parameter 

Cpermeate = permeate concentration of surrogate parameter 
 

The feed and permeate concentrations for TOC and EC were the selected CCP monitoring 
parameters for the RO process because they directly link to pathogen LRV performance and are 
influenced by process upsets such as chemical spikes and membrane breaches. Table 4-14 
describes how these parameters are used to assess RO membrane performance. 

Table 4-14. RO Process CCP Monitoring Parameters.  
Parameter Units Importance to System Monitoring 

RO Feed TOC µg/L Analytical measurement used to calculate RO TOC 
removal 

RO Combined Permeate TOC µg/L Analytical measurement used to: 
• Calculate RO TOC removal 
• Monitor permeate water quality to meet 

permeate TOC regulatory requirements 
• Detect events such as a membrane breach or 

organic chemical spike 

RO TOC Removal LRV Calculated log-reduction value: 
• From feed and combined permeate TOC 

measurements 
• Used as the primary surrogate for pathogen LRV 

RO Feed EC µS/cm Analytical measurement used to calculate RO EC 
removal 

RO Train A permeate EC µS/cm Analytical measurement used to: 
• Calculate RO EC removal 
• Monitor permeate water quality to detect a 

membrane breach 

RO EC removal LRV Calculated log-reduction value: 
• From feed and combined permeate EC 

measurements 
• Used as the secondary surrogate for pathogen 

LRV 

 
4.5.2 RO Data Screening 
When RO is called to run, the feed pumps first ramp up to a fixed initial speed for a duration 
specified by the operator. After the duration at the initial speed is met, pumps will continue to 
ramp up to meet product water flow setpoints. Once product water setpoints are met, the 
trains are considered to be “in production” which is represented by status number 4 “Normal 
PID mode” in Table 4-15. 

Full-scale facilities usually have a “permeate to waste” step to confirm water quality before 
permeate is allowed to continue on to the next downstream process. At the NCPWDF, the 
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permeate produced during this start-up period proceeds directly to the downstream UV 
process and there is no filter to waste diversion. Thus, there is a period of time in which water 
quality meters are recording data during start-up and water quality is not confirmed before 
permeate travels to the next downstream process. A “start-up” counter is employed to ignore 
data measured during the typical duration of the start-up process. This is accounted for by the 
plant wide status data tag discussed in Chapter 4.7. 

Table 4-15. RO Data Screening Description. 
 Description 

RO Process Status Integer value used to indicate the state of RO: 
• 0 = Sequence is reset 
• 1 = Standby 
• 2 = Inlet Valves Opening 
• 3 = Pump in Steady Ramp Mode 
• 4 = Normal PID Mode 
• 5 = Ramp Down Mode 
• 6 = Inlet Valves Closing 
• 7 = Flush Valves Opening 
• 8 = Permeate Flush Running 
• 9 = Flush Pump Stopping 
• 10 = Flush Valves Closing 
• 11 = Sequence Resetting 

 
4.5.3 RO Events 
Pathogen LRVs for the RO system are determined based on the LRV of TOC or EC. Since the 
LRVs of TOC and EC are calculated from measurements taken in the RO feed and permeate, 
there are several operating scenarios that can impact the calculated LRV. These scenarios 
include membrane failure, meter error, or a change in water quality. Each of these scenarios is 
summarized in Table 4-16 below and discussed in more detail in the following subsections. 
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Table 4-16. RO Events. 
Event Tags Description 

Process Failure Events 
Membrane Breach • Permeate TOC  

• Train A (or B) 
Permeate EC 
 

A membrane breach is a treatment failure 
caused by O-ring failures, glue line leaks, 
or physical membrane damage. A breach 
is indicated by increased EC and TOC in 

the RO permeate above historical levels. 
Train A and Train B are tested separately 

for membrane breaches. 
Monitoring Point Events   

Potential Feed TOC Meter Drift 
(High) 

• Feed TOC 
• RO TOC Removal 

For typical water quality, the TOC removal 
(LRV) is expected to remain relatively 

constant. Thus, if the feed TOC increases, 
it is expected the permeate TOC would 

also increase such that the TOC LRV 
remains relatively constant. If an increase 

in feed TOC above historical levels is 
observed while the TOC removal (LRV) 

also increases above historical levels, then 
it is possible that the feed TOC meter is 

drifting high. This event would prompt an 
operator to check the feed TOC meter 

calibration.   
Water Quality Events 

Organic Chemical Peak • Permeate TOC  
• Train A (or B) 

Permeate EC 

The presence of elevated levels of small, 
low molecular weight organic chemicals 

(e.g., acetone) in the feed water 
jeopardizes an RO train’s ability to meet 
permeate TOC requirements due to the 

ability of these chemicals to more readily 
pass through RO membranes. This event 
can be detected by monitoring combined 
permeate TOC and permeate EC. If high 

concentrations of TOC are observed in the 
permeate while permeate EC is observed 

to be at normal levels, the cause is 
potentially an organic chemical peak. The 

normal permeate EC rules out the high 
TOC being caused by a membrane breach. 

 
4.5.3.1 RO Process Failure Event 
A process failure for RO is defined as a failure of the RO membranes to perform their designed 
function. The function of the RO membranes is to reject salts and other impurities to produce a 
permeate stream with low concentrations of ions and TOC. Thus, permeate TOC and EC are 
measured continuously to monitor RO performance. 

A membrane failure can be caused by O-ring failures, glue line leaks, or damage to the 
membrane surface. In all these cases, feed water bypasses the RO membrane and mixes with 
the permeate stream. Both TOC and EC in the permeate stream will increase since feed water 
bypassing the membranes will have very high concentrations of TOC and ions relative to the 
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permeate water. The event detection criteria for the permeate TOC and EC were based on 
historical concentrations recorded during operator rounds from the online TOC analyzers over a 
one-year period. Operator rounds are performed when the plant has ready stable operations 
and can be understood as representative. The normal operating ranges for permeate TOC and 
EC were defined using data collected in 2021. The feed TOC data consists of 125 recorded 
values spanning 7 months of operation. The permeate TOC data consists of 141 recorded values 
spanning 12 months of operation. 

A standard deviation approach was used for determining the feed TOC range test bounds since 
the variation in the data is not expected to be influenced by startup operations. A combined 
percentile and quartile approach was used for permeate TOC because the data set contained a 
significant number of outliers that are believed to be caused by sampling after system startup 
when the RO system was not yet stable. The combined percentile and interquartile range 
approach was established in DRPT-4991 for detection of high permeate TOC above baseline 
concentrations (Debroux 2021). The 5th percentile from the data set was calculated to be 14 
µg/L, which was used as the lower bound for the normal operating range. The upper bound 
(UB) for the normal operating range was calculated to be 50 µg/L using an interquartile range 
approach, which is detailed in Equation 4-17 below. 

UB = Q3 + (1.5 × IQR)      (Equation 4-17) 

Where:  Q3 = 3rd quartile (or 75th percentile) 
IQR = interquartile range = Q3 – Q1 
Q1 = 1st quartile (or 25th percentile) 

The quartile approach is commonly used to exclude the impact of outliers on the determination 
of an acceptable range of data. Since the demonstration facility lacks a “filter to waste” step to 
recirculate permeate during start-up, it was expected that the permeate TOC data will have 
outliers present during start-up. If a standard deviation approach were used, any significant 
outliers would impact the normal operating range. Using Equation 4-17 with historical data 
spanning approximately 2 years of operation, the upper bound for the normal operating range 
was calculated to be 50 µg/L. 

The normal operating range for TOC removal was calculated using the same data set of 
recorded values, but only when feed and permeate values were recorded in pairs. The sample 
set consisted of 98 sample pairs spanning 7 months of operation. The upper and lower bounds 
were calculated using the 95th and 5th percentiles, respectively. 

The typical permeate EC is defined by comparing the permeate EC at the beginning and end of 
life for a set of RO membranes that was used at the NCPWDF for 3 years of operation. Over the 
life of the membranes, the permeate EC gradually increased from 25 µS/cm up to 125 µS/cm 
while the feed EC was relatively constant in the range of 1300-1600 µS/cm. The gradual 
increase in permeate EC over the life of the membrane is expected due to slow oxidation of the 
RO membranes by the residual disinfectant that is maintained to minimize biological growth. In 
addition, loss in salt rejection can also be attributed to repeated CIP events over time. The 
Python scripts used in this project for the EDS were designed to be configurable through minor 
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edits in the code, therefore the operating range test bounds can be narrowed and adjusted as 
the RO membranes age to provide more precise detection of anomalous EC measurements. 
Table 4-17 summarizes the operating range test bounds that were determined for detecting 
events in the RO process. 

Table 4-17. Operating Range Test Bounds for the RO Process. 
 Median (Min, Max) Basis for Min/Max 

RO Feed TOC 
(µg/L) 

4800 (3800, 5800) ± 2 standard deviations 

RO Permeate TOC 
(µg/L) 

29 (14, 50) Max = Q3 + 1.5*IQR 
Min = 5th percentile 

RO Train A and B Permeate EC 65 (25, 125) Max = Maximum EC 
observed at end of 

membrane life (after 3 
years of operation)  
Min = Minimum EC 
observed following 

new membrane 
installation 

TOC Removal 
(LRV) 

2.2 (2.1,2.6) Max = 95th percentile 
Min = 5th percentile 

4.5.3.2 RO Monitoring Point Events 
A monitoring point failure for RO is defined as a failure of the instrumentation to report real or 
accurate data. Instrument failures can include times when the meters report stagnant values, 
values outside of the analytical range of the instrument, or when meters exhibit symptoms of 
meter drift. Symptoms of meter drift can be site-specific and depend on the monitoring system 
design. Feed TOC meter drift was selected to be the proof-of-concept example for an RO 
monitoring point event because the variable water quality it receives in the feed was observed 
to result in higher maintenance frequency at the NCPWDF. 

For TOC meter drift, the symptoms are defined using the measured TOC concentrations and the 
calculated TOC removal values. While the TOC concentrations in the RO feed are expected to 
vary, the TOC removal (or rejection) across the RO membranes is expected to stay relatively 
constant under normal water quality conditions. If an increase in both the feed TOC and LRV 
above historical levels is observed while the permeate TOC remains within the expected 
operating range, then it is possible that the feed TOC meter is drifting high. An alert for this 
event by the EDS would prompt an operator to check the feed TOC meter calibration.   

4.5.3.3 RO Water Quality Event 
Detecting a water quality event in the RO process requires monitoring permeate TOC and EC. 
Chemical peaks as discussed in section 1.3 are cause for concern in DPR treatment trains 
because they have been found to be poorly rejected (Debroux 2021). RO permeate TOC is the 
monitoring parameter that would best detect the presence of a chemical peak; therefore, it is 
the focus of the RO water quality event detection logic. The RO permeate TOC and EC upper 
operating bounds outlined in Table 4-16 of the RO process failure section are used to determine 
if these CCP monitoring parameters are abnormally high. To distinguish between whether a 
chemical peak or membrane breach is causing the increase in RO permeate TOC, permeate EC 
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must be within its normal operating range for the EDS to generate an alert for a water quality 
event.  

Based on real-life occurrences, it is expected that the RO permeate TOC timeseries data would 
resemble a bell curve distribution in the event of a chemical peak. The abrupt change test was a 
type of Pecos quality control test initially considered for detecting chemical peaks by analyzing 
the slope of the RO permeate TOC, which is typically very flat (i.e., stable). The hypothesis was 
that a sharp spike in RO permeate TOC would be flagged by the abrupt change test which can 
be configured to have a maximum threshold for the difference between two data points within 
a moving window. However, this approach was not implemented in the final version of the EDS 
because it was more difficult to configure for the desired sensitivity than a range test. Chemical 
peak events tend to last on the order of hours or days, so detecting 15 minutes of consecutive 
values above 50 µg/L through a range test is very likely to provide enough time to respond to a 
potential chemical peak event before the regulatory limit of 500 µg/L is exceeded.  

4.6 UV/AOP Configuration 
4.6.1 UV/AOP Data Selection 
The influent stream to the UV reactors is RO permeate that has been dosed with sodium 
hypochlorite. Free chlorine is measured to confirm adequate sodium hypochlorite dosing to 
meet the AOP criteria. For redundancy, influent free chlorine is measured in two ways: by an 
individual free chlorine meter and the calculated difference between two total chlorine 
analyzers located before and after the sodium hypochlorite injection point. The free chlorine 
meter is the primary meter for monitoring oxidant dosing because it measures more frequently 
than the total chlorine analyzers. The total chlorine concentration prior to the addition of 
sodium hypochlorite is measured in the RO permeate to monitor for downstream effects on 
UVT in the UV/AOP system.  

The CCP monitoring parameters included for analysis by the EDS are essential for ensuring 
compliance with the regulatory requirements for obtaining 6 logs of pathogen LRV credit. UVT 
and UV dose are regulated parameters measured inside the UV reactors to monitor water 
quality and ensure that pathogen inactivation and AOP performance criteria are achieved. A 
minimum oxidant dose for AOP is a permit requirement for reuse facilities in California (State 
Water Board 2021). This facility’s permit stipulates a minimum 1.0 mg/L sodium hypochlorite 
dose. Table 4-18 describes each of the CCP monitoring parameters used to assess UV/AOP 
process performance. 

Table 4-18. UV/AOP Process CCP Monitoring Parameters.  
Parameter Units Importance to System Monitoring 
UV Dose mJ/cm2 • Calculated parameter used to assess 

process functionality and determine if 
pathogen inactivation and AOP 
requirements are met  

UV Intensity (UVI) mW/cm2 • Used to assess monitoring point 
functionality 

• Used to calculate UV dose 
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Parameter Units Importance to System Monitoring 
Feed UV Transmittance (UVT) % • Used to assess UV/AOP feed water quality 

• Indicates amount of UV light that is 
available for disinfection/photolysis/AOP 

RO Permeate Total Chlorine mg/L • Total chlorine measured prior to the 
oxidant injection point 

• Used to assess water quality and oxidant 
dosing 

UV Feed Total Chlorine mg/L • Total chlorine measured following the 
oxidant injection point 

• Used to assess oxidant dosing 

UV Feed Free Chlorine mg/L • Free chlorine measured following the 
oxidant injection point 

• Used to assess oxidant dosing 

Pathogen Removal LRV • UV/AOP receives 6.0 LRV for viruses, 
Giardia, Cryptosporidium if UV dose 
exceeds minimum regulatory 
requirement and treatment conditions 
are within operating envelope 

 
Figure 4-16 provides an overview of where the UV/AOP CCP monitoring parameters are 
measured within the system. 

 
Figure 4-16. UV/AOP CCP Monitoring Parameter Locations Within the UV System. 

4.6.2 UV/AOP Data Screening 
When UV/AOP system is restarted following a shutdown, the UV lamps are turned on and the 
ballast power level (BPL) runs at 100% for a warming period of 5 minutes. Once the warm-up 
period is over, the manufacturer’s control algorithm adjusts the BPL to control UV dose and 
achieve 0.5 log removal of 1,4-dioxane. Similar to the RO system, the UV effluent produced 
during the UV system’s warming period is not used for product water and instead routed to the 
NCPWDF waste stream. The monitoring system accounts for the warming period by filtering out 
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any data generated during this time. This prevents nuisance alarms from being generated by 
only analyzing data when UV-treated water is being sent to downstream processes.   

4.6.3 UV/AOP Events 
The criteria for detecting the UV/AOP process events listed in Table 4-19 was based on the CCP 
monitoring parameters identified in Table 4-18 above. An event is categorized as a process 
failure, monitoring point issue, or water quality event depending on the measurement(s) being 
flagged.  

Table 4-19. UV/AOP Events. 
Event Tags Description 

Process Failure Events 
Low UV Dose UV Dose UV dose is approaching minimum required 

dose for pathogen credit. Operator should 
check the status of the UV lamps in the 

reactor and replace failed lamps if needed. 
Monitoring Point Events   

Stagnant Data UV Intensity (UVI) Sensor  UVI data is monitored for erroneous 
reporting of stagnant values. Operator 

should perform maintenance on the UVI 
sensor if needed. 

Water Quality Events 
Low UV Feed UVT UV Feed UVT UV Feed UVT is approaching the minimum 

regulatory requirement for UVT. Potential 
causes could be an upset in an upstream 
process, the oxidant dosing system is not 
working properly, or the UV lamp sleeves 

need to be cleaned.  
High UV Feed Chloramines RO Permeate Total 

Chlorine 
RO Permeate Total Chlorine exceeds the 

typical operating threshold. Operator 
should check RO chloramine dosing 

system. 
 
4.6.3.1 UV/AOP Process Failure Event 
The primary indicator of a UV/AOP process failure event is declining UV dose. Regulatory 
requirements for UV dose differ based on the treatment objective. The minimum UV dose to 
meet AOP criteria (greater than 0.5 log removal of 1,4-dioxane) is 850 mJ/cm2 while the 
minimum dose to obtain 6.0 logs of pathogen inactivation is 278 mJ/cm2. A process failure 
event alert is generated if the UV dose approaches the minimum dose for pathogen inactivation 
because the process is at risk of losing pathogen removal credits and being out of regulatory 
compliance. A UV dose value of 300 mJ/cm2 was determined to be an appropriate threshold for 
providing advanced warning of the UV/AOP process trending toward a process failure. 

4.6.3.2 UV/AOP Monitoring Point Event 
Stagnant readings from an instrument indicate the occurrence of a monitoring point error 
where process performance measurements are potentially inaccurate. One example of this 
event type within UV/AOP is the UVI sensor. Since UVI is used by the system PLC to calculate 
the UV dose, loss of this measurement could lead to inadequate UV dosing. If the UVI reading 
does not change by more than 0.01 for 30 consecutive minutes, then the stagnant UVI sensor 
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alert is generated. The minimum change value of 0.01 was determined iteratively after 
observing that values less than 0.01 were too sensitive thereby generating false alarms while 
values greater than 0.01 were not sensitive enough. 

4.6.3.3 UV/AOP Water Quality Event 
Worsening UV/AOP influent water quality caused by issues upstream would primarily be 
reflected by a decrease in UVT. Low UVT in UV/AOP feed water results in reduced treatment 
performance due to increased interference of UV light from being used for disinfection, 
photolysis, and AOP. For AOP and pathogen inactivation criteria to be met, the UVT must be at 
least 95.0%. A lower bound of 96.0% was implemented to prompt an alert when UVT is 
decreasing towards the regulatory minimum of 95.0%. 

The presence of high chloramine concentrations in the UV feed will absorb UV radiation and 
interfere with UV/AOP treatment efficacy. An upstream issue with the chloramine dosing 
system prior to MF that is used for RO membrane fouling control would be indicated by high 
chlorine levels in the RO permeate (i.e., UV feed). If the RO permeate total chlorine is measured 
to be greater than the target chloramine concentration of 1.0 mg/L, a water quality event alert 
for UV/AOP is generated. 

4.7 Plant Wide Configuration 
In addition to process specific screening discussed in the section above, process data across the 
entire train is also screened from event detection analysis when the plant wide status is not 
“plant stable.” The conditions for “plant stable” are as follows: 

• NCPWDF “start” has been triggered  
• Ozone generator enters ON status = “2”  
• MF (or UF) enters ON status = integer other than “0”  
• RO Train A or Train B enters “ON” status = “4”  
• UV running status = “1”  

Once the “plant stable” conditions are satisfied, the delay timer of the data screening function 
of the EDS starts and counts down an operator set time period (0-60 minutes) before beginning 
to process operations data for event detection purposes. This offset timer allows the processes 
to reach stable and characteristic operating conditions to avoid false event detection during the 
startup of unit processes. 

4.8 Event Notification 
A key component of the EDS is an output mechanism that notifies operations staff of potential 
events and provides visualization of the data. The implemented monitoring system at the 
NCPWDF presents the results of the 12 configured events detailed below (Figure 4-17) on a 
dashboard to display whether the events occurred across the facility’s unit processes during the 
specified time period. The dashboard was developed using the Pecos library’s built-in 
visualization features and is generated as an .html file on the HMI computer where the event 
detection script is installed. High performance graphics to notify operations staff of any event 
occurrences using a magenta color to indicate a potential event while grey indicates that the 
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event is not occurring. The live mode of the EDS allows for continuous analysis of the system 
and automatically updates the dashboard every five minutes. When using the historic mode of 
the system, the dashboard will reflect the analysis results for the manually set timeframe.  

Figure 4-17 provides a dashboard example from the EDS run in historical mode over an 80-
minute period on 12/20/22 as it would appear to the operations staff. The dashboard contains 
a matrix where each row corresponds to one of the four CCPs at the facility, and each column 
corresponds to one of the three event types. The example dashboard pictured indicates the 
detection of five potential events during the monitoring period including ozone and RO 
monitoring point failures, water quality events at the RO and UV/AOP processes, and an ozone 
process failure event detected during challenge testing, which is described in Chapter 5. The 
date that the dashboard was generated in the bottom left corner is helpful in differentiating the 
results between the detection system’s live and historic modes.  

 
Figure 4-17. Example EDS Dashboard Output. 
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In addition to being notified of event occurrences, the dashboard provides operators access to 
visuals of the process data from a potential event and details about the data analysis performed 
by the EDS. Data visualization is necessary to provide insight that can be used to develop a 
targeted response to any potential events. Operations staff may click on the “LINK TO REPORT" 
below an individual event’s alert square to access the event’s report. 

A complete report generated when an event has been detected include the following 
components as labeled in Figure 4-18:  

a. The event title  
b. The start and end time of the monitoring period  
c. Time series data plot(s) of the CCP monitoring parameter(s) included in the event criteria  
d. A tabulated list of the times during the monitoring period that the event occurred 
e. Time series data plot(s) of the CCP monitoring parameter(s) included in the event criteria 

with screened data labeled with gray columns and flagged data marked with blue crosses 
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Figure 4-18. Example EDS Event Report Output. 
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The example presented above is for the RO feed TOC meter drift event. The purpose of this 
output is to convey the contents of an event report and further details on challenge testing 
results are discussed in Chapter 5. The test results table lists the tags that were flagged during 
the reporting period, the flagging duration, and the minimum or maximum threshold 
configured for each respective Pecos quality control test. The legend for each flagged data plot 
includes the Pecos quality control test type and threshold value that triggered the flag.  

The report for events containing logic that requires multiple criteria to be true for the event to 
be detected includes data time series of each individual criterion. In Figure 4-18, the plots for 
RO feed TOC and LRV represent the individual event criteria. The event detection compiles the 
results from these criteria into a single integer tag representing the event (e.g., RO monitoring 
event) known as the “event tag.” When the event has occurred for a duration longer than the 
minimum number of consecutive failures value, the event tag will flag, and the detection 
system will identify the event. When an event only requires flagging a single tag, an event tag is 
not required since aggregating multiple test results into a single tag is not necessary (see 
section 5.2.1.1 for an example).  

A report will be generated regardless of an event occurrence. If no event is occurring, only the 
raw time series data will be displayed and the test results table and data plot with test flags will 
not be included in the report.  

4.9 Framework Implementation Summary  
The implementation of the four-step framework—data storage, data screening, data flagging, 
and event detection—across each CCP of the DPR treatment train at NCPWDF required using an 
iterative workflow to:  

• Identify the CCP monitoring parameters relevant to early detection of potential losses in 
treatment for pathogen removal, including the addition of calculated parameters 

• Develop site-specific Pecos quality control test inputs (e.g., operating range bounds and 
minimum number of consecutive failures for detection) for range and stagnant data tests 

• Configure the event detection logic for process failure, monitoring point, and water quality 
events using the Pecos quality control tests as criteria 

• Design and develop monitoring reports which provide useful insight and alerts regarding 
event detection 

The project team selected 21 CCP monitoring parameters from the thousands of available data 
sources to target likely failure scenarios, while narrowing the data storage and analysis 
required. The site-specific Pecos quality control test inputs for these CCP monitoring 
parameters were determined through statistical methods, operational knowledge, and iterative 
trial and error (detailed further in Chapter 5) depending on the unit process and variability. 
Since each CCP has unique failure mechanisms based on the method of treatment used to 
remove pathogens (i.e., chemical oxidation vs. membrane filtration), the event detection 
criteria for each event varied across CCPs within the treatment train. Ultimately, the workflow 
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yielded an EDS with site-specific event detection abilities using broadly applicable event 
detection logic. 

In Chapter 5, the functionality of the implemented software, event detection logic, and Python 
script configuration described in this chapter are challenge tested using either natural or 
artificial data sets at the NCPWDF. 
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CHAPTER 5 

Implementation Testing and Validation 
In addition to the development of a conceptual framework for event detection, the project 
team deployed and tested the EDS to continuously monitor process data at the NCPWDF. Once  
the EDS was implemented for early event detection across the NCPWDF treatment train, the 12 
strategically selected events detailed in Chapter 4 were either simulated or an actual 
occurrence was captured onsite to confirm that the event detection logic and system 
functioned as expected. Most of the events necessitated a simulated failure to test detection 
capabilities because the treatment train is robust, and failures are rarely observed during 
operations. By capturing each mechanism of failure across each of the NCPWDF unit processes, 
a holistic assessment of the event detection system’s ability to detect events of high 
consequence and/or importance across the DPR treatment train was conducted. This approach 
was needed for challenge testing because the application of the Pecos test(s) to each process, 
and each type of failure mode within that process, are unique. 

5.1 Testing Methodology 
Since naturally occurring CCP failure events at the NCPWDF rarely occur, it was necessary to 
simulate potential failures to validate the functionality of the EDS. Simulated challenge tests 
were conducted for most events, but actual events that took place while the event detection 
system was implemented are also included and discussed in this Chapter when available. 

Many iterations of the EDS Python script existed over the course of development. The challenge 
testing discussed below began when a working version of the Python script was implemented 
onsite at the NCPWDF in December 2022 and continued until July 2023. During this time period, 
iterative adjustments were made to various aspects of the EDS such as the configuration of 
event detection logic, Pecos test parameters, and data visualization based on the challenge 
testing results.The adjustments aimed to facilitate detection of failure events by the EDS as 
early as possible while avoiding a nuisance amount of false detections.  

5.2 Testing Results 
For each CCP at the NCPWDF, a representative event for each of the three potential event types 
(process failure, monitoring point failure, and water quality event) was either simulated by the 
project team or captured in real plant data. The presented results include context surrounding 
the event’s occurrence, the visual outputs generated by the EDS at the time of the event, and a 
discussion of the extent to which the event was successfully identified by the event detection 
system.  

The dashboard displays a magenta square when an event has occurred during the specified 
timeframe that the EDS has been configured to analyze. When the active event report link is 
selected, the report will appear containing the timeframe of analysis. The event report is 
included for each challenge test discussed below and raw data plots are omitted for more 
concise communication of the results. 
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5.2.1 Ozone Event Detection Challenge Testing 
Due to its location at the beginning of the NCPWDF advanced treatment train, the ozone 
process receives variable water quality that has the highest concentration of contaminants. 
Variations in ozone demand occur frequently due to fluctuating concentrations of readily 
oxidizable compounds in the ozone feed water. Therefore, ozone generation requirements are 
in a constant state of flux to meet the varied demand. Furthermore, accurately measuring the 
dissolved ozone residual proves to be challenging in a tertiary filtered matrix. For these reasons, 
examples of monitoring point and water quality events specific to the ozone process took place 
during normal operations and were used to confirm that the EDS functioned as expected. 
Individual event criteria were subsequently configured appropriately. An ozone process failure 
did not occur at the NCPWDF during the testing period, so an artificial challenge test was 
conducted to simulate an ozone generator failure. Included below is discussion of each of the 
challenge tests and the outcomes. 

5.2.1.1 Process Failure  
The simulation of an ozone generator failure required manipulating the ozone generator 
setpoint to report a static value in the PLC of 100 ppd while simultaneously reducing the actual 
ozone production to 90 ppd. These actions caused the calculated tag monitoring the percent 
difference between ozone production setpoint and actual ozone production to increase past 
the maximum threshold of 5%. For a timespan of 18 minutes, the calculated difference 
remained greater than 5% causing the EDS to generate an alert for an ozone generator process 
failure. In addition to the sustained exceedance, there are two instances leading up to the 
challenge test when the calculated ozone production difference increased above 5% but 
recovered below the maximum threshold soon after—encircled in Figure 5-1. These increases 
occur following production SP adjustments when the PV is changing to meet the new SP. The 
EDS is configured to generate an event alert only if the ozone production difference is greater 
than 5% for 15 consecutive minutes to avoid false positives when adjusting ozone production. 
Therefore, the challenge test was successful in proving that the EDS was accurately applying the 
event criteria parameters for identifying an ozone process failure with the desired sensitivity. 
The output report generated by Pecos for this event on June 30, 2023, is shown below in Figure 
5-1 where the event lasting 18 minutes can be observed as flagged and detected. 
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 Figure 5-1. Partial Ozone Generator Failure Event Detection Report.  

 
5.2.1.2 Monitoring Point 
As described in section 4.3.3.2, ozone residual meters within a wastewater matrix have a high 
propensity to drift and lose calibration. Thus, the EDS was configured to detect a meter drift 
monitoring point failure in the ozone process. Preemptive detection of meter drift in an ozone 
system is paramount for DPR facilities to ensure that the LRV calculation is consistently 
accurate, so detecting measurement inaccuracies before they become critical is the goal of the 
EDS. To reiterate, ozone monitoring locations have a primary and a reference meter; should the 
difference (as a percentage) between the reference and primary meter’s values read greater 
than the threshold for early event detection (15%), the data will be flagged by the EDS. After 15 
minutes of consecutive flags, the event will be detected, and operations will receive an alert. 

Validation of the detection system’s logic did not need synthetic challenge testing because 
ozone meter drift events occur frequently if the primary meter at OSP 4 and/or OSP 7 is not 
regularly calibrated every 1-3 days. To ensure quality data for testing, the primary and 
reference meters were both calibrated at the same time on the first date of challenge testing. 
Each proceeding day, only the redundant meter was calibrated if necessary while the primary 
meter was left to drift from calibration. Based on operational experience, it is expected that the 
meter would drift within a few days to meet the criteria for detecting this event. 

In the 10-hour period displayed by the output shown in Figures 5-2, ozone monitoring point 
failures at OSP 4 and 7 were detected. The data from August 31, 2023, indicates that the 
difference between the primary and reference ozone meters at OSP 4 and 7 became 
consistently greater than 15%, signaling that calibration is needed for the primary meter. The 
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first event occurred at 1:00 PM at OSP 7 followed by drift at OSP 4 at 2:33 PM as indicated by 
the green and red circles. The circles correspond to the boxes highlighted in the test results 
table. The test results table gives the exact start and end times of detection. This test data is a 
clear example of how the early detection framework can provide added lead time for operators 
to respond to failures. The gradual loss of ozone meter accuracy is observable in Figure 5-2 as 
the percent difference value between the reference and primary meters increases at both 
sampling points, eventually crossing the critical threshold of 20%. In this case, four hours of 
lead time would be provided between the 15% detection threshold and the 20% failure 
threshold to address the meter issue at OSP 7, and three hours of lead time would be provided 
at OSP 4. Furthermore, when action needs to be taken, this event detection output gives clear 
direction to the operations staff that both OSP 4 and 7 are the monitoring locations in need of 
calibration, further reducing the response time necessary to address the event. 
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   Figure 5-2. OSP 4 and 7 Ozone Monitoring Point Failures Event Report. 

Data flagging boxed in green and red in the test results table respectively correspond to the green and red circles 
on the data plot.  
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5.2.1.3 Water Quality 
A CCP failure event at the ozone system caused by water quality changes can be detected early 
only if the CCP monitoring parameters that are monitoring the water quality changes are first 
verified as accurate. See section 4.3.3.3 above for detailed logic as to how reduction of the LRV 
due to water quality changes can be detected. The event configuration included in the 
prototype EDS uses ozone demand as the CCP monitoring parameter that indicates LRV 
changes. This event logic was chosen for implementation to the detection system and for 
challenge testing because it contains multiple tags that all must be flagged simultaneously for 
the event to be detected. This challenge test validated the script’s architecture of ‘and’ logic 
between data tags for event detection using an event tag.   

Similar to the monitoring point event, this challenge data is not synthetic but came from real 
operations. Due to upstream construction at the NCWRP, flows were changed within unit 
processes at the WRP, and an upset occurred in the secondary biological process. The upset led 
to alterations in the water quality of the feed water to the ozone process and increased the 
ozone demand. The demand increased beyond the 6.5 mg/L threshold on the evening of June 
30th, 2023. The event was successfully detected since the monitoring point and ozone 
generator were both validated as operating properly. During this testing period, the reference 
meter at OSP 4 was out of service, and thus a rolling average of the previous 120 minutes of 
data from the remaining in-service meter was used for the % difference comparison in place of 
the second meter. Both approaches operate in the context of detecting changes to verify that 
the meter is reading properly. If the meter were to drift, the instantaneous value would begin 
to differ from the rolling average, indicating a meter failure. 

The output report from the elevated demand event is included in Figure 5-3 below. Although 
the time series plots for the generator production error data and the monitoring point error 
data both appear to indicate failure, when noting the axis scale it becomes clear that the data 
indicates no process or monitoring point failures. The report shows that the generator was 
producing within 5% of the setpoint and that the primary meter at OSP 4 was reading within 
15% of the reference value. Therefore, the increase in demand is verified as driven by changes 
in water quality. The ozone water quality event was correctly not detected via the event tag 
until the upper demand threshold was crossed, although monitoring point and process checks 
are flagging continuously. This verifies that the conditional “and” logic for detection was 
functioning as expected.   
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Figure 5-3. High Ozone Demand Water Quality Event Detection Report.  
The Event Tag shown in bottom right; the process and monitoring point checks are boxed in green; the CCP failure 

shown by the increase in ozone demand is boxed in red. 
 

The event detection logic of using CCP monitoring parameters to preemptively detect changes 
to the LRV, while simultaneously using the calculated percent difference tags to verify accurate 
system monitoring is sound. When properly configured, this approach will not only provide lead 
time to prevent CCP failure from occurring, but also reduce response time due to the specificity 
of information given about the event.  

Included in Figure 5-4 is the Crypto LRV during this failure event. It can be noted LRV decreases 
to less than 1.0 during this testing period’s data—shown with the red “X”. Yet this CCP failure 
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occurred before the demand increased above 6.5 mg/L to trigger event detection—shown with 
a yellow “X”. Consequently, this event’s detection configuration needs further refinement.  

 

 
Figure 5-4. Ozone Demand and Crypto LRV During the June 30th Water Quality Event Detection.  

The current configuration requires additional refinement to adequately detect CCP failure preemptively as noted 
by the delay in event detection.  

 
To detect this event preemptively, the demand threshold would need to be reduced to 6.0PPM. 
However, based on historic data, the median of demand is equal to 6.05PPM and the standard 
deviation is equal to 0.7. Thus, reducing the threshold to detect the event in time to prevent 
CCP failure would result in many nuisance alarms for operations staff. So, although the 
correlation between LRV and demand is clear, in this particular event the LRV response to 
demand changes were not directly proportional, so additional CCP monitoring parameters 
should be investigated for ozone water quality event detection. Further developments of the 
event detection logic should incorporate direct LRV monitoring as described in Appendix C, 
Chapter C.2.  

5.2.2 MF Event Detection Challenge Testing 
Out of the various CCP unit processes in the NCPWDF treatment train, MF required the simplest 
monitoring configuration for understanding process performance. Filtrate turbidity is the only 
parameter used by the EDS to identify events because it serves as an indirect measurement of 
the MF membranes’ integrity and is required in regulatory compliance for claiming pathogen 
removal credits. During the timeframe that the EDS was being developed and implemented, the 
MF process did not experience broken membrane fibers or turbidimeter errors. To challenge 
test the EDS filtrate turbidity readings were manually manipulated to simulate potential MF 
events. During normal operations a serious membrane breach would lead to changes in the 
filtrate turbidity.  
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5.2.2.1 Process Failure  
One of the primary indicators that the integrity of the MF membranes has been compromised is 
a sustained high filtrate turbidity reading. To simulate this occurrence, the MF filtrate turbidity 
was increased to a constant value of 0.18 for 30 continuous minutes within the data logger. This 
value exceeds the 0.15 NTU regulatory limit established by the Membrane Filtration Guidance 
Manual (U.S. EPA 2005).   

The process maintained adequate treatment throughout the testing period, but the value being 
recorded by the plant data logger was synthetically elevated. The resulting monitoring report 
output shown in Figure 5-5 confirms that the EDS was successful in identifying the change in MF 
filtrate turbidity as an MF process failure event. 

 
Figure 5-5. MF High Filtrate Turbidity Process Failure Event Detection Report.  

 
5.2.2.2 Monitoring Point  
To test the detection system’s ability to detect a turbidimeter being left in a “hold” status, the 
MF filtrate turbidimeter at NCPWDF was configured to report the same value for 16 minutes. 
The resulting MF monitoring point event outputs confirmed that the EDS was properly 
configured for identifying stagnant data, as demonstrated by the blue crosses in Figure 5-6 
during the timeframe detailed in the test results table.  
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Figure 5-6. MF Stagnant Filtrate Turbidity Monitoring Point Failure Event Detection Report. 

 
The gray bar on the data plot indicates the time period that data was screened out due to the 
MF process being inactive (i.e., backwash). The number of consecutive stagnant data points 
restarts following each time filter which is why the EDS does not flag the initial stagnant stretch 
of data. Initial attempts to identify stagnant MF filtrate turbidity data found that a minimum 
failure duration of less than 15 minutes would cause excessive false alarms due to the stable 
nature of the parameter. Extending the minimum failure duration requires more consecutive 
data values to be the same before the Pecos stagnant data test is flagged. In addition, the 
stagnancy threshold used at the NCPWDF went through multiple iterations to determine that 
0.0001 was the appropriate sensitivity for detecting a turbidimeter that has been set to hold a 
value while avoiding the generation of false alarms as seen in Figure 5-6 above. 

5.2.3 Reverse Osmosis Event Detection Challenge Testing 
The RO system at the NCPWDF maintained stable operations throughout the duration of the 
project, therefore naturally occurring examples of process failure, monitoring point failure, and 
water quality events did not present themselves. In lieu of real event occurrences, the manually 
generated challenge tests discussed in the sections below confirmed the efficacy of the EDS for 
identifying potential events in the RO process. 

5.2.3.1 Process Failure  
Process failure of the RO CCP such as an O-ring compromise would result in poor permeate 
water quality, as indicated by high measurements of both EC and TOC. Thus, process failure in 
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the RO system was replicated by simultaneously increasing RO permeate TOC and EC for a 
sustained duration of 44 minutes within the EDS’s data logger. The blue crosses in Figure 5-7 
represent flags generated by the EDS for RO permeate TOC values greater than the maximum 
threshold of 50 µg/L and Train A EC values greater than 125 µS/cm. The Test Results table 
within the output report displays the timeframe of the event and confirms that the challenge 
test was appropriately classified as a process failure.  

 
 Figure 5-7. RO Potential Membrane Breach Process Failure Event Detection Report. 
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5.2.3.2 Monitoring Point 
Since the analyzers measuring TOC and EC in the RO feed and permeate do not have reference 
meters, measurement accuracy must be assessed using an alternative strategy. When analyzing 
normalized data, RO membranes typically reject contaminants at a fixed percent removal rate, 
meaning that an increase or decrease in the feed concentration of a constituent would 
correspond with a similar increase or decrease in the permeate concentration. Therefore, the 
LRV for TOC and EC would be expected to remain within a narrow range. Data that deviates 
from these expected trends in TOC and EC would indicate that measurements from one of the 
feed or permeate analyzers is drifting from the true value and in need of maintenance. The 
event example simulated a feed TOC meter that has drifted downwards as indicated in Figure 5-
8 by a drop in feed TOC concentration below the lower operational bound threshold of 3,780 
µg/L. Since the permeate TOC concentration remained stable due to a properly functioning 
analyzer in that location, relative decrease in TOC across the membrane was perceived as less 
than typical and the TOC LRV declined below the lower operational bound of 2.1 as shown in 
Figure 5-8. The combination of low feed TOC concentration and low TOC LRV prompted the EDS 
to identify a RO monitoring point event from 11:12 to 11:44 as demonstrated in the test results 
table of the event report (Figure 5-8).  
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 Figure 5-8. RO Feed TOC Meter Drift Monitoring Point Failure Event Detection Report.  
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5.2.3.3 Water Quality 
As discussed in section 4.5.3.3, one example of a water quality event in the RO process is 
referred to as a “chemical peak.” The rejection of low molecular weight organic compounds 
through the RO process can vary across a wide range. For example, acetone is a compound that 
was found in bench scale experiments to have lower removal rates than higher molecular 
weight organics at around 50% (Breitner 2017). The presence of elevated concentrations of 
these types of compounds in the RO feed would result in a spike in RO permeate TOC readings 
but would not increase permeate EC because this type of water quality change would not 
impact the membranes’ ability to reject dissolved salts in the water. The ability to distinguish 
between an RO membrane breach and a chemical peak water quality event is based on this 
concept. A simulated chemical peak was achieved by sending RO feed through the permeate 
TOC analyzer to increase the permeate TOC readings above the upper operational bound of 50 
µg/L for 25 minutes. There are two apparent spikes displayed in Figure 5-9. It is important to 
note that the RO water quality event alert was not triggered by the first peak because the 
duration was less than the specified minimum number of consecutive failures (15 minutes). 
Since the second peak caused RO permeate TOC to remain above 50 µg/L for more than 15 
minutes, the EDS correctly identified the RO water quality event as demonstrated in report’s 
test results table. Throughout the timeframe of the challenge test, RO permeate EC from both 
trains remained within its typical operational range as illustrated by the blue crosses in Figure 5-
9, ensuring that an RO process failure event alert was not generated. 
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Figure 5-9. RO Potential Chemical Peak Water Quality Event Detection Report.  

5.2.4 UV/AOP Event Detection Challenge Testing 
Due to consistent performance by the NCPWDF UV/AOP system over the duration of the 
project, it was rare that process failure, monitoring point, or water quality events occurred 
organically. This necessitated the use of artificial challenge tests to confirm the functionality of 
the EDS. A challenge test for each of the three event categories was conducted on March 23rd, 
2023, and the results are described below.    

5.2.4.1 Process Failure Challenge Testing 
To simulate a UV/AOP process failure from a sudden decline in UV dose, the UV dose was 
lowered to 295 mJ/cm2 for almost 30 minutes to test if an UV/AOP process failure event would 
be detected by the EDS, and if the system would provide an alert. The blue crosses in Figure 5-
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10 represent flags generated by the EDS for UV dose values less than the minimum threshold of 
300 mJ/cm2. The test results table in the output report displays the timeframe of the event and 
confirms that the challenge test was appropriately classified as a process failure.  

  
Figure 5-10. UV/AOP Low UV Dose Process Failure Event Detection Report.  

5.2.4.2 Monitoring Point Challenge Testing 
The goal of the UV/AOP monitoring point challenge test was to provide proof of concept for 
identifying stagnant data readings throughout the NCPWDF treatment train. The UVI sensor 
output value was manually fixed at 51.5 mW/cm2 for approximately 30 minutes. The results 
presented in Figure 5-11 indicate that the EDS successfully identified the UVI sensor reading as 
stagnant and generated the appropriate alert for a UV/AOP monitoring point event. 
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Figure 5-11. UV/AOP Stagnant UVI Sensor Monitoring Pint Failure Event Detection Report.   

5.2.4.3 Water Quality Challenge Testing 
A change in water quality that could impact UV/AOP performance would likely be captured by a 
change in UV feed UVT. Therefore, the EDS was tested to see if it would identify the trend of 
decreasing UVT. This was accomplished by artificially setting the UVT reading to a low value of 
95.5% for 35 minutes. Figure 5-12 displays the system’s outputs demonstrating that the drop in 
UVT was recognized by the system to be below the minimum threshold of 96% and the event 
was appropriately detected. 
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 Figure 5-12. UV/AOP Low Feed UVT Water Quality Event Detection Report.  

5.3 Challenge Testing Summary  
The goals of challenge testing the deployed event detection system at the NCPWDF were to:  

• Validate the four-step event detection framework. 
• Assess the software infrastructure, data workflow, and event detection logic.  
• Optimize the Pecos quality control test input values for each CCP monitoring parameter.  

The EDS output reports shown above demonstrate that the logic-based framework is a valuable 
tool for helping ensure that public health is protected when receiving product water from a DPR 
facility. Although the test input values used in the system will vary across facilities (and even at 
the same facility over time), the framework described in Chapter 3 provides guidance for 
developing these tests and the challenge testing conducted in this chapter validates the 
framework developed in Chapter 4. Throughout challenge testing, multiple iterations of the 
event detection logic for certain process events were required to achieve the appropriate 
detection sensitivity. Logic tests that were poorly configured often led to false positives and/or 
nuisance alarms while logic that required too many conditions to detect the event (i.e., overly 
specific) was susceptible to reporting false negatives. Further details on the events that needed 
adjustments in the event detection logic can be found in Appendix B. These test results are 
evidence that an EDS using Python packages (pandas, loguru, Pecos, and plyer) can successfully 
monitor for and detect potential CCP failures within a DPR facility in real-time. 
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The following section, Chapter 6, includes a comprehensive discussion of the findings from the 
project team’s work. Also included are recommendations for the continued development of the 
EDS at the NCPWDF and future DPR facilities using the established framework. 
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CHAPTER 6 

Project Conclusions 
Development of the tool included the following aspects and was discussed in the following 
Chapters: 

• Chapter 1: Need for EDS in DPR Systems 
1. Describes challenges to implementing DPR and research focus of Project 
2. Present previous WRF projects that have advanced data monitoring and analysis 
3. Importance of pathogen control in a DPR setting and increasing lead time before CCP 

failures 
• Chapter 2: Literature Review 

1. Description of current monitoring and control systems based on interviews with 
operations staff from IPR facilities 

2. Compare different software tools that could be used to accomplish objectives of this 
Project 

• Chapter 3: Develop an event detection framework to respond to CCP failures 
1. Collecting raw data 
2. Screening offline data 
3. Data flagging 
4. Event classification 

• Chapter 4: Develop tool specifications 
1. Selection of tags for specific CCP monitors 
2. Identifying event categories and common events that may indicate CCP failures in 

potable reuse treatment trains 
• Chapter 5: Assess proof of concept 

1. Deploy the framework and software tool to run in real-time at a potable reuse 
demonstration facility 

2.  Perform challenge testing to assess EDS’s ability to diagnose emerging events before 
regulatory limit is crossed  

6.1 Chapter 1 Conclusions—Need for EDS in DPR 
One of the major challenges for DPR implementation is ensuring reliable protection of public 
health at all times in the absence of an environmental buffer. This project sought to increase 
the reliability of DPR systems by developing a software-based event detection system to 
augment existing control and alarm systems by automating event detection and providing 
initial assessment of root cause. The following goals and for creating an event detection system 
framework are summarized below: 

• Monitoring and alarms in DPR projects must be proactive and responsive to prevent release 
of off-specification product water. 

• Giving operators additional lead time and more rapid resolution times will help ensure that 
response times are faster than the short retention times of DPR. 
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• Develop and apply a real-time event detection system framework to ozone, membrane 
filtration, RO, and UVAOP. 

• Develop a generalizable blueprint for reuse stakeholders to apply to own reuse project. 

6.2 Chapter 2 Conclusions—Utility Interviews and Literature Review 
In the utility interviews conducted, it was found that utilities currently use static limits to alert 
operators to take action as an event detection system. Different alarm levels can be configured 
such that early notification can be provided for low and high values and compliance limits can 
be set for low and/or high values to represent a more severe alarm level. Once an alarm was 
issued, operators were responsible for determining if the alarm is real and proceed to 
troubleshoot and resolve issue through process of elimination if the alarm were real. The utility 
surveys demonstrated that current industry practices for event detection consist of notification 
once static limits are violated and actions thereafter are mostly manual and rely heavily on 
operators to troubleshoot and resolve potential events before critical regulatory limits are 
crossed. 

In reviewing open-source software, the project team identified promising tools across multiple 
sectors, including engineering, data science, and industrial process control. Considering the 
requirements of DPR data analysis and event detection, the following factors were identified as 
high priority for software selection: 

• Software must be built using a modern programming language that is free to use.  
• Software must provide flexibility to allow adaptation to different treatment trains and 

regulatory standards. 
• EDS must provide transparency about how events are detected to improve quality control 

and encourage trust. 
• Few CCP failures ever occur, so detecting failures is inherently a data limited problem. The 

EDS must not require a high volume of training data (i.e., failure events) to perform well. 

By comparing these requirements with the available software, Pecos was identified as the tool 
best suited for developing an EDS for this project. Pecos was developed to monitor and 
generate reports based on real-time data streams, such as industrial control systems. This 
Python-based tool is modern, flexible, and provides a series of logic-based tests that are clearly 
structured and understood. For example, concepts from statistical process control can be 
implemented using Pecos tests. Because CCP failures are rare, data-driven approaches like 
machine learning/AI were deemed unlikely to perform well for this project. Moreover, those 
approaches would not provide a clear rationale to the operator or engineer about why an event 
was detected. 

6.3 Chapter 3 Conclusions—Event Detection Framework  
A four-step event detection framework was developed by the project team and can be used as 
a blueprint for other process engineers to design an EDS specific to their site. The four steps 
include (1) data storage, (2) data screening, (3) data flagging, and (4) event detection. 
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First, the project team had to decide which data to store and use for further analysis. The 
amount of data tags and frequency of monitoring data can impact the runtime of the event 
detection program script. Selecting a high recording frequency will slow down the script but 
selecting a low recording frequency will increase the lead time to detecting an event. The 
project team tested a few different recording frequencies and found that a 1-minute recording 
frequency was optimum for decreasing lead time without overburdening the program script. 
Next, the project team took the data screening lessons from WRRF 4765 and utilized integer 
status codes instead of using a series of logical tests (e.g., check flow rate, pump speeds, etc).  

For data flagging, many different quality control tests (e.g., abrupt change, range, etc.) could be 
used but ultimately range tests were applied to flag data for further evaluation. Bounds were 
assigned based off Team’s operational knowledge and experience and using historical data 
from the deployment site. Bounds set with this methodology ground the data flagging step in 
real-world experience. While new facilities will not initially be able to base bounds off of 
statistical analysis of historical data, the operational experience and knowledge considerations 
shared in this Report can be used when enough historical data is amassed. As noted in this 
report, process data that is highly variable is not suited for applying statistical analysis of 
historical data since fluctuations are too variable to create narrow bounds. This is where an 
iterative approach becomes necessary and operator knowledge must be leveraged.  

Lastly, event classification was accomplished through the use of CCP monitoring parameters 
and a combination of “if/then” and “and/or” statements. For example, “IF ozone generator is 
operating properly AND primary residual meters are within acceptable variance from redundant 
meters, THEN high ozone demand can be attributed to a water quality upset.” It was found that 
automation of event detection is a balance between creating too many or too little logical test 
conditions. Logic tests that have too few arguments lead to more false positive and nuisance 
alarms. Conversely, if logic tests are too specific to limit false positives, there is a higher 
likelihood that an event will not be detected by the logic tests because the logical test 
arguments are too restrictive. The project team continued to modify the logical tests 
throughout the proof-of-concept phase to balance generating too many event detection 
notifications and too little. The logical tests presented in Chapter 4 represent one year of 
optimization and can be used as the starting point for further optimization for other groups 
interested in implementing an EDS. The following guidelines and conclusions were gathered 
from this phase of the Project: 

• Development of an EDS relies on the collective expertise of process engineers, operators, IT 
staff, systems integrators, data engineers, and software developers. 

• Data storage lays the foundation for event detection and data must be transferrable 
between PLCs, SCADA, and a database and must be accessible by the event detection 
system. Ensuring data transferability relies heavily on coordination with IT staff, systems 
integrators, and data engineers. 
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• Process engineers and operators should communicate their understanding of the regulatory 
requirements and system operations to ground the data screening, data flagging, and event 
detection logic in real-world applications and practices. 

• One-minute timesteps may be considered as a good starting point for DPR applications to 
provide frequent data logging and keeping data storage capacity needs and script speed 
reasonable. 

• Automation of early event detection is feasible for events that develop/occur in a 
systematic and predictable manner.  

• Events should be defined such that, when detected, operators are notified that a potential 
CCP failure may occur if left unaddressed and what the potential cause may be. 

• Events cannot be classified with a high degree of certainty based on a single monitor. 
Comparison with other monitoring points corroborates and increases confidence that the 
identified root cause for the event is an accurate assessment. 

• Quality control tests can be configured as positive or negative indicators. Combining 
positive and negative logic tests allows for more complex analysis of a unit process making 
event detection more robust through process of elimination and confirmation. 

• When designing logic tests for event detection, utilizing less logic tests will increase the 
number of detected potential events whereas utilizing too many logic tests will run the risk 
of missing actual events. 

6.4 Chapter 4 Conclusions—Tool Specifications 
The first step in development was specifying the CCP monitoring parameters that would 
undergo data analysis and the types of events that the tool would be designed to detect.  The 
Team identified events that would impact a CCP’s ability to protect public health and would 
likely occur in potable reuse projects. Several members of the project team had substantial 
years of experience operating potable reuse trains and could leverage this knowledge and 
experience to define what events are most likely to occur as discussed in Chapter 3. The types 
of events that were ultimately implemented underwent several rounds of refinement since not 
every type of event is suitable for automated detection. Some events occur too sporadically 
and do not manifest in a systematic way each time they occur. To automate event detection, 
the event must be detectable using the same monitoring parameters and monitoring 
parameters must exhibit the same behavior each time the event occurs.  

After the events were identified, an initial list of 22 out of 8,000 available tags was developed 
for ozone, membrane filtration, RO, and UVAOP and identified as critical monitoring 
parameters that would affect the CCP’s ability to protect public health. These tags are 
summarized in Table 6-1. 
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Table 6-1. Selected Critical Monitoring Points 
Process Parameter Units Description 

Ozone Dissolved ozone residual at OSP 
4, 7, and 10 

PPM • Used to assess meter functionality and process water quality 

Used to calculate ozone demand, ozone decay coefficient, CT, and LRV 

Ozone generator production PPD • Used to assess process functionality 

Used in the ozone demand calculation 

Temperature deg F Used to calculate pathogen inactivation rate constant for LRV calculation 

Water flow gpm Used to calculate HRTs for CT calculation 

Ozone demand PPM • Calculated using ozone generator production and dissolved ozone residual at OSP 4 

Used to monitor water quality changes of the feed water 

Ozone decay coefficient min-1 • Calculated using the dissolved ozone residual at OSP 4, 7, and 10 

Used in CT calculation 

CT PPM*min Calculated using HDT, OSP 4 ozone residual, and ozone decay coefficients with the EPA 
truncated extended-integration method 

Pathogen Removal LRV • Quantifies treatment of the system  

Calculated using CT and a pathogen-specific inactivation rate constant  

MF MF Filtrate Turbidity NTU Used to assess process and meter functionality 

RO RO Feed TOC µg/L Analytical measurement used to calculate RO TOC removal 

RO Combined Permeate TOC µg/L Analytical measurement used to: 
• Calculate RO TOC removal 
• Monitor permeate water quality to meet permeate TOC regulatory requirements 

Detect events such as a membrane breach or organic chemical spike 

RO TOC Removal LRV Calculated log-reduction value: 
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Process Parameter Units Description 
• From feed and combined permeate TOC measurements 

Used as the primary surrogate for pathogen LRV 

RO Feed EC µS/cm Analytical measurement used to calculate RO EC removal 

RO Train A permeate EC µS/cm Analytical measurement used to: 
• Calculate RO EC removal 

Monitor permeate water quality to detect a membrane breach 

RO EC removal LRV Calculated log-reduction value: 
• From feed and combined permeate EC measurements 

Used as the secondary surrogate for pathogen LRV 

UVAOP UV Dose mJ/cm2 • Calculated parameter used to assess process functionality and determine if pathogen 
inactivation and AOP requirements are met  

Accounts for UV lamp status 

UV Intensity (UVI) mW/cm2 • Used to assess monitoring point functionality 

Used to calculate UV dose 

Feed UV Transmittance (UVT) % • Used to assess UV/AOP feed water quality 

Indicates amount of UV light that is available for disinfection/photolysis/AOP 

RO Permeate Total Chlorine mg/L • Total chlorine measured prior to the oxidant injection point 

Used to assess water quality and oxidant dosing 

UV Feed Total Chlorine mg/L • Total chlorine measured following the oxidant injection point 

Used to assess oxidant dosing 
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Process Parameter Units Description 
UV Feed Free Chlorine mg/L • Free chlorine measured following the oxidant injection point 

Used to assess oxidant dosing 

Pathogen Removal LRV UV/AOP receives 6.0 LRV for viruses, Giardia, Cryptosporidium if UV dose exceeds minimum 
regulatory requirement and treatment conditions are within operating envelope 
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Curation of the tag list was an iterative process and the project team continued to modify the 
tag list throughout the development of EDS framework and proof of concept phases. New 
calculated tags were even implemented by the system integrator in SCADA and PLCs to further 
augment the reliability of data flagging and event detection. Types of calculations included 
percent difference between raw sensor values and rolling average and percent difference 
between redundant monitors.  

The following takeaways and lessons learned were encountered during this aspect of the 
project: 

• The curated list at the conclusion of this Project represents one year of optimization and 
can be used as the starting point for further optimization for other groups interested in 
implementing an EDS. 

• Test limits and configuration of logical tests for event detection must be site-specific due to 
the unique water quality and operational considerations at individual facilities.  

• CCP monitoring parameters and event detection criteria developed for monitoring vary 
between CCPs within the facility due to the unique pathogen removal mechanisms that are 
employed by each CCP.  

• The event detection system developed during this Project is site-specific in terms of quality 
control test input parameters. The event detection logic, though, can be broadly applied for 
the failure events identified and developed during this Project. 

• Utilization of raw values from monitoring points is not enough to build an EDS and 
implementing calculations on SCADA/PLCs is another useful way to compare raw values 
from two different data sources. These types of calculations represent comparisons 
between meter readings and expected readings and augment the reliability of the EDS. 

6.5 Chapter 5 Conclusions—Proof-of-Concept 
Once the EDS was developed and tested offsite using historical data from the deployment site, 
the tool was installed at the NCPWDF to evaluate if real-time monitoring and detection of 
events was possible. The following components were configured at the NCPWDF to deploy the 
EDS. 

• Hardware 
1. HMI / PC Workstation, Windows 11 Pro. 

• Software 
1. Kepware, Python packages, SQL server 

The event detection script was automated to run every 5 minutes. In addition, the script could 
be initiated by a user to run for a user-defined period of time (e.g., over previous hour, several 
hours, or days) and scan for events. The EDS is an additional monitoring system that 
supplements the existing control and alarm system. While there is no flexibility to adjust control 
setpoints and alarm limits subject to regulatory thresholds, the EDS can be adjusted freely. Even 
if changes to bounds or logical tests lead to undesirable alarms (e.g., nuisance false positive 
alarms or decreased sensitivity to detecting events), the existing control and alarm system will 
react per automated control strategy to shut down affected unit or divert. Event detection on 
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the other hand should alert the operator of any emerging or past events in advance of the 
shutdown conditions and by providing quicker detection of events allow for a faster response 
time.  

Results generated during deployment were reviewed by the project team to evaluate if 
detected events were accurate. The tag list and logical tests were adjusted throughout 
deployment as more events were detected. With each new event detection, the project team 
found ways to optimize the event detection script to minimize false positives and increase lead 
times. Even with advanced testing with historical data prior to deployment, further adjustments 
were needed. This highlights the complexity of automating event detection and the more data 
that is available, the better the tests. In addition, for events that did not occur organically (e.g., 
due to some minor process upset upstream or some mechanical failure), the project team 
configured and carried out simulated failures for each event category. The following 
conclusions were drawn from this testing period: 

• The data screening method using status tags implemented in this Project eliminated many 
of the false positives observed in WRF 4765 and only passes on data while treatment train is 
in production for further analysis. The project team recommends utilizing process status 
integers in logical tests to assess whether data should be screened out.  

• Downstream processes (MF, RO, UV/AOP) are easier to fine-tune for accuracy and 
sensitivity than upstream processes (ozone) due to reduced dependence on water quality 
and/or process mechanics. 
1. Ozone/BAC pretreats feed water that is most concentrated with contaminants, which 

reduces organic load to downstream membrane system resulting in more stable and 
enhanced performance of said process. 

• The bounds used for the logical tests were tailored to the NCPWDF processes and may not 
be directly applicable to other facilities. However, the approach used to define and optimize 
the bounds can be used as a practical example. 

• The event tool is a redundant monitoring tool that can be used to enhance reliability of the 
monitoring and alarm capabilities of the DPR system and functions separately from SCADA 
and historized data sets. 

• An accurate and functional EDS package would be difficult to implement as a plug and play 
tool without site specific knowledge to optimizing Pecos quality control test parameters 
such as: 
1. Workflow, logic tests, and tag list for ozone, membrane filtration, RO, UV/AOP 

developed in this project should be applicable to other projects, but some adjustments 
to the logical test arguments may be needed to tailor the system to specific treatment 
train.  

• The Python library Pecos can be used to develop a software system that continuously 
monitors DPR process data for key events identified by the project team: 
1. Implemented 12 events, each looking at unique water quality, process, or monitoring 

location failure as a proof of concept and the same logic and code can be expanded to 
comprehensively cover a larger full-scale facility. 

2. Earlier detection of events extends lead time for operators to address potential issues 
before a shutdown/diversion becomes necessary. 
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6.6 Next Steps and Additional Considerations 
6.6.1 Event Detection Framework and Implementation 
Although the event detection system implemented at the NCPWDF contained event detection 
logic for each of the facility’s CCP unit processes, it focused on 12 events and therefore did not 
provide a fully comprehensive monitoring of all the possible issues that may occur. The project 
team spent considerable time optimizing logic for detection of the 12 events including running 
into some approaches that were not as successful. Additional information surrounding the 
development of the event detection logic and criteria, including approaches that were tested 
but not recommended for implementation are summarized in Appendix B.  

Further development of the system and functionalities would require development of logic for 
additional events. The details of which are described in Appendix C. Beyond the finalized 
Python script used for event detection during this project and provided in Appendix D, the 
efforts of the project team to develop the EDS resulted in considerations that should be useful 
for future applications. Specifically, Appendix C outlined some additional ideas for 
implementation that may be considered for implementation to further improve the event 
detection system developed during this project. 

For example, stagnant data and analytical range events should be configured system-wide for 
all monitoring points (i.e., meters, instruments, analyzers). Ozone disinfection monitoring 
should include an event for declining LRV and a TOC-specific water quality event. Additional 
meter drift events should be incorporated for the TOC and EC analyzers used in the RO process. 
Event detection logic that confirms the oxidant dose and measurement accuracy for the 
UV/AOP process should also be included. Event configuration should follow the same approach 
as Chapter 4 where Pecos quality control tests are set to run on CCP monitoring parameters 
and flag data that reads outside of typical operating ranges. Pecos test inputs should continue 
to be iteratively adjusted by operations staff to account for seasonal variations (e.g., water 
temperature) in process data or gradual shifts in the normal operating range over time (e.g., 
aging RO membranes). The expansion of the event detection system would also require 
bolstering the dashboard to accommodate these additional events.   

In addition, the project team started to explore implementing calculations comparing analyzers 
and reference values on SCADA and PLCs. These calculated parameters were incorporated for 
quality control tests and event detection logical tests towards the end of the project. For 
example, CCP monitoring parameters with reference analyzers (e.g., primary and backup 
analyzer to serve as reference values), the percent difference between the two analyzers were 
calculated and if the percent difference exceeded a predetermined limit (e.g., 20%), it is likely 
that one of the meters has drifted. While there was not sufficient time to fully implement and 
test event detection logical tests for all of these calculated parameters across all CCPs, initial 
testing showed that this was a powerful method to increase confidence in the event detection 
hits.  

Lastly, further testing of the event detection system tool should continue over longer periods of 
time to evaluate if quality control test limits should be revised periodically and at what 
frequency. Certain water quality parameters and process performance may fluctuate 
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seasonally, and/or over longer runtime. Although this was not fully explored during this project 
since the deployment period was less than one year, updating the test bounds to account for 
seasonal variability or equipment age may improve the sensitivity of event detection and 
further increase the lead time. 

6.6.2 Event Detection Software Considerations 
The event detection framework is designed to increase lead time and decrease time for event 
detection and resolution. An implementation of the framework was developed for the City of 
San Diego’s NCPWDF as a proof-of-concept. That implementation was built using open-source 
code, largely with Python, and was deployed on-premises without connectivity to the internet. 
That code successfully implemented the core principles of the framework, such as data storage, 
screening, flagging, and event detection. 

While building the software, the project team identified a list of desired features that could not 
be implemented within the scope of the project. These features are presented in this section to 
inform future development of event detection for reuse:  

• Accessibility: data visualizations and alerts are accessible remotely by authorized staff. 
• Configurability: data screening, flagging, and event detection can be modified from a user 

interface without the need to write code. 
• Auditing and approval: whenever screening, flagging, or event logic is modified, what 

changed and who changed it is logged and traceable. Modifications to critical logic requires 
approval according to a user hierarchy.  

• Alarm management: alerts and alarms are well organized and include troubleshooting 
instructions and likely causes. 

• Maintainability: developers can access the latest version of the software and roll out 
updates and bug fixes remotely. 

• Support: to assist operations staff, remote experts are on-call to provide troubleshooting 
help.  

• Reporting: data screening logic can be reused for regular reports sent to regulators. This 
would automate the process of removing data during process downtimes, performing any 
statistical calculations, and outputting data into standardized report forms.  

Many of these features require a cloud-based approach in which the treatment data is 
accessible via the internet. Exporting the data from the SCADA network can be done securely 
but it needs to be done according to best practices in cybersecurity to avoid creating 
vulnerabilities. The SCADA network must be highly secure because treatment processes can be 
controlled from within that network. Therefore, no utility should risk exposing the SCADA 
network to a cyberattack. Using hardware, such as a data diode, data can be securely exported 
out of the network. With this one-way transfer, treatment data can be connected to the 
internet so staff can monitor operations remotely.  

Although the scope of this project was to develop open-source tools for potable reuse, it is 
important to note that the wish list features described are currently supported by software 
vendors. Such companies include Aquatic Informatics, Aveva, Autodesk, Canary Labs, Idrica, 
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IOSight, Pani, Rockwell Automation, Royal HaskoningDHV, Veolia, and Xylem. These vendors are 
developing commercial-off-the-shelf software for industrial control systems, including water 
and wastewater treatment. When considering software licenses, systems integrators and utility 
IT staff will need to be closely involved in decision making. These professionals can provide 
guidance about whether SCADA data can be exported from the system, and if not, what 
investments would be required to do so. They will also need to be consulted about PLC 
programming, SCADA tags, and database configuration. 

In addition, the industry generally lacks a standard approach to designing an EDS with specific 
applications such as DPR. The functions and features developed during this project and some 
additional developments described in this report may provide a preview of the level of detailed 
and goal-oriented planning that perhaps should be considered early on during project planning 
and implementation to be included in the design and delivery of specialized control systems for 
full-scale facilities. 
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APPENDIX A 

Literature Review - Updated September 15, 2021 

A.1 Introduction 
The key feature distinguishing direct potable reuse (DPR) from indirect potable reuse (IPR) is 
the loss of an environmental buffer. By reducing or eliminating the environmental buffer, DPR 
creates a closer connection between the treatment and consumption of purified water. This is 
an important differentiator given that existing indirect potable reuse (IPR) paradigms rely on 
the environment to further improve the quality of the water and to provide additional time to 
respond to treatment and water quality issues. As a result, DPR introduces a collection of 
challenges above and beyond what is encountered in IPR schemes. Replacing the treatment 
provided by the environment is arguably more straightforward. Recently, California’s Division of 
Drinking Water (DDW) developed anticipated criteria for DPR that includes significant 
additional treatment compared to the IPR requirements. The standard RO-based treatment 
train must be supplemented with additional robustness in the form of ozone and biological 
activated carbon (BAC) pre-treatment, both of which help replace the environmental 
attenuation that occurs in IPR. Unlike treatment, there is no easy way to replace the retention 
time provided by the environment. In all cases, a system’s ability to respond to a treatment 
issue (response time) must be faster than the time the water is retained in the system 
(retention time) so that systems can identify and respond to failures before the water reaches 
consumers. If retention time cannot be extended, then response time must be shortened. The 
requirement for fast response times in direct potable reuse (DPR) systems imposes 
unprecedented new challenges to rapidly evaluate treatment performance. 

Direct potable reuse (DPR) presents challenges in process monitoring that the water industry 
has not dealt with before in indirect potable reuse (IPR). While individual unit processes may be 
monitored on a real-time basis, the calculation of treatment train performance frequently 
occurs post hoc. Such performance analyses may only occur once per day or week (or 
even month) since the regulations may only require a monthly log removal value (LRV) report. 
This type of reactive analysis is acceptable in IPR scenarios because response times 
(approximately one month) are still significantly shorter than retention times in environmental 
barriers (multiple months to years). The response time situation differs radically for DPR: 
instead of months to years of retention time there may only be minutes to hours, i.e., a 1000- 
to 10,000-fold decrease in time. This imposes unprecedented new requirements for DPR. The 
entire process of integrating and responding to performance data must shift to real-time and 
proactive (DPR).  Consequently, being able to integrate performance data and provide real-
time automation of advanced treatment facilities is one of the biggest hurdles to DPR 
viability.  Adapting to this is perhaps the biggest technical challenge for potable reuse in the 
absence of an environmental buffer.  

This need has been recognized by the industry and there have been several studies funded by 
the Water Research Foundation to advance the industry’s use of monitoring data. A summary 
of advancements in industry’s use of monitoring data is provided in Figure A-1. 
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Figure A-1. Key Water Research Foundation Projects Advancing the Field of Monitoring and Data Analysis. 

WRF 1688 (previously WRRF 11-01): addressed both IPR and DPR with a focus on the 
measurement of microbial contaminants (Snyder and Pepper 2016). This project reviewed 
online instruments in reuse—including accuracy, response time, and detection mechanism—
and described best practices for using these instruments.  The study found that online 
instruments commonly measure chemical contaminants or surrogates but not microbial 
contaminants.  Turbidity, conductivity, and total organic carbon are commonly used to detect 
treatment failure. In addition, online fluorescence sensors and rapid tests for microbial 
contamination could supplement existing indicators, though the latter are still at an early stage 
of development.   
WRF 1700 (previously WRRF 13-03): described the process of integrating hazard assessment 
and critical control point (HACCP) methodologies for DPR including hazard assessment, water 
quality objectives, identification of critical control points (CCPs) and critical operating points 
(COPs), CCP/COP monitoring parameters, and CCP/COP response procedures (Walker et al. 
2016). This work also developed approaches to understand and communicate the risk 
associated with a compromised CCP barrier. Some of the key principles of HACCP, as formalized 
in ISO 22000, evaluate CCPS and evaluate the following questions: 

1. Is there a hazard at this process step? What are the hazards? 
2. Do control measures exist for the identified hazard?   

WRF 1688
•Evaluated if real-time sensors can be used for process control of advanced treatment processes.

WRF 1700

•Utilized Hazard Analysis Critical Control Point (HACCP) to develop design and operational 
practices and response strategies to augment system reliability.

•Recognized that volume of data generated can be overwhelming. Designated key parameters 
that protect public health as critical control points (CCPs) to focus monitoring and data analysis.

WRF 4759

•Evaluated if treatment anomalies and events can be detected using CCPs.
•Developed a decision support tool to make real-time actions based on detected events.

WRF 4765

•Evaluated if redundancy in monitoring can be used to achieve reliable potable reuse.
•Analyzed 2-second data from a demonstration DPR train over a one-year period to evaluate 

process performance.
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3. Is the step specifically designed to eliminate or reduce the likely occurrence of the hazard to 
an acceptable level?   

4. Could contamination occur at or increase to unacceptable levels?   
5. Will a subsequent step or action eliminate or reduce the hazard to an acceptable level?   

The study also provided commentary on drinking water regulations and how they might set a 
precedent for reuse regulations. In some countries, surface water treatment plants implement 
HACCP by monitoring surrogate parameters of pathogens and implement a multi-barrier 
approach. In the U.S., existing EPA regulations for drinking water treatment use a combination 
of both CCP monitoring and end-point monitoring. Many advanced treatment processes 
currently used in potable reuse use online monitoring to verify the performance of the system 
in real-time, e.g., turbidity monitoring on membrane filters or the use of the CT framework for 
chemical disinfectants. 

WRF 4759 (previously WRRF 14-01): developed a Decision Support System (DSS) and an excel-
based Decision Support Tool (DST) using online sensors that are applicable to potable reuse 
systems (Neemann et al. 2019). The study evaluated Event Detection System (EDSs) software 
packages for anomaly detection and discussed the idea of developing an Integrated Sensor 
Network (ISN) of both water quality and operations and maintenance data to detect failures in 
treatment. The study also evaluated use of commercially available monitoring sensors to 
identify failures for a pilot treatment train consisting of ozone and biological activated carbon. 

WRF 4765 (previously WRRF 14-12): Direct potable reuse (DPR) has the potential to greatly 
expand the scope of water reuse worldwide, though questions remain about its ability to 
continuously protect public health. This uncertainty stems largely from the lack of full-scale 
performance data from actual DPR systems. Under legislative mandate, California was recently 
required to evaluate the feasibility of developing regulations for DPR. To help address this 
industry data gap, this project evaluated a 1.0-mgd demonstration facility at the City of San 
Diego’s North City Water Reclamation Plant to assess the benefits of redundancy and 
monitoring to achieve reliable potable reuse (Trussell et al. 2017). Yearlong continuous 
monitoring of the treatment train – consisting of ozone, biological activated carbon, membrane 
filtration, reverse osmosis, and UV with advanced oxidation – provided an extensive dataset to 
assess process performance. Routine performance monitoring was complemented with 
multiple challenge tests that assessed the benefits of the enhanced treatment train (Tackaert et 
al. 2019). The performance data were used in a quantitative microbial risk assessment to 
demonstrate that a full-scale DPR treatment train could reliably meet performance goals and 
produce a water that provides public health protection equivalent to, or greater than, 
conventional drinking water supplies (Pecson et al. 2017). The study also discusses the 
importance and relevance of timely operating data when operating DPR. This involved filtering 
and querying of sensor data to verify that the processes and sensors were functioning correctly 
(Chen et al. 2020; Pecson et al. 2018).   

These studies demonstrated that existing monitoring capabilities can detect changes in process 
performance but identified a number of deficiencies in the current capabilities of real-time 
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detection systems. The following sources were reviewed to determine the gaps that need to be 
addressed to enhance processing and analysis of monitoring data: 

• Surveys with staff that are currently operating IPR facilities 
• Lessons learned from WRF 4765 project on data management and analysis 
• Literature studies on the use of data analysis tools in the water industry 

The findings from these sources are summarized in the following sections below. 

A.2 Review of Current Practices in Data Monitoring and Analyses  
A.2.1 Utilities Surveys 
To gain an understanding of the current practices in data monitoring and analysis, interviews 
were conducted with staff involved in the operations, monitoring, and control of facilities 
currently engaged in IPR: Orange County Water District (OCWD), Veolia, and Hampton Roads 
Sanitation District (HRSD). The focus of the interviews was to understand the current “state of 
the industry” for potable reuse systems, in particular existing monitoring and control systems, 
and data management strategies for regulatory and permit compliance. The WRF 4954 project 
team conducted interviews with the following staff: 

• Mehul Patel (OCWD) on August 31, 2020 
• Scott Murphy and Grahame Simpson (Veolia) on September 28, 2020 
• Germano Salazar-Benites (HRSD) on December 9, 2020 

An overview of the findings from the interviews is provided in Table A-1. All facilities utilize a 
control framework that involves the monitoring of CCP performance with online meters. 
Control limits are defined for all CCPs, and most limits are fixed, static values that may be 
periodically updated. None of the facilities dynamically set control limits.  While the systems 
collect a high amount of performance data, much of the processing of the data is done by the 
operators rather than through automated processes. For example, operators are responsible 
for: 

• Identifying abnormal meter behavior and initiating follow up investigations 
• Spotting false-positive readings from monitors  
• Creating strategies (e.g., alarm delays) to minimize the impact of transient blips in readings 
• Developing compliance reports (though some steps in the process may be automated) 

To minimize the impact of any single monitor on plant performance, all facilities have 
redundancy for one or more of the critical instruments. 
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Table A-1. Summary of Findings from Utility Surveys. 
Survey Topic OCWD Veolia HRSD 
Reuse system 

description 
Train: MF–RO–UV–

UV/H2O2–stabilization 
Capacity: 100 MGD. 70 MGD 
to groundwater recharge, 30 
MGD to seawater intrusion 

barrier 

Train: MF–RO–UV–
UV/H2O2–stabilization 

Capacity: 3 AWTF with 61 
MGD capacity (48 MGD 

available). Only one facility 
running at the moment. 

Train: Floc/Sed-O3-BAC-GAC-
UV-Cl2. 

Capacity: 1 MGD research 
center. Up to 100 MGD with 
implementation of full-scale 

facilities. 
Key control 
parameters 

• MF: turbidity, MIT 
• RO: TOC, EC 
• UV/AOP: UVT, EED 

• Currently only 
distributing for 
industrial users, yet 
meets drinking water 
standards. 

• Ozone: CT 
• GAC: turbidity 
• UV: dose 
•  Cl2: CT 

Operating 
Criteria 

• MF: filtrate turbidity < 
0.15 NTU 

• MF: MIT > 0.2 
psi/minute triggers work 
order 

• RO: Permeate TOC < 0.1 
mg/L 

• UV: Feed UVT  > 95% 
• UV: Dose  > 101 mJ/cm2 
• TOC: limit based on 

control chart statistical 
analysis of historical 
operational data 

• Facilities use Critical 
Operating Points (COPs) 
and Critical Control 
Points (CCPs). These are 
related to ISO 22000 in 
Australia for Drinking 
Water. 

• Several alarms for CCPs 
based off of rate of 
change (e.g., ammonia). 
These are periodically 
reviewed and manually 
adjusted based on 
statistics. 

•  

• Ozone: virus LRV > 3.5 
• GAC: < 0.15 NTU 
• UV: dose > 186 mJ/cm2 
• Influent: TOC < 15 mg/L 
• Influent: EC < 2,000 

µS/cm 
• Influent: turbidity < 5 

NTU 
• Influent: total nitrogen < 

5 mg/L 
• Effluent: TOC < 4 mg/L 

Redundancy in 
critical analyzers 

Redundant TOC analyzers for 
RO permeate 

Redundant ORP probes 
ahead of RO 

Redundant TOC analyzers for 
GAC effluent 

Frequency of 
validation/ 

calibration of 
instruments 

Regular calibration/ 
validation done in-house for 
most meters/probes. Service 
contract for TOC analyzers. 

Daily/weekly/monthly 
calibration/verification of all 

online instrumentation. 
Performed by in-house staff 

and external consultants/ 
vendors for more 

sophisticated analyzers. 

Weekly/monthly (as-
needed) 

calibration/verification of all 
online instrumentation. 

Performed by in-house staff. 

Procedure for 
documenting 
instrument 

service 

Tracked in Maximo Tracked in Maximo  

Operational 
response to 
abnormal 

instrument 
behavior 

Operators trained to spot 
anomalies and troubleshoot 

as part of SOP for 
responding to alarms. If 

sustained, can trigger 
sampling events. 

Operators make decisions 
based on trends. Can trigger 

sampling events. 

Operator to investigate. 
Confirmation with bench top 

readings. Instrumentation 
staff are available 24/7. 

Must confirm issue is fixed. 
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Survey Topic OCWD Veolia HRSD 
Compliance 

reporting 
procedures and 

purpose 

• Monthly reports to DDW 
• Max and average values 

for each day in reporting 
period 

• Some automation from 
excel macro, but manual 
analysis required 

• Reporting is primarily 
made to SNP Water, which 
is made available to Dept. 
of Health (DOH) 

• Exceedances are identified 
to the DOH on an annual 
basis and analytes are also 
made available to DOH 

• Internal reports are 
developed on a daily basis 
(process reports) for 
operational purposes and 
rolled up to monthly 
reporting 

• Some automation, but 
require manual to finalize 

• Quarterly regulatory 
reporting for EPA's 
Underground Injection 
Control Program 

• Identifies operations 
and reasons for process 
being offline when 
applicable                                            

• Describes CCPs 
compliance for 
reporting period 

Predictive 
analytics 

None. There is a 
cybersecurity concern for 

cloud-based systems. Such 
analytics would need to be 

done locally. 

None. Though SCADA does 
list responses/action items 

to fix issues based on 
alarms/warnings. 

None. 

Dynamic or 
static alarm 

levels 

Mostly static. Some 
parameters, like TOC, are 

statistically informed using 
prior historical data 

Dynamic: rate of change 
metrics that are specifically 

re-evaluated with some 
frequency 

Mostly static. Correlations 
developed based on site-

specific influent water 
quality and influence on 

product water quality (e.g., 
influent conductivity influent 

on bromate formation). 
Frequent false 

positives or 
nuisance alarms 

Operators are trained to 
spot false positives. 

Operators are trained to 
spot false positives. Daily 

process info is reviewed by 
plant operators and 

management. 

Alarms triggered after two 
consecutive readings to 
diminish false positives. 

Lessons have been learned 
on how to diminish false 

positives. 

 
A.2.2 Lessons learned from WRF 4765 
One key takeaway from WRF 4765 was that processing data from DPR systems—which may 
produce more than 300 GB of data annually—cannot be done without complex and automated 
data filtering (Pecson et al., 2017). This requires understanding (a) which critical control point 
monitors are needed to assess the performance of the different unit processes, (b) how to set 
up filters to focus on unit process performance when the system is producing water (vs. when it 
is offline or in startup mode), and (c) how to compile and integrate these data to assess 
systemwide performance. The data processing required removing certain data points from the 
analysis, such as when the system was offline or shut down. As expected, there was significant 
deviation in sensor signals when the system was offline or when it was transitioning from an 
off-line state to steady-state production. If these signals were included in the dataset for 
analysis, it would appear as if there were many failure events. However, these false-positives 
should be removed from the dataset in order to focus exclusively on the data generated when 
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the system was actually producing and distributing water. Extensive data cleaning/filtering was 
implemented using an R-script to distinguish the data that were produced when the system was 
online and operational. The general framework used in WRF 4765 for filtering data is shown in 
Figure A-2.  

 

 
Figure A-2. Three Layers of Filters Used to Evaluate Process Performance Data in WRF 4765. 

The first layer of filter was used to determine whether the process was actually online (i.e., “is it 
online?”). This filter layer helped to remove most of the off-line data by identifying whether 
basic process functions were being conducted, e.g., that water was flowing through the system, 
that chemicals were being dosed, and that all critical components were online. Data that 
passed the first layer went onto the second filter, which provided a rudimentary check to 
determine whether the meters were online and functional. These types of meter error checks 
included assessing whether a non-zero reading was being recorded and whether the values 
were changing. Assuming the first two layers passed, the third layer assigned a LRV based off 
the process monitoring data. The data filters were capable of removing many data points that 
were generated during periods when the processes were not in production mode.  

Despite the effectiveness of the automated filters, additional manual processing was required 
to curate the dataset completely. This can be illustrated by looking at the results of the 
automated MF data filtering (Figure A-3). While the filters were helpful for evaluating if 
processes were offline, there was still a significant number of suspected water quality events. 
Any time periods that did not pass the filters were identified with a different colored bar 
denoting potential failures. As is clear from the figure, there were over a dozen events over a 3-
week period that appeared to be potential failure conditions.  
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However, when operators cross-referenced the time periods with operational event logs and 
data trends, they found that the apparent “failures” could be attributed to other events 
occurring at the facility that were not indicative of MF process performance. These included 
both upstream and downstream events, such as maintenance events on other unit processes 
that ceased flow to the MF, power outages to the whole facility, or shutdowns to restart other 
unit processes. Based on the automated filters alone, these could appear to be MF failure 
conditions with potential public health implications. Manual evaluation of each event was 
therefore required to separate the false-positives from the data that were truly indicative of MF 
performance. This example illustrates the importance of context in assessing the true 
performance of the system—knowledge of the performance of other unit processes may be 
necessary to interpret the data for a given process. 

 
Figure A-3. Results of the Data Filtering from WRF 4765. 

Not all of the apparent MF failures, however, were due to issues with other unit processes. Of 
the types of issues that arose that were specific to the process itself, the majority of suspect 
events could be correlated with the following scenarios: 

1. Meter error/drift resulting in readings that were not representative of process performance 
2. Erratic or elevated meter readings during operational changes (particularly flow changes) 

Due to the use of redundant meters, the project team was able to evaluate when suspected 
deviations in process performance were due to meter error. The first scenario was most 
pronounced in the ozone system, which included two redundant ozone analyzers installed at 
each of three monitoring locations. Measurement of ozone residual in a wastewater application 
is challenging and more frequent meter maintenance is required to mitigate against meter 
error and drift (Chen et al. 2020). Meter readings tended to drift downwards with time due to 
the buildup of materials from the wastewater matrix on the analyzers. The downward drift of 
the meters meant lower ozone residuals and resulted in lower pathogen LRVs. However, 
trending of redundant monitors at the different monitoring locations were used to retroactively 
determine if the ozone residual truly decreased or if the decrease in reading was due to meter 
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error. This differentiation was done manually by the operations staff. Similar downward drift 
was observed in the TOC meters used at OCWD in 2017 (Patel and Dadakis 2018).  

A number of strategies can be employed to identify meter drift and reduce its impact. The use 
of redundant meters at a given location can provide evidence of drift when the meters begin to 
show deviations from each other. It is possible, however, that the use of identical meters at a 
given location will both drift at the same rate and show minimal variation between each other. 
To address this, meters with different measurement methodologies can be used since the rate 
of drift will likely not be equivalent across different meters. For example, the selection of 
dissolved ozone meters could vary between those using colorimetric methods (such as diethyl-
p-phenlyenediamine), amperometric readings, and redox sensors. Another strategy to identify 
drift is to offset the maintenance schedule for the redundant analyzers, where the more 
recently maintained analyzer can serve as a back-check against the other meter. 

The second scenario (operational changes) caused false-positives to occur frequently because 
(1) flow changes occur frequently as part of normal operations and (2) system startup occurred 
frequently due to the operational limitations of the demonstration facility where testing 
occurred. For example, the reverse osmosis (RO) permeate total organic carbon (TOC) readings 
are shown in Figure A-4. Abnormally low values were observed during shutdowns whereas brief 
15-minute period with elevated readings were observed during RO start-up. The low readings 
during RO shut down were the result of a lack of sample flow to the analyzer; the analysis is 
actually performed on a “dry sample” that is not indicative of the actual RO permeate water 
quality. The high readings observed during start up are an artifact of the stagnant water that 
was present in the sample line during the shutdown; it must be flushed out before the RO 
permeate produced by the RO system is analyzed by the meter. This creates a scenario in which 
the analyzed sample is not representative of the concentrations in the actual RO permeate 
being produced. These types of scenarios were confirmed by project engineers who cross-
referenced these spikes with RO flow data to evaluate if these spikes coincided with RO system 
start-up. This trend was observed systematically during every start-up of the RO system. 
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Figure A-4. Example of Deviations in Meter Readings due to Changes in Process Flow. 

 
This manual categorization was performed for all suspected water quality events. Because the 
two scenarios identified above occurred routinely, a systematic routine for categorizing and 
confirming these scenarios was developed. With the aid of this routine, the time and effort to 
manually categorize these events was reduced, though still remained tedious and time-
consuming. Certain parameters were affected by these types of scenarios more than others, 
which generated a large number of trends that needed manual review. For example, the 
membrane filtration (MF and UF) systems undergo a backwash every 30 minutes and the 
filtrate turbidity always spiked after a backwash due to sample flow changes to the filtrate 
turbidimeters1. At this frequency of flow changes, many “suspect water quality events” were 
generated which had to undergo manual review for categorization. The testing site for WRF 
4765 only had two membrane filtration trains making the manual evaluation of the data 
relatively feasible; such an approach would be infeasible with the number of trains typically 
present at a full-scale facility. This effort highlighted that the data filtering developed for WRF 
4765 needs to be improved and further automated to better distinguish the true water quality 
events and reduce the need for manual filtering. 

 
1 Typical turbidimeters (e.g., Hach 1720E and Filtertrak 660 sc) measure turbidity by directing a strong beam of 
collimated light from the sensor head assembly down into the sample in a turbidimeter body. Over time, buildup 
can form in the turbidimeter body. A sudden change in flow can cause an increase in the turbidity reading for a 
couple of reasons. A pause in flow followed by a subsequent increase in flow (e.g., after MF comes out of a 
backwash) can cause sufficient turbulence in the turbidmeter body that it dislodges buildup that interferes with 
the method and causes an erroneous reading. Air bubbles are also another culprit for erroneous turbidity readings. 
These can be mitigated by using more recent models (e.g., Hach TU5300sc/TU5400sc) that use a smaller online 
sample volume and adjusting flow and/or adding bubble trap to prevent bubbles. Such turbidity spikes are 
identified as “suspect water quality events” and their origin must be understood in order to filter and flag the data. 
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A.2.3 Implementation of Data Analytics in Industry 
Real-time detection of treatment failures and water quality anomalies and automation of 
system response has been identified as a need to increase the reliability of potable reuse 
systems. One of the goals of WRF 4954 is to evaluate if there are programs that can be used to 
detect water quality events. Data analytics can be performed using either proprietary tools or 
open-source solutions. Recent reviews on the digitalization of the water industry stress the 
potential danger of “lock-in,” meaning that utilities will purchase proprietary systems that 
cannot communicate freely between platforms, essentially locking them into a single platform 
(Affleck et al. 2015). To avoid lock-in and increase the transparency and lasting usefulness of 
this research, the project team limited the scope of the review to open-source solutions. 
Although open-source tools were explored in this review, the most important component of 
the data analytics review is not the tools themselves, rather, it is the discussion of the methods 
that the tools represent. These methods are represented in proprietary software solutions and 
will continue to be advanced by the private sector and adopted by utilities. 

Among open-source products, the project team explored tools for real-time data analysis with 
sufficient documentation, clear protocols for software testing and maintenance, a wide user 
base, and peer-reviewed literature associated with the tool. There are two tools created by 
Sandia National Labs, CANARY and Pecos, with the potential to perform real-time data 
analytics. 

Both CANARY and Pecos were designed to analyze high volumes of sensor data, identify 
anomalies in the data, create alerts for operators, and improve data quality. Released in 2009, 
CANARY was developed by the Sandia National Labs in collaboration with the USEPA to detect 
contamination events in drinking water distribution systems. CANARY (U.S. EPA 2012) uses 
three water quality event detection algorithms described in the literature: timeseries 
increment, linear filter, and multivariate nearest neighbor (Klise and McKenna 2006a; b). These 
algorithms are combined with what is known as a binomial event discriminator (McKenna et al. 
2007) to identify suspicious data points. Moreover, the user can choose to run the event 
detection analysis on water quality sensors individually or as a group. The probability of a true 
event is evaluated by CANARY by evaluating the series of suspicious data points. If the 
probability of a true event exceeds a user-defined threshold, CANARY issues an alarm that an 
event is occurring.  To provide additional flexibility, CANARY enables users to develop their own 
event detection algorithms using MATLAB (U.S. EPA 2012) and more recently, Java (Hall et al. 
2017).  

There are some known applications of CANARY in industry. For example, CANARY has been 
integrated into distribution system models by hydraulic modeling vendors for water quality 
event detection (Hall et al. 2017). One study was published describing the use of CANARY to 
identify events during normal operations of a decentralized membrane bioreactor (MBR) 
system and also during simulated failure events (Leow et al. 2017). Failure was simulated by 
performing sludge bypass events to simulate membrane integrity failure by pumping mixed 
liquor into the effluent lines of the MBR system. Simulated events were detected by CANARY 
and were correctly detected as process failures. Alarms detecting process failure were also 
generated during normal operating conditions and it was found that 89% of the alarms were 
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false positives. Retroactive review (i.e., not real-time and performed manually by a human) of 
the data by the project team found that the false positives could be attributed to normal MBR 
operations (backflushes, membrane cleaning, etc.), sensor maintenance and calibration, and 
change in feed water quality. While sensor signals may have deviated from the normal baseline, 
all of these events occur routinely, and deviated readings do not represent process failure or 
unacceptable water quality. In addition, there were also 23 alarms that were generated during 
the normal operation period in which the causes are unknown. Of these 23 alarms, 13 of the 
events had trends that were similar with trends of known events, suggesting detection of true 
events.  

More recently CANARY has also been used to identify spill events related to natural gas 
production (Wickline and Hopkinson 2020). This study however found that the EDS capabilities 
of CANARY was not suitable for detecting the simulated spills due to size of the spill relative to 
the watershed size, sensor location, and type of contaminant. This suggests that outliers must 
exceed a minimum threshold for event detection and may not be sensitive to capture all 
events. 

Released in 2016, Pecos is an open source software for automated performance monitoring of 
timeseries data (Klise 2018). Pecos was developed by the core team at Sandia National Labs 
that created CANARY so there is considerable overlap in functionality. The primary purpose of 
Pecos is to analyze the quality of real-time data streams and generate visualizations and reports 
to communicate that information. With these reports, users can identify missing, duplicate, or 
corrupt data, data outside a user-defined range, or abrupt change. Originally developed for the 
operation of photovoltaic cells, Pecos is industry agnostic and has been incorporated into 
marine hydrokinetics software (Klise 2018). However, there is currently no peer-reviewed 
literature that uses it for water quality or treatment process data. 

Pecos and CANARY have similar functionalities, and either could be applied for high-frequency 
data analysis in water reuse. However, there are key differences between these two 
approaches. CANARY is a user interface application, like Microsoft Word or PowerPoint, which 
has a static set of features. Pecos, on the other hand, is a software package which provides 
programmers with a set of tools to choose from. The importance of the flexibility to use Pecos 
alongside other Python-based tools alongside cannot be understated. High quality, open-source 
Python packages for data analysis are constantly being developed and distributed freely by 
academics, nonprofits, and companies, like Facebook and Microsoft. 

Python is among the most popular programming languages in the world for engineering 
applications, software development, and data science.  Python is the de facto programming 
language in many industries for data analysis, including environmental engineering. Moreover, 
its popularity has consistently trended upward in recent years (The Economist 2018). In 
reviewing open-source Python packages, the project team found several that support anomaly 
detection, data filtering, machine learning, and statistical modeling for this project that could 
complement Pecos.  
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A.2.4 Major Findings of the Review of Current Practices 
High-frequency monitoring is needed to assess and confirm the performance of DPR treatment 
facilities. Due to the massive volume of data produced by AWPFs, however, it is not feasible to 
manually analyze every data point. This review of current industry practices confirmed that 
most AWPFs currently in operation utilize a CCP (or HACCP) framework for assessing process 
performance. Most utilities focus primarily on the monitoring of CCPs (vs. COPs) because they 
directly impact public health and are often required by regulatory agencies for compliance 
reporting. Responses from the utilities surveyed revealed certain aspects of existing 
monitoring/reporting systems that may need additional advancement for DPR applications: 

• False-positive water quality events are common. The following strategies are utilized to 
identify and minimize their impact: 
o Train operators to spot false positives 
o Use alarm delays to minimize false positives 

• All utilities surveyed responded that generating compliance reports is mostly automated, 
but manual analysis is needed to finish reports. 

• Static vs. dynamic alarms: two utilities surveyed use static limits exclusively for generating 
alarms. The third also employ some dynamic, rate-of-change metrics to trigger alarms. 

WRF 4765 demonstrated that creating effective filters for CCP performance requires significant 
effort. Further refinement of the filters developed in WRF 4765 is needed to reduce the number 
of false positives and eliminate (or greatly reduce) the need for the manual categorization of 
suspected events. This need for data filtering cannot be overcome simply through the use of a 
packaged algorithm (like CANARY), since the literature studies reported that these packages ran 
into similar issues with false positives. The filters should be able to identify a number of 
scenarios both within a given unit process (e.g., meter drift and operational changes) as well as 
contextual information (e.g., the impact of failures of upstream and downstream systems). 
Refinement of filters can be tricky because it is important that the developed filters do not 
mistakenly categorize true water quality events as false positives. Development of new filters is 
an iterative approach and requires human review to confirm if categorizations made by filters 
are accurate.  

Based on the review, an enhanced data analytics system would need the following 
characteristics to address key gaps: 

• Filters to address monitoring issues 
o Identify stagnant data 
o Identify missing data 

• Filters to address process performance issues 
o Identify data associated with operational changes (e.g., transient spikes in turbidity or 

TOC during MF and RO start-up, respectively) 
• Ability to contextualize the data within a unit process 

o Comparison of one meter to a redundant meter at the same location 
o Comparison of a meter to other meters used to monitor the process 
o Correlations between multiple process variables 
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• Ability to contextualize the data across the treatment train 
• Ability to identify static limits (e.g., fixed regulatory thresholds like effluent TOC) and 

dynamic limits (e.g., limits based on rate of change)  
• Use of statistical process control to assess current performance based on past performance  
• Ability to calculate performance based on a hierarchy of surrogates (e.g., assessing RO 

performance using both TOC and electroconductivity measurements) 
• Ability to distinguish actual performance of monitoring events from meter noise  
• Ability to overlay instrument calibration data for visualization purposes  

The following section provides an overview of the full suite of data processing needs, from the 
collection and storage of data to analysis, visualization, response, and reporting. 

A.3 Key Steps in Data Processing 
The overall workflow for data processing is summarized in Figure A-5. After the data is 
generated, it is stored. A data analytics layer then evaluates the data and refines the data set. 
After data refinement, the data can be analyzed. Once data has passed through the data 
analytics layer, the data can be used for display, triggering responses/corrective actions, and 
output for reporting. Development of the data analytics layer is the main focus for the project 
and subsequent display and output options will also be evaluated as part of this project. The 
following sections describe the data analytics layer, display options, and report options for this 
project. 

 

 
Figure A-5. Overview of Entire Workflow for Data Processing Needs. 

A.3.1 Data Analytics Layer 
Key issues identified in the review of current industry practices included process-specific data 
querying, timeliness of warning and response, handling high volumes of data in real-time, 
improving anomaly/event detection, and evaluating data quality of meters. To address these 
issues, four types of functionalities needed for the data analytics layer were identified:   

• Data quality monitoring and cleaning  
• Data filtering  
• Anomaly detection / Event detection  
• Data point labelling 
• Machine learning and statistical modeling (future work) 
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The data analytics layer, in general, performs evaluation of the raw data set by (1) cleaning the 
data set, (2) filtering downtime out of the dataset, (3) detecting potential anomalies and water 
quality events, and (4) triaging the potential anomalies events into respective categories. The 
workflow for the data analytics layer is presented in Figure A-6. 

 
Figure A-6. Workflow of the Data Analytics Layer. 

 
The following subsections describe the evaluations performed within each category of the 
analytics layer. 

A.3.2 Data Cleaning and Quality Monitoring  
The first step, data quality monitoring, serves as the foundation for data analysis because it is 
used to improve the quality of real-time data streams and identify potential issues with the 
data. Potential issues with data include stagnant data, meter signals exceeding scaling ranges, 
data falling outside of historical expected ranges, and abnormal noise in data. Pecos, described 
above, is an example of a data quality monitoring toolkit. To demonstrate the features of Pecos 
and how they could be used for high-frequency reuse data, the project team analyzed an 
illustrative dataset for a reverse osmosis treatment train (shown in Figure A-7). This highlights 
the package’s ability to:   

• Check for data that is outside an expected range.  
• Check for stagnation in the data. 
• Check for abrupt changes between consecutive time steps. 
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Figure A-7. Demonstration of Three Functions from the PECOS Python Package Using RO Process Data.  

(Top) Detection of values outside of a user-specified range of conductivity; (middle) detection of stagnant values 
from RO pH meter; (bottom) use of rate of change metrics to analyze data stream 

The packaged algorithms in Pecos can be augmented with operator experience and knowledge 
to establish the bounds of expected signal readings. Because some signals are dynamic whereas 
others are more static, the same bounds cannot be applied to evaluate every signal. For 
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example, the performance of the ozone process is based off many parameters: some—like 
measured ozone residual—change often whereas others—like ozone gas flow—are relatively 
stable with little variation. The measured ozone residual signals will need wider bounds to 
account for real variations whereas the ozone gas flow will need narrower bounds to avoid 
categorization as “bad quality data” with stagnant values. Each CCP will be evaluated in this 
way with operator input so that packaged algorithm inputs are informed by operator 
experience and knowledge. 

A.3.3 Data Filtering  
After evaluating the quality of the raw data and removing poor quality data, the data should be 
filtered to remove any points that were generated while the system was offline. Filters were 
developed in WRF 4765 to remove offline data and could be utilized for this project. 
Improvements in the monitoring system at the WRF 4954 demonstration test site (North City 
Demonstration Pure Water Facility) have been made, including the use of status indicators. 
These indicators signify whether the system is online or offline, eliminating the need for some 
of the rudimentary filters used in WRF 4765. These improvements will be used in tandem with 
additional filters from WRF 4765 to filter out off-line data and identify when the system has 
reached steady-state after starting up. 

A.3.4 Event Detection  
To improve detection and response to process failures in water reuse, anomaly detection 
algorithms can be applied. Two functions previously illustrated in Error! Reference source not 
found. include out-of-range and rate-of-change alarms.  While useful at identifying many 
events, these more basic alarms may fail to identify systemwide failures or anomalies. To 
provide this additional functionality, Python-based multivariate anomaly detection algorithms, 
like those used in CANARY, can consider groups of sensors for real-time data analysis. Most of 
these techniques are industry agnostic and were developed for applications such as detecting 
credit card fraud, cybersecurity breaches, and identifying malfunctions in industrial control 
systems (Bartos et al. 2019).  Available Python packages include rrcf (Robust Random Cut 
Forest) algorithm for anomaly detection on high volume streaming data (Bartos et al. 2019; 
Guha et al. 2016) and PyOD, a library for outlier detection and anomaly detection in 
multivariate data.  

Another option to identify events or anomalies is through the use of timeseries analysis 
methods such as control charts (Kaelin et al. 2008; Nilsson et al. 2007). A study by Nilsson et al. 
(2007) identified two methods for identifying changes in process performance including the 
Shewart method and cumulative sum control charting (CUSUM). Both rely on statistical process 
control methods that identify outliers based on the comparison of current performance to the 
mean (or other similar statistic) and a control limit boundary. The control limit boundary can 
either be set as a fixed value or statistically estimated based on historical performance. For 
example, the probability of a process falling outside of a control limit that is three standard 
deviations from the mean is only 0.3%. Thresholds could be set to determine when a system is 
no longer in control, e.g., nine consecutive readings outside of the range. OCWD proposed 
criteria for control of the RO process based on fifteen consecutive about the upper control limit 
(UCL) (Dadakis 2014). The use of multiple consecutive readings helped them to avoid 
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responding to isolated outliers. The benefit of the statistical approach is that it provides system-
specific thresholds that may allow deviations to be identified while not triggering an excessive 
amount of false-positive readings. It also can provide advanced warning of an upset that occurs 
in advance of the process crossing a regulatory threshold.  

Nilsson et al. (2007) noted that the effectiveness of this approach relies on having high-quality 
monitoring data. It was easier to identify potential hazardous events if the performance data 
were of high quality, meaning that staff could rule out the possibility that the event was simply 
a meter issue rather than a true performance issue. Through the process, they identified both 
hazardous and non-hazardous events (e.g., cleanings) using the statistical process control 
methods, and were able to identify the frequency, duration, and magnitude of a number of 
hazardous events. Nevertheless, the researchers concluded that the manual process of 
evaluating SCADA data was time-consuming, and that future efforts should seek to automate 
the maximum extent of the data analysis as possible.  

A.3.5 Data Point Labelling 
One method that will be used by the WRF 4954 project team to facilitate the data filtering 
process is the use of unique signifiers to identify how points have been categorized using the 
filters. This “flagging” or “labeling” of each data point will allow project team members to more 
easily evaluate the accuracy of the refined filters. In addition to filter development, labelled 
data points can be a useful tool for reporting. For example, when performing statistics on a 
dataset, all nonrepresentative data should be removed to prevent skewing results. Current 
practice relies on the manual identification of outliers and the determination of whether the 
outliers are representative of process performance. If the outliers are not characteristic of 
process performance, their causes must be identified. With the use of data labels, the 
categorization process is automated, and the end user can rapidly perform statistics on a data 
set excluding nonrepresentative data points. Data labelling also satisfies the need for 
transparency in that it can help ensure that the evaluated dataset has not selectively “cherry-
picked” only the favorable datapoints. Lastly, true water quality events are also labelled. 
Because they have already been identified, trending can be performed on these datasets to 
evaluate the best course of action for responding to these events and also preparing prevention 
plans. The three main categories used for data labelling are: (1) confirmation of 
anomalies/events, (2) changes in water quality due to process changes but not process failure, 
and (3) meter error that is nonrepresentative of process performance.  

A.3.6 Future Functionalities (Machine Learning and Statistical Modeling) 
Beyond the tools described above, there is a wide range of machine learning and statistical 
modeling Python packages that can be used to analyze water reuse data, including regression, 
classification, clustering, and general statistics. Popular packages for these applications include 
scikit-learn (Pedregosa et al. 2011), TensorFlow (Abadi et al. 2015), and SciPy (Virtanen et al. 
2020). For forecasting time series data, Facebook’s Core Data Science team openly released 
Prophet, which is used across many of Facebook’s applications (Taylor and Letham 2017). Other 
methods include merger of instrumentation operational controls developed with Fuzzy 
Logic/Neural Network Principles and Numerical Method/Statistical Modeling. 
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The above techniques could be used in conjunction with Pecos or as standalone analyses to 
support the development of a data analytics layer for water reuse. Based on the review of data 
monitoring and analyses currently in use in industry, certain bridges need to be addressed 
before moving into machine learning and statistical modeling. Machine learning and statistical 
modeling would be better implemented in future projects after refining how meter signal 
deviations are categorized (i.e., water quality anomaly vs. meter error and flow changes). 

Normal process changes, sensor drift, and other data quality issues can cause failure of 
treatment system that goes undetected. These measurement errors may be difficult to identify 
based on a single sensor or even a group of sensors without additional analytics to verify the 
validity of the measurement. Data filters, such as Kalman filters, are a promising method to 
address this problem.  Water sector applications include modeling distribution system water 
quality and urban drainage systems (Bartos and Kerkez 2020; Rajakumar et al. 2019) and 
estimating nutrient composition in pilot wastewater treatment plants (Nair et al. 2019). FilterPy 
(Labbe Jr. 2015a) is a popular Python package for implementing data filtering techniques. The 
package is well documented and has a companion book that is also free and open source, 
“Kalman and Bayesian Filters in Python” (Labbe Jr. 2015b). These tools can be used to evaluate 
individual sensor signals and also be supplemented with custom Python code to cross-reference 
other parameters for confirmation of true anomalies/events vs other causes like normal 
process changes and meter errors. 

A.4 Visualization of Process Data and Alarms  
For best practices in data visualization and alarms for SCADA, the project team reviewed the 
standards from ANSI/ISA-101 (Human Machine Interfaces for Process Automation Systems), 
also known as high-performance HMI (Hollifield et al. 2008). The basic principles are as follows:   

• Show information on the screen, not raw data. 
• Show clearly if the process is running well or not.  
• Use depiction methods that make abnormal conditions visible and alarms stand out.  
• Organize the graphics in hierarchical layers to progressively show more detail and 

information as needed.  
• Use color consistently and effectively.  
• Display current data with desired operating range and alarm thresholds.  
• Use of low contrast colors unless to show an alarm.  
• Display hierarchy to drill into different levels of detail.  

To implement these principles, novel visualizations can be used to show multiple attributes and 
enable operators to rapidly view system-wide “health.” Visuals should represent results of 
complex data analytics and distill large data sets into visuals that can be interpreted quickly and 
easily. There are two levels for evaluating performance of a reuse facility: the individual process 
level and the overall treatment train level. The “status” of each of these levels will need to be 
presented visually on screens. The following types of visuals may be utilized for representing 
statuses of the two levels:  

• Gauges 
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• Radar Chart 
• Dashboards 

The first style of visuals are gauges. Visualization on process/train “status” can be both 
quantitative and qualitative. Regions of the gauge can be split into three regions: low risk, 
medium risk, and high risk and signified by colors. An example of gauge representations is 
shown in Figure A-8. A needle/slider is used to indicate current status of system, updates 
dynamically, and provides context of how close system is to sliding into higher risk ranges. 

 
Figure A-8. Example of Gauges to Represent Unit Process and Treatment Train Status. 

Radar charts are a graphical method for displaying multiple variables on a single visual and can 
be used to visualize risk. Radar charts can represent both quantitative and qualitative data. 
Radar charts show the risk for each parameter and the status of each parameter may have 
different level of risks. The overall risk is considered by balancing the individual risk from each 
parameter and is represented with colors to signify low risk, medium risk, and high risk. 
Examples of how radar charts can be used to visualize risk for different parameters at a reuse 
facility is shown in Figure A-9. In the figure below, the visualization on the left depicts 
parameters in an ozone system and shows “no risk” for the UVT removal and generator status 
parameters, “medium risk” for the residual ozone parameter, and “high risk” for nitrite and 
meter maintenance. The overall aggregate risk for the ozone system is considered medium 
after balancing the risk for all the parameters shown. 
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Figure A-9. Examples of Radar Charts for Visualizing Performance Parameters for A Unit Process (Left) and A 

Treatment Train (Right) in A Reuse Facility.  

The last form of visuals considered for this project is dashboards. Dashboards can incorporate 
both quantitative and qualitative data. Dashboards can be used to visualize the status of several 
parameters using colors to signify low risk, medium risk, and critical risk. Examples of different 
types of dashboards are presented in Figure A-10 and Figure A-11. Figure A-10 shows various 
areas of the plant and an overall status for that area is represented. In this example, 
“Operational Integrity” is at a critical risk and the “Event” detection is at medium risk. All other 
aspects are low risk. This would help operators visualize which aspect of the plant requires 
attention. Figure A-11 shows the pathogen LRV achieved by each individual unit process and 
the cumulative train LRVs for Cryptosporidium, Giardia, and virus. If a LRV has medium or high 
risk, the parameter is highlighted in yellow and red, respectively. 

 

 
Figure A-1. Example of Qualitative Dashboard Depicting Status of Different Areas of Plant Monitoring. 
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Figure A-2. Example of Quantitative Dashboard Depicting Pathogen Log Removal Values. 

The project will explore which visualization options are most effective for assessing the status 
of potable reuse facilities.  

A.5 Responses and Corrective Actions 
System responses and corrective actions are based on results from the analytics layer. Before 
implementing real-time control changes, it is important to first fully vet the accuracy of the 
analytics layer. Another restriction for this project is that the testing site is a demonstration 
facility with less flexibility to make operational changes. Nevertheless, the system will be 
designed so that messages will be generated with a description of what actions would be taken 
if the system were fully automated. This allows the project team to evaluate if generated 
responses are appropriate and to iterate on the control system before implementation at an 
actual full-scale facility. 

For alarm priorities, both water reuse-specific practices described in WRF 1700 (Response 
Procedures section) and ANSI standards will be considered, such as ANSI/ISA-18.2 
(Management of Alarm Systems for the Process Industries) (ANSI/ISA, 2009; 2015).  

A.6 Automated Compliance Reporting 
Another potential challenge for direct potable reuse projects is implementation of automated 
compliance reporting. The reporting requirements are subject to regulator approvals and 
operating permits can vary based on the facilities actual treatment process train and 
integration with the drinking water treatment and distribution system. For indirect potable 
reuse, compliance reporting is typically filed monthly. Based on the utility surveys, this 
turnaround time frame does not require as much automation to query the reporting data and 
compile it into specific templates. This task is typically performed manually by staff rather than 
automated. Tools such as Microsoft Excel are used for compiling the daily max and average 
values for each day for reporting period. Data is reviewed by a person experienced with the 
treatment process control to spot the anomalous spikes and decide whether a redundant data 
source is available or if the anomaly was due to downtime or maintenance activities. This is 
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similar to the function of data filtering and event detection as discussed in previous sections 
and is somewhat of an indirect and reactive approach. Similar to how the real-time control 
must respond quickly enough with corrective actions, the compliance reporting also needs to 
be assessed more frequently, including daily, weekly, and monthly reports that can 
demonstrate compliance quickly and with desired time frames. There are some commercial 
platforms that provide customization of compliance reporting such as the Dream Report® by 
Ocean Data Systems (Ocean Data Systems 2017). Pecos can also be used for reporting and 
together with the data analytics provide the necessary data preparation for the purposes of 
compliance reporting. The processed data by Pecos, can be queried over custom time frame 
and range of process specific CCPs. Custom reporting templates would need to be created. 
Dream Report® essentially provides a platform that bridges that gap by offering user-friendly 
customizable report templates and interface with the SCADA data. 

A.7 Conclusions and Next Steps 
DPR systems need the ability to collect and process high volumes of performance data in real-
time. This requirement stems from the need to identify and respond to potential public health 
issues in the short period of time between the treatment and distribution of purified waters. 
The overall workflow for processing data involves many steps: 1) collection and storage of data, 
2) data analysis, 3) visualization of performance, 4) response actions, and 5) reporting. Through 
the literature review, the key step in the process that requires the most significant 
advancement for DPR is the data analytics layer.  

Through the literature review, a number of functionalities were identified for the enhanced 
data analytics layer. Existing open-source tools like CANARY and Pecos were reviewed and 
identified as potential options for many of these functions. Other site-specific tools may be 
better served through programming in the Python core package. Table A-2 includes a list of the 
desired data analytics functionalities along with an evaluation of the platforms that could be 
leveraged to achieve these goals. While no single platform is best suited to perform all of the 
functions needed for the layer, the use of multiple tools in conjunction can achieve these 
needs. The integration of these tools into a single data analytics layer will be the main goal of 
Task 2 of WRF 4954.  

Table A-2. Desired Functionality of Data Analytics Layer and Options Identified through Literature Review. 

Functionality 
Python Core 

Package Pecos PyOD/rrcf 
Identify stagnant data X X  
Identify missing data X X  
Identify non-representative data during flow changes X   
Comparison of redundant meters  X X 
Integration of multiple performance meters  X  
Contextualization across treatment train  X X 
Use of static and dynamic limits X X  
Statistical process control X X  
Event detection  X X 
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APPENDIX B 

Additional Configuration Considerations at NCPWDF 
This section provides additional information surrounding the development of the event 
detection logic and criteria, including approaches that were tested but not recommended for 
implementation. Beyond the finalized Python script used for event detection, the efforts of the 
project team to develop the EDS resulted in considerations that could be useful for future 
applications. 

B.1. Additional Considerations for Ozone Event Detection 
B.1.1 Water Quality Event Detection Logic 
The preliminary event detection logic for an ozone water quality event was defined by low 
residual readings at both OSP 4 and 7 coinciding with a decrease in Cryptosporidium LRV. The 
logic being that if these meters are reading low and the LRV is declining, the consistent trend 
across monitoring locations can rule out a monitoring point failure therefore the drop in LRV is 
indicative of a water quality event.  

To develop the ozone residual and LRV operating range bounds, statistical analysis was 
performed on historic data. Ozone dose varied historically in response to fluctuating water 
quality which caused there to be a lot of noise in the ozone residual data. The consequence of 
noisy data is that the operating range bounds determined using 2 standard deviations from the 
mean were too wide to accurately evaluate abnormal ozone residual data.  

Figure B-1 shows data for a known water quality event at the NCPWDF from September 2022.  
The event detection was delayed using this initial detection logic that relied on the relationship 
between ozone residual and Cryptosporidium LRV. The dashed red line indicates when the 
Cryptosporidium LRV decreased below the early detection threshold of 1.1, yet the event was 
not detected until the ozone residual meters decreased below their low operating range 
thresholds. The ozone residual at OSP 7 and Cryptosporidium LRV were both flagged for a low 
value around a similar time, but the ozone water quality event was configured to only be 
detected if the ozone residual at OSP 4 was also below its minimum threshold. This did not 
occur until approximately 2 hours later leading the lag in event detection. This delay would not 
be useful for an online monitoring system and did not meet the goals for the tool to increase 
lead time and reduce response time. 
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Figure B-1. September 6, 2022, Water Quality Event Detected Late Using Positive Identification Logic. 

The approach of identifying water quality changes based on a decrease in ozone concentration 
throughout the contactor was determined to be too targeted based on the late detection 
described above. The implemented logic defined in section 4.3.3.3 focuses on ozone demand 
instead of ozone residuals. It was found to be more accurate and better at early detection of 
ozone water quality events because it first checks for indications of process and monitoring 
point failures before identifying the event as water quality related. 

B.1.2 Monitoring Point Event Detection Parameters 
Monitoring error event detection is configured to detect events based on the percent 
difference between two meters at a location exceeding 15%. As residual concentrations 
decrease, it becomes more likely that the percent threshold will be exceeded due to 
fluctuations in ozone residual measurements. When changes in water quality increase ozone 
demand, the ozone residual measurements at OSP 7 can approach zero which may be falsely 
detected as a monitoring point failure.  

For example, if a chemical peak entering the contactor causes a steady decline in ozone 
residual, the two meters at OSP 7 could read on the order of 0.03 and 0.01 resulting in a 
calculated % difference equal to 67%, and a monitoring point failure will be falsely detected. 
Therefore, as the tool is currently developed, operations should take care when considering a 
situation where both a water quality event and a meter error event are occurring 
simultaneously. Ozone dose would be a conservative corrective action to take while 
determining which of the events is truly occurring because if the meter error returns below 15% 
soon after, the event was driven by water quality. 
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B.2 Additional Considerations for MF Event Detection 
B.2.1 Monitoring Point Event Detection Threshold Adjustments 
During framework development, certain qualities specific to the MF process presented 
challenges that are outlined in this section. Under normal operations, MF filtrate turbidity 
readings only fluctuate in small increments. This inherent lack of variability in the data initially 
led to false alarms for stagnant data (Figure B-2) when in actuality it was a prolonged stretch of 
stable readings as illustrated by the example in Figure B-3 when the stagnant threshold was set 
at 0.001. 

 

  
Figure B-2. False Identification of a MF Monitoring Point Event Due to an Overly Sensitive Detection Threshold.  

The Pecos quality control test parameters that can be adjusted to achieve the desired 
sensitivity are the stagnant data threshold and the minimum number of consecutive failures 
requirement. To address the oversensitive nature of the stagnant filtrate turbidity test, the 
stagnant threshold was decreased from 0.001 to 0.0001 while the minimum number of 
consecutive failures remained at 15 minutes. 
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Figure B-3. Correct Assessment of MF Filtrate Turbidimeter Data Due to Appropriate Detection Threshold 

Sensitivity.  

B.2.2 MF BW Considerations 
Another finding from MF filtrate turbidity data analysis was that temporary spikes were 
observed during the first 2 to 3 minutes following each BW (Figure B-4). Regardless of whether 
or not these spikes went above the high filtrate turbidity threshold of 0.15 NTU, the EDS is 
designed to not generate an alert because the duration of the spike is less than the minimum 
number of consecutive failures (15 minutes). This ensures that only instances of sustained high 
filtrate turbidity are identified as an MF process failure event. 

   
Figure B-4. MF Filtrate Data Showing Stability and Impact of Backwashes. 
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B.3 Additional Considerations for RO Event Detection 
B.3.1 RO CCP Monitoring Parameter Test Bounds 
RO systems typically exhibit stable performance without major fluctuations in the permeate 
water quality. However, as the membranes age over time, gradual increases in permeate TOC 
and EC can be observed which reduce the LRV achieved by the system. The upper and lower 
bounds for the Pecos range tests used in event detection can account for this expected decline 
in performance by drawing from historical data that captures these expected trends to inform 
the test bounds.   

B.3.2 RO Monitoring Point Event Detection Logic 
Another consideration is the approach for assessing meter accuracy without a redundant meter 
present for comparison. The event configuration for RO monitoring point events utilized 
multiple Pecos tests on both measured and calculated tags. The feed and permeate 
concentrations of TOC and EC are used to calculate respective LRVs. Since these parameters are 
expected to remain relatively constant during operation, a low LRV reading combined with a 
TOC or EC measurement outside of the normal operating range at only one of the feeds and 
permeate monitoring locations would indicate that the meter has potentially lost accuracy (i.e., 
“drifted”) and is in need of maintenance. 

B.3.3 RO Water Quality Event Detection Logic 
RO feed TOC was not included in the water quality event detection logic because of the 
possibility that a spike in certain chemical contaminants would not be noticeable in feed TOC 
concentrations. Neutral, low-molecular weight organic compounds can pass through RO 
membranes more easily than the other types of TOC typically found in wastewater, translating 
to a lower rejection (or LRV) that would be observed. Since only a small amount of poorly 
rejected organic compounds would be needed to see a significant increase in permeate TOC, 
using feed TOC to monitor for chemical peaks that result in exceeding a regulatory threshold 
was not found to be a reliable method.  

B.4 Additional Considerations for UV/AOP Event Detection 
B.4.1 RO Water Quality Event Detection Logic 
Overall, the UV/AOP performance is very consistent and measurements of CCP monitoring 
parameters tend to remain stable for sustained periods. This proved difficult when trying to 
identify threshold values for detecting stagnant outputs from instruments such as the UVI 
sensor and UVT meter. The detection sensitivity can be adjusted by increasing or decreasing the 
threshold of minimum change that must occur, the time period for the minimum number of 
consecutive failures, or both. An iterative approach was used to identify site-specific values for 
these two test parameters that provided the appropriate sensitivity.   
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APPENDIX C 

Future Development 
The EDS implemented at the NCPWDF provided proof of concept examples for each of the 
three event categories within the individual unit processes. There are improvements to the EDS 
interface and additional events that should be incorporated if applying this framework to a full-
scale DPR facility to ensure that all potential issues are captured. The purpose of this section is 
to express areas for improvement in the EDS and expand upon the implemented events.  

C.1 Future Development of Event Detection System Visualization 
A recommended improvement to the architecture of the Pecos output dashboard is to 
implement a static y-axis for all tags that exhibit large fluctuations in values. The plots 
generated in the event report use a y-axis set by the maximum and minimum values in the time 
series being investigated. Due to signal variability and other communication artifacts, there are 
often single data points reported as extremely high values. Although this does not impact the 
tool’s ability to detect and alert operators of events, it leads to plots that are un-informative 
and difficult to read. Figure C-1 demonstrates this phenomenon where single data points 
disrupt the time series’ typical range, resulting in a plot that has limited utility because actual 
fluctuations can’t be observed. 

 
Figure C-1. Example of the Limitations of PECOS Reporting Plot.  

This issue can be resolved by adding additional processing to the Pecos outputs and holding the 
y-axis maximum to a known upper limit of 1.0 that is representative of typical data fluctuations. 
The percent difference value between meters should remain within at least 100% when the 
meters are consistently maintained, so the plot will be far more useful if the y-axis is narrowed. 

C.2 Future Development of Ozone Event Detection 
Future work on detecting events within the ozone process should include the implementation 
of the events listed in Table C-1. The tool deployed at NCPWDF contained one event from each 
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category to confirm that the event detection logic was functional. The addition of more events 
would make the tool more robust and comprehensive. The tags necessary to interpret data and 
detect these additional events already exist, and the logic behind event detection has been 
outlined below.  

Table C-1. Ozone Events for Future Implementation. 
Event Tags Description 

Monitoring Point Events   
Stagnant Data All analyzers and 

instrumentation   
All data sources are 

monitored for erroneous 
reporting of stagnant data   

Outside of Analytical Range All analyzers and 
instrumentation 

All data sourced from 
physical instrumentation 

is monitored for 
erroneous reporting of 

data outside of the 
analytical range of the 

instrument. 
Ozone decay coefficient error – 

delta check 
All dissolved ozone 

residual primary meters   
k1,2 and k1,3 are compared 

to each other for 
consistency 

Ozone decay coefficient error All dissolved ozone 
residual primary meters   

k1,2  and k1,3 are checked 
for a positive value which 

indicates downstream 
ozone concentration is 

incorrectly being reported 
as higher than upstream 

Water Quality Event 
Low Crypto LRV • Ozone Crypto LRV  

• OSP 4 primary meter  
• OSP 4 redundant 

meter  
• OSP 7 primary meter  
• OSP 7 redundant 

meter 
• Ozone generator 

production 
• Ozone production SP 

This event detects a 
failure of the system to 
meet treatment goals.  

 
OSP 4 and OSP 7 ozone 
residual monitoring and 

ozone generator 
production are first 
verified as reporting 

properly.   
 

Thus, the decrease in 
Crypto LRV can be trusted 
as indicative of alterations 
to feed water quality, and 
not the result of process 

or monitoring point 
failures. 

Low Ozone: TOC ratio • Applied ozone dose  
• Feed TOC  
• Ozone generator 

production 
• Ozone production SP 

Feed TOC is an indicator of 
water quality entering the 

ozone system.  
 

This event aims to detect 
alterations in the feed 
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water quality 
preemptively, before the 
ratio threshold mandated 

by CA draft DPR 
regulations is crossed.1  

This event also gives 
context and can inform 
the cause of treatment 

compromises as elevated 
TOC.   

 
OSP 4 and OSP 7 ozone 
residual monitoring and 

ozone generator 
production are first 
verified as reporting 

properly.   
1Based on the treatment goal of 1-log Cryptosporidium removal, and typical feed TOC values observed at 
NCPWDF, the regulatory ratio threshold of 1.0 will be exceeded.  
 

C.2.1 Monitoring Point Events for Future Development 
In addition to loss of meter sensitivity (as is currently detected by the tool), erroneously 
stagnant values reported by any of the instrumentation within the ozone system will also 
compromise the operations staff’s ability to accurately assess the pathogen removal of the 
system. Stagnant data can be caused from improper meter maintenance, physical blockages in 
the instrumentation, or faulty data logging. Therefore, any future EDSs should include the 
testing of all online ozone instrumentation for the reporting of stagnant data. Stagnant data can 
be detected using a Pecos increment test configured with a stagnancy bound that is dependent 
on the precision of the data source.  

Erroneous data that is outside of the meter’s analytical range should be detected with a Pecos 
range test set to that analytical range. For example, the primary meter at OSP 4 has an 
analytical range of 0-5 ppm. If the meter is reading greater than 5ppm, it will be detected as 
monitoring point failure and alert operations to the need for calibration or maintenance of the 
meter. Water flow and temperature are also important parameters to ensure are reporting 
within analytical range because these parameters impact LRV.  

Additional, yet less common ozone monitoring point failure events can be detected using the 
following logic applied to the continuously logged values for the ozone decay coefficients 
calculated between OSP4 and OSP 7, and OSP4 and OSP 10: 

• Evaluate if meter readings decrease along the contactor (i.e., OSP4 residual>OSP 7 
residual>OSP 10 residual). If an upstream meter is reading lower than the downstream 
meter and the downstream meter is reading within its historical average, there is likely an 
issue at the upstream meter and the data of the upstream meter will be flagged by a Pecos 
quality control test. To detect this failure, the EDS uses a Pecos range test to detect this 
failure event. A range test using a lower threshold of 0 to each of the ozone decay 
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coefficients will detect when a downstream residual is reading lower than that of an 
upstream residual.  

• The ozone decay between OSP4 and OSP 7, and OSP4 and OSP 10 should be similar. If both 
decay rates are negative but decay coefficients have an absolute difference of 0.3, there is 
likely an error with either Meters 2 or 3. Comparison to historical average decay rates and 
historical average of residuals at each location can be done to evaluate which meter should 
be flagged. 

Event detection via ozone decay coefficients is redundant relative to the meter drift detection 
approach discussed in Chapter 4 using the percent difference between primary and reference 
meters at OSP 4 and 7. This is because if the meters at each OSP are not being flagged for drift 
from the redundant meter at that location, the ozone decay coefficients being calculated will be 
accurate, and the event will also not be occurring. However, the logic behind this method of 
detection is sound and can bolster a full-scale EDS, and thus is included in this discussion for 
future development as a measure of increased reliability. 

C.2.2 Water Quality Events for Future Development 
The logic and approach to the high ozone demand event detection described in Chapter 4 
should be applied to directly monitoring Cryptosporidium LRV to ensure that alerts are 
generated when the ozone process is at risk of losing pathogen LRV credit. When detecting 
water quality changes, the process and monitoring instruments must first be verified as 
accurate. Since LRV can be calculated using residual values from all three OSPs, a meter 
accuracy check of each monitoring location (not just OSP 4 as configured in the high demand 
event) should be included. An early detection threshold of 1.25 should be implemented to flag 
when Cryptosporidium LRV is approaching 1.0. 

An additional water quality event at the ozone system that can be included in the EDS uses feed 
TOC to evaluate the ozone:TOC ratio. Increased TOC concentration will consume ozone and 
potentially reduce CT below what is required for meeting treatment goals. Note that this event 
is more targeted than the high ozone demand and low LRV events because it only detects water 
quality changes related to TOC. Only the generator needs to be checked for proper functioning 
because data from the ozone residual meters are not involved in the calculations for this event. 

C.3 Future Development of MF Event Detection 
Future work on detecting events within the MF process should include the implementation of 
the event listed in Table C-2 which uses the analytical limits of the filtrate turbidimeter as the 
upper and lower bounds to ensure that the measurement outputs are within a sensible range. 
The minimum number of consecutive failures should be configured for a shorter time period 
(e.g., 5 minutes) than the high filtrate turbidimeter event because values that exceed the 
analytical measurement range should be detected prior to high filtrate turbidity caused by a 
process failure. 
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Table C-2. MF Events for Future Implementation. 
Event Tags Description 

Monitoring Point Events   
Analytical Range MF Filtrate Turbidity   MF Filtrate Turbidity is 

monitored to ensure 
recorded values fall within 
the analytical range of the 

turbidimeter 
 
C.4 Future Development for RO Event Detection 
Additional RO events that would be useful for full-scale implementation of an EDS are listed in 
Table C-3 below. The recommended events for future development focus on monitoring the 
accuracy of each of the feed and permeate EC and TOC analyzers. A stagnant data event like the 
MF monitoring point event (see Chapter 4 for details) should be configured for each of the feed 
and permeate EC and TOC analyzers. As described in the future development sections for the 
ozone and MF processes, a Pecos range test configured with bounds for the analytical limits of 
the EC and TOC analyzers should be incorporated. To identify the occurrence of potential meter 
drift, the logic applied to the RO monitoring point event described in Chapter 4 should be 
implemented for the RO feed and permeate TOC and EC analyzers. If the RO feed TOC or EC 
meter was to drift down to measurements that are less than the true value, the calculated 
TOC/EC LRV would also decline because the permeate TOC/EC would continue reading a stable, 
true value. In contrast, if the RO permeate TOC meter was to drift down to values lower than 
the true value, the calculated TOC removal would drift high because the feed TOC would 
continue reading a stable, true value. By using the known relationship between feed and 
permeate TOC/EC measurements and the corresponding LRV, it is possible to detect when a 
meter is reporting abnormal values that do not following the expected trend. 

Table C-3. RO Events for Future Implementation. 
Event Tags Description 

Monitoring Point Events   
Outside of analytical range  All TOC and EC meters  Meter data is tested to ensure the values 

reported remain within the range of physically 
possible values. The analytical range is meter-

specific.  
Potential Feed TOC Meter Drift 

(Low) 
• Feed TOC 
• RO TOC Removal 

For typical water quality, the TOC LRV is 
expected to remain relatively constant. Thus, if 
the feed TOC decreases, it is expected that the 
permeate TOC would also decrease such that 
the TOC LRV remains relatively constant. If a 

decrease in feed TOC below historical levels is 
observed while the TOC LRV also decreases 

below the historical operating range, then it is 
possible that the feed TOC meter is drifting low. 
This event would prompt an operator to check 

the feed TOC meter calibration.   
Potential Permeate TOC Meter 

Drift (Low) 
• Permeate TOC 
• RO TOC Removal 

For typical water quality, the TOC LRV is 
expected to remain relatively constant. Thus, if 
the permeate TOC decreases, it is expected to 

be caused by a decrease in feed TOC. If a 
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decrease in permeate TOC below historical 
levels is observed while the TOC LRV also 
increases above historical levels, then it is 

possible that the permeate TOC meter is drifting 
low. This event would prompt an operator to 
check the permeate TOC meter calibration. 

Potential Feed EC Meter Drift 
(Low) 

• Feed EC 
• RO EC Removal 

For typical water quality, the EC LRV is expected 
to remain relatively constant. Thus, if the feed 
EC decreases, it is expected that the permeate 
EC would also decrease such that the EC LRV 

remains relatively constant. If a decrease in feed 
EC below historical levels is observed while the 
EC LRV also decreases below historical levels, 

then it is possible that the feed EC meter is 
drifting low. This event would prompt an 

operator to check the feed EC meter calibration.   
Potential Feed EC Meter Drift 

(High) 
• Feed EC 
• RO EC Removal 

For typical water quality, the EC LRV is expected 
to remain relatively constant. Thus, if the feed 
EC increases, it is expected that the permeate 
EC would also increase such that the EC LRV 
remains relatively constant. If an increase in 

feed EC above historical levels is observed while 
the EC LRV also increases above historical levels, 

then it is possible that the feed EC meter is 
drifting high. This event would prompt an 

operator to check the feed EC meter calibration.   
Potential Permeate EC Meter 

Drift (Low) 
• Permeate EC 
• RO EC Removal 

For typical water quality, the EC LRV is expected 
to remain relatively constant. Thus, if the 

permeate EC decreases, it is expected that the 
feed EC would also decrease such that the EC 

LRV remains relatively constant. If a decrease in 
permeate EC below historical levels is observed 
while the EC LRV increases above the historical 

operating range, then it is possible that the 
permeate EC meter is drifting low. This event 

would prompt an operator to check the 
permeate EC meter calibration.   

Potential Permeate EC Meter 
Drift (High) 

• Permeate EC 
• RO EC Removal 

For typical water quality, the EC LRV is expected 
to remain relatively constant. Thus, if the 

permeate EC increases, it is expected that the 
feed EC would also increase such that the EC 

LRV remains relatively constant. If an increase in 
permeate EC above historical levels is observed 
while the EC LRV decreases below the historical 

operating range, then it is possible that the 
permeate EC meter is drifting high. This event 

would prompt an operator to check the 
permeate EC meter calibration.   
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C.5 Future Development for UV/AOP Event Detection 
Future work on event detection within the UV/AOP process should include the implementation 
of the events listed in Table C-4. The UVT meter, flow meter, and chlorine analyzers are all 
instruments with measurement ranges that the EDS should monitor with analytical range event 
logic. 

Oxidant dose is a key parameter for ensuring that AOP criteria are met and the design sodium 
hypochlorite dose at the NCPWDF is 1.0 mg/L. Oxidant dosing is monitored by measurements 
taken by a free chlorine analyzer and the difference between total chlorine measurements 
before and after the sodium hypochlorite injection point. If either of these free chlorine 
readings are below 1.0 mg/L, a process failure of the chemical dosing system is potentially 
occurring.  

The calculated difference between these sources for free chlorine measurements allows for 
confirmation of the accuracy of the primary free chlorine meter. If the difference becomes 
larger than a maximum threshold of 20%, an error in one of the meters may have occurred and 
an alert should be generated by the EDS to check the calibration of each meter. 

Table C-4. UV/AOP Events for Future Implementation. 
Event Tags Description 

Process Failure Events   
Low Oxidant Concentration • RO Permeate Total 

Chlorine 
• UV Feed Total Chlorine 
• UV Feed Free Chlorine 

The measured oxidant 
concentration from the 

free chlorine analyzer and 
difference between the 

total chlorine analyzers is 
lower than the operating 

bound indicating that 
there is a potential issue 
with the chemical dosing 

system. 
Monitoring Point Events 

Outside of Analytical Range  All analyzers and 
instrumentation 

Measured data is 
monitored for erroneous 
reporting outside of the 

analytical range specified 
by the manufacturer. 

Oxidant Dose Monitoring Point 
Failure 

• RO Permeate Total 
Chlorine 

• UV Feed Total 
Chlorine 

• UV Feed Free Chlorine 
 

The difference between 
free chlorine readings 

from primary and 
reference chlorine 

analyzers exceeds the 
acceptable threshold 

indicating that at least one 
of the meters needs 

maintenance or requires 
calibrating. 
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APPENDIX D 

DPR Early Event Detection Python Script Deployed at 
NCPWDF 
The code repository for the EDS implemented at NCPWDF can be accessed via the WRF 4954 
project page on waterrf.org. The two Python scripts developed for the analysis are also 
included in Figures D-1 and D-2 below.  

""" 

Create dashboard to identify events in direct potable reuse (DPR) systems. 

Author(s): Billy Raseman and Nolan Townsend 

 

Description: script to be deployed at the City of San Diego Pure Water North City DPR Demonstration 

Facility as part of Water Research Foundation (WRF) Project 4954. This script uses data from the 

demonstration facility and open source Python packages to create a dashboard that identifies events in the 

DPR system. The dashboard is intended to be used by operators to identify events and to help inform the 

development of an automated event detection system. 

 

Acknowledgements: this project is a collaboration between Hazen & Sawyer and Trussell Technologies with 

support from the City of San Diego and WRF. 

""" 

 

# Import functions from other scripts 

from datetime import datetime, timedelta 

from library import * 

 

# Common Python packages 

from loguru import logger 

import pandas as pd 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

import numpy as np 

import os 

import pecos 

import json 

from plyer import notification 

 

# Pecos is a python package for performing automated quality control of time series data. 

# It is designed to work with data stored in pandas DataFrames and Series. 

# Pecos contains tools for: 

# 1. Automatically detecting and flagging anomalies in time series data 

# 2. Calculating performance metrics for time series data 
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# 3. Generating summary statistics and plots for time series data 

# 4. Generating HTML reports for time series data 

# 5. Performing quality control on time series data 

 

############################################# USER INPUTS ############################################# 

## SQL database connection information 

# NOTE REMOVED DATABASE CONNECTION INFO 

server =  

database =  

username =  

password =  

driver =  

table =  

datetime_col =  

 

## User defined run mode and outputs 

save_plots = True  # save plots as png files 

notify = True  # send notifications 

# run_now = False  # run script in live mode (True) or historical mode (False) 

 

## User defined paths 

path_config = r"config.xlsx" 

results_directory = 'example_1'  # name of results directory 

path_working = os.getcwd() 

path_events_json = os.path.join(path_working, 'events.json') 

 

# ## User defined parameters 

# ## Note: most data beings the week of September 12, 2022.  

# ##  Additional tags for ozone and RO were added the week of March 20, 2023 and in June 2023.  

# user_datetime_start = "5/24/2023 12:00:00"  # start datetime for historical mode 

# user_datetime_end = "5/24/2023 14:00:00"  # end datetime for historical mode 

 

############################################# END USER INPUTS ######################################### 

 

def main ():  

 

    # # Use current datetime if run_now == True, otherwise use user input 

    # if run_now == True: 

    #     datetime_start_init = datetime.now() - timedelta(days=0.5)  # start datetime for live mode 

    #     datetime_start_round = datetime_start_init.replace(second=0, microsecond=0) 

    #     datetime_start = datetime.strftime(datetime_start_round, '%Y-%m-%d %H:%M:%S') 

 

    #     datetime_end_init = datetime.now()  # end datetime for live mode 

    #     datetime_end_round = datetime_end_init.replace(second=0, microsecond=0) 

    #     datetime_end = datetime.strftime(datetime_end_round, '%Y-%m-%d %H:%M:%S') 
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    # else:  # user input for historical mode 

    datetime_start = user_datetime_start 

    datetime_end = user_datetime_end 

 

    # Check that datetime_start and datetime_end are in the correct format 

    datetime_start = check_datetime_format(datetime_start) 

    datetime_end = check_datetime_format(datetime_end) 

 

    # Check that datetime_start is before datetime_end 

    check_datetime_order(datetime_start, datetime_end) 

 

    # Read in configuration file data 

    logger.info('Reading data from configuration file.') 

 

    ## Read in Tags and Events tables from config file 

    df_tags = pd.read_excel(path_config, sheet_name='Tags') 

    check_tags_table(df_tags) 

    df_events = pd.read_excel(path_config, sheet_name='Events') 

    check_events_table(df_events) 

 

    ## Create engine to connect to project's SQL database  

    logger.info('Creating engine for SQL database.') 

    engine = create_engine(driver, server, database, username, password) 

 

    ## Check for TagIDs in config file that are not in the database 

    check_tagids_missing_from_sql(engine, df_tags, table, datetime_col, datetime_start, datetime_end) 

 

    ## Convert Tag and TagID columns to a dictionary 

    tag_dict = dict(zip(df_tags['TagID'], df_tags['Tag (Units)'])) 

 

    ## Convert Event and EventID columns to a dictionary 

    event_dict = dict(zip(df_events['EventID'], df_events['TagIDs'])) 

    event_dict = convert_items_to_list_of_ints(event_dict) # convert items to list of ints 

    event_flags = dict.fromkeys(range(1, len(event_dict) + 1), False) # initialize event flags to False 

 

    # Read in data from SQL database 

 

    ## Only include datetime range that is specified 

    tagid_set = set(tag_dict.keys())  # only include TagIDs that are in the config file 

    logger.info(f'Querying data from SQL database between {datetime_start} and {datetime_end}.') 

    df = create_df_from_sql(engine, table, datetime_start, datetime_end, tagid_set, datetime_col) 

 

    # Add Tag to SQL data based on TagID using the tag_dict dictionary 

    df['Tag'] = df['TagID'].map(tag_dict) 
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    df1 = df[['Datetime', 'Tag', 'Value']]  # only keep Datetime, Tag, and Value columns 

 

    # Pivot dataframe to wide format (required for Pecos logic) 

    ## Wide format: each Tag is a column (e.g., 'RO Feed TOC', 'UV Dose', etc.) 

    df_wide = df1.pivot(index='Datetime', columns='Tag', values='Value').reset_index() 

    df_wide = df_wide.set_index('Datetime') 

 

    # Check for missing columns in dataframe 

 

    ## Begin with production status tags 

    logger.info('Checking for missing production status tags in dataframe.') 

 

    tag_plant_status = tag_dict[43] 

    tag_mf_status = tag_dict[64] 

    tag_bac1_status = tag_dict[48] 

    tag_bac2_status = tag_dict[49] 

 

    status_tags = [tag_plant_status, tag_mf_status, tag_bac1_status, tag_bac2_status] 

 

    # Check for missing columns for each production status tag 

    check_for_missing_status_tag(df_wide, tag_plant_status)  # Plantwide status 

    check_for_missing_status_tag(df_wide, tag_mf_status)  # MF status 

    check_for_missing_status_tag(df_wide, tag_bac1_status)  # BAC1 status 

    check_for_missing_status_tag(df_wide, tag_bac2_status)  # BAC2 status 

 

    ## Next check value tags 

    logger.info('Checking for missing value tags in dataframe.') 

 

    # Check for missing columns for each value tag. If all tags are missing, then set event flag to True. 

    for eventid in event_dict: 

        tagids = event_dict[eventid] 

        for tagid in tagids: 

            check_for_missing_value_tag(df_wide, tag_dict, tagid) 

        event_flags[eventid] = check_all_tags_missing_for_event(df_wide, tag_dict, event_dict[eventid]) 

 

    # For tags related to error or difference calculations, modify the data to be the absolute value of 

error/difference.  

    # This is to ensure that the data is always positive to avoid errors in the Pecos logic. 

    tags_err_diff = [tag_dict[86], tag_dict[67], tag_dict[91], tag_dict[92]] 

    logger.info(f'Modifying data for error/difference tags. Calculating absolute value for 

{tags_err_diff}.') 

 

    for tag in tags_err_diff: 

        df_wide[tag] = df_wide[tag].abs() 
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    # RO events: create calculated columns for RO events 

    logger.info('Creating calculated columns for RO events.') 

    name_ro_process = 'RO Process Event'  # column name for new tag 

    name_ro_wq1 = 'RO Water Quality Event' 

    name_ro_monitoring = 'RO Monitoring Event' 

 

    # Create new column for RO Process event: 

    # If RO Combined Permeate TOC > 50 ppb & RO Train A Permeate Conductivity > 125 ppb & RO Train B 

Permeate Conductivity > 125 ppb,  

    # then RO Process = 1, else 0.  

    cond1 = (df_wide[tag_dict[15]] > 50) | (df_wide[tag_dict[15]].isna()) 

    cond2 = (df_wide[tag_dict[29]] > 125) | (df_wide[tag_dict[29]].isna()) 

    cond3 = (df_wide[tag_dict[31]] > 125) | (df_wide[tag_dict[31]].isna()) 

    df_wide[name_ro_process] = np.where(cond1 & cond2 & cond3, 1, 0) 

    del cond1, cond2, cond3 

 

    # Create new column for RO Monitoring event: 

    # If RO Feed TOC < 3780 ppb & RO LRV via TOC < 2.1, then RO Monitoring = 1, else 0.  

    cond1 = (df_wide[tag_dict[1]] < 3780) | (df_wide[tag_dict[1]].isna()) 

    cond2 = (df_wide[tag_dict[17]] < 2.1) | (df_wide[tag_dict[17]].isna()) 

    df_wide[name_ro_monitoring] = np.where(cond1 & cond2, 1, 0) 

    del cond1, cond2 

 

    # Create new column for RO Water Quality event: 

    # If RO Combined Permeate TOC > 50 ppb & RO Train A Permeate Conductivity < 125 ppb & RO Train B 

Permeate Conductivity < 125 ppb, 

    # then RO Water Quality = 1, else 0. 

    cond1 = (df_wide[tag_dict[15]] > 50) | (df_wide[tag_dict[15]].isna()) 

    cond2 = (df_wide[tag_dict[29]] < 125) | (df_wide[tag_dict[29]].isna()) 

    cond3 = (df_wide[tag_dict[31]] < 125) | (df_wide[tag_dict[31]].isna()) 

    df_wide[name_ro_wq1] = np.where(cond1 & cond2 & cond3, 1, 0) 

    del cond1, cond2, cond3 

 

    # Ozone events: create calculated columns for Ozone events 

    logger.info('Creating calculated columns for Ozone events.') 

    name_ozone_wq1 = 'Ozone Water Quality Event' 

 

    # Create new column for Ozone Water Quality event: 

 

    # If OSP 4 Hach Meter and rolling average difference is LESS than 10%,  

    # and OSP 7 Hach Meter and rolling average difference is LESS than 10%, 

    # and ozone production error is LESS than 10%,  

    # and ozone demand is greater than 6.0 mg/L,  

    # then Ozone Water Quality = 1, else 0. 

    # If any values are empty, assume they violate the condition. 
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    cond1 = (df_wide[tag_dict[91]] < 0.1)  # don't apply missing value logic here 

    cond2 = (df_wide[tag_dict[92]] < 0.1)  # don't apply missing value logic here 

    cond3 = (df_wide[tag_dict[86]] < 0.1)  # don't apply missing value logic here 

    cond4 = (df_wide[tag_dict[59]] > 6.0) | (df_wide[tag_dict[59]].isna()) 

    df_wide[name_ozone_wq1] = np.where(cond1 & cond2 & cond3 & cond4, 1, 0) 

    del cond1, cond2, cond3, cond4 

 

    # Create dashboard based on Pecos results 

    dashboard_content = {} # Initialize the dashboard content dictionary 

    logger.info('Implementing Pecos tests.') 

 

    # Create dictionary of primary event tags (the ones that are used to determine if an event is 

occurring) 

    primary_event_tags = create_primary_event_tags_dict(event_dict, tag_dict, name_ro_process, 

name_ro_monitoring, name_ro_wq1, name_ozone_wq1) 

 

    # Loop through the events in df_events 

    list_detected_events = [] # Initialize list of detected events 

    num_events = df_events.shape[0] 

    for i in range(0, num_events): 

 

        ## Get values for this EventID from df_events 

        eventid = df_events['EventID'][i] 

        event_text = df_events['Event Text'][i] 

        event_process = df_events['Event Process'][i] 

        event_type = df_events['Event Type'][i] 

 

        ## Get tags for this event from dictionary 

        event_tagids = event_dict[eventid] 

        if len(event_tagids) == 0: 

            is_empty = True 

        else: 

            is_empty = False 

        event_tags = [tag_dict[tagid] for tagid in event_tagids] 

         

        ## For events with calculated columns, add the calculated column name to the list of tags (in 

front) 

        if eventid == 5: 

            event_tags.insert(0, name_ro_process) 

        elif eventid == 6: 

            event_tags.insert(0, name_ro_monitoring) 

        elif eventid == 7: 

            event_tags.insert(0, name_ro_wq1) 

        elif eventid == 15: 

            event_tags.insert(0, name_ozone_wq1) 
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        ## Initialize event flag 

        if is_empty == True: 

            # If event is not applicable just store placeholder text 

            content = { 'text': event_text } 

            dashboard_content[(event_process, event_type)] = content 

        else:  

            # Create new Pecos PerformanceMonitoring object 

            pm = pecos.monitoring.PerformanceMonitoring() 

            event_and_status_tags = event_tags + status_tags  # only keep value tags needed for the event 

plus all status tags 

            df_wide_event = df_wide[event_and_status_tags]  # subset data to only include tags for this 

event 

            pm.add_dataframe(df_wide_event)  # add data to Pecos object 

 

            ## Timefilter 

            time_filter_system = pm.data[tag_plant_status] == 1 

            pm.add_time_filter(time_filter_system)  # add time filter when plantwide status is not 1 

(normal) 

 

            ## Check missing data 

            pm = pecos_check_missing(pm, event_tags) 

 

            # Apply process-specific time filters 

            if event_process == 'MF': 

                # Filter based on MF process status (if not in production) 

                time_filter_process1 = pm.data[tag_mf_status] == 1 

                pm.add_time_filter(time_filter_process1) 

            elif event_process == 'Ozone': 

                # Filter based on BAC process status (if not in production) 

                time_filter_process1 = pm.data[tag_bac1_status] == 1 

                pm.add_time_filter(time_filter_process1) 

                time_filter_process2 = pm.data[tag_bac2_status] == 1 

                pm.add_time_filter(time_filter_process2) 

 

            # Apply Pecos tests for each EventID 

            if eventid == 1:  

                # MF Process 

                pm.check_range(key=tag_dict[10], bound=[None, 0.15], min_failures=15) 

 

            elif eventid == 2:  

                # MF Monitoring 

                pm.check_increment(key=tag_dict[10], bound=[0.0001, None], min_failures=30) 

 

            elif eventid == 5:  
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                # RO Process event 

                pm.check_range(key=name_ro_process, bound=[None, 0], min_failures=30) 

                pm.check_range(key=tag_dict[15], bound=[None, 50], min_failures=30)  

                pm.check_range(key=tag_dict[29], bound=[None, 125], min_failures=15)  

                pm.check_range(key=tag_dict[31], bound=[None, 125], min_failures=15) 

 

            elif eventid == 6:  

                # RO Monitoring event 

                pm.check_range(key=name_ro_monitoring, bound=[None, 0], min_failures=30)  

                pm.check_range(key=tag_dict[1], bound=[3780, None], min_failures=30)   

                pm.check_range(key=tag_dict[17], bound=[2.1, None], min_failures=30)   

         

            elif eventid == 7: 

                # RO Water Quality 1 event 

                pm.check_range(key=name_ro_wq1, bound=[None, 0], min_failures=30)  

                pm.check_range(key=tag_dict[15], bound=[None, 50], min_failures=30) 

                pm.check_range(key=tag_dict[29], bound=[125, None], min_failures=5) 

                pm.check_range(key=tag_dict[31], bound=[125, None], min_failures=5)   

 

            elif eventid == 9:  

                # UVAOP Process 

                pm.check_range(key=tag_dict[40], bound=[300, None], min_failures=5)  

 

            elif eventid == 10: 

                # UVAOP Monitoring 

                # pm.check_increment(key=tag_dict[65], bound=[0.01, None], min_failures=15)  / in 

documentation 

                pm.check_increment(key=tag_dict[65], bound=[0.01, None], min_failures=30)  

 

            elif eventid == 11: 

                # UVAOP Water Quality 1 

                pm.check_range(key=tag_dict[32], bound=[96, None], min_failures=15)  

 

            elif eventid == 12: 

                # UVAOP Water Quality 2 

                pm.check_range(key=tag_dict[83], bound=[None, 1], min_failures=15)  

 

            elif eventid == 13: 

                # Ozone Process 

                pm.check_range(key=tag_dict[86], bound=[None, 0.05], min_failures=15) 

 

            elif eventid == 14: 

                # Ozone Monitoring 

                pm.check_range(key=tag_dict[67], bound=[None, 0.1], min_failures=15) 
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            elif eventid == 15: 

                # Ozone Water Quality 1 

                pm.check_range(key=name_ozone_wq1, bound=[None, 0], min_failures=15) 

                pm.check_range(key=tag_dict[91], bound=[0.1, None], min_failures=2) 

                pm.check_range(key=tag_dict[92], bound=[0.1, None], min_failures=2) 

                pm.check_range(key=tag_dict[86], bound=[0.1, None], min_failures=2) 

                pm.check_range(key=tag_dict[59], bound=[None, 6.0], min_failures=15) 

            else: 

                logger.warning(f'Incorrect logic for EventID {eventid}') 

 

            # Compute metrics 

            mask = pm.mask[event_tags] 

            QCI = pecos.metrics.qci(mask, pm.tfilter) 

 

            # If QCI is less than 1, then flag the event 

            if QCI[primary_event_tags[eventid]] < 1: 

                event_flags[eventid] = True 

 

            # Define output files and subdirectories for this event 

            results_subdirectory = os.path.join(results_directory, event_process+'_'+event_type) 

            reset_directory(results_subdirectory)  # reset directory if it already exists. If it doesn't 

exist, create it. 

            graphics_file_rootname = os.path.join(results_subdirectory, 'test_results') 

            custom_graphics_file = os.path.abspath(os.path.join(results_subdirectory, 'custom.png')) 

            test_results_file = os.path.join(results_subdirectory, 'test_results.csv') 

            colorblock_graphics_file = os.path.abspath(os.path.join(results_subdirectory, 

'colorblock.png')) 

            report_file =  os.path.join(results_subdirectory, 'monitoring_report.html') 

 

            # Create plots 

            test_results_graphics = pecos.graphics.plot_test_results(pm.data, pm.test_results, 

                                        pm.tfilter, filename_root=graphics_file_rootname) 

             

            # Log event and modify colorblock if event is occurring 

            if event_flags[eventid]: 

                logger.critical(f'Alert: {event_text} event is occurring, take action!') 

                list_detected_events.append(f'{event_text}') 

                color = 0  # fill in colorblock if event is occurring 

            else: 

                color = 1  # otherwise, keep colorblock gray 

 

            # Create colorblock plot 

            pecos.graphics.plot_heatmap(pd.Series(color), vmin=0.9999, vmax=1, 

cmap=mpl.colors.ListedColormap(['magenta','lightgray']))  # colorblock (magenta or gray) 

            plt.savefig(colorblock_graphics_file, dpi=90, bbox_inches='tight', pad_inches = 0.1) 
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            # Create timeseries plot each tag in the event to show the raw data 

            if save_plots: 

                df_plot = df1[df1['Tag'].isin(event_tags)] 

 

                # If df_plot is empty, create a dummy plot 

                if df_plot.empty:  # If no data, create an empty png 

                    fig, ax = plt.subplots() 

                    ax.axis('off') 

                    ax.axis('tight') 

                    ax.text(0.5, 0.5, 'No data to display', horizontalalignment='center', 

verticalalignment='center', transform=ax.transAxes) 

                else:  # Create a facet plot of the data 

                    facetplot_by_tag(df_plot) 

 

                plt.savefig(custom_graphics_file, format='png', dpi=250, bbox_inches='tight') 

 

            # Write test results and report files 

            pecos.io.write_test_results(pm.test_results, test_results_file) 

            pecos.io.write_monitoring_report(data=pm.data,  

                                             test_results=pm.test_results,  

                                             test_results_graphics=test_results_graphics, 

                                             custom_graphics=[custom_graphics_file],  

                                             metrics=QCI,  

                                             title=event_text, 

                                             filename=report_file) 

             

            # Close plots 

            plt.close('all')  

 

            ## Write CSS to report file 

            with open(report_file, 'a') as f: 

                css_file = os.path.join(path_working, 'style2.css') 

                html_content = f'<link rel="stylesheet" type="text/css" href="{css_file}">\n' 

                logo_file = os.path.join(path_working, 'logo_all.png') 

                html_content += f'<div style="height: 50px; display: flex; flex-direction: row; align-

items: center; justify-content: flex-start;"> <img style="height: 50px; width: 355px !important;" 

src="{logo_file}" alt="logo"></div>\n' 

                f.write(html_content) 

 

            # Store content to be displayed in the dashboard 

            content = { 'text': event_text, 

                        'graphics': [colorblock_graphics_file], 

                    'link': {'Link to Report': os.path.abspath(report_file)}} 

            dashboard_content[(event_process, event_type)] = content 
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    # Create/update dashboard  

    logger.info('Writing Pecos results to dashboard.')   

    events = ['Process', 'Monitoring', 'Water Quality 1', 'Water Quality 2'] 

    processes = ['MF', 'RO', 'UVAOP', 'Ozone'] 

    dashboard_file = f'dashboard_{results_directory}.html' 

 

    pecos.io.write_dashboard(column_names=events, row_names=processes,  

                             content=dashboard_content, title='Direct Potable Reuse Monitoring Dashboard', 

                            filename=dashboard_file) 

 

    ## Write CSS to dashboard file 

    path_dashboard_file = os.path.join(path_working, dashboard_file) 

    with open(path_dashboard_file, 'a') as f: 

        css_file = os.path.join(path_working, 'style1.css') 

        html_content = f'<link rel="stylesheet" type="text/css" href="{css_file}">\n' 

        logo_file = os.path.join(path_working, 'logo_all.png') 

        html_content += f'<div style="height: 50px; display: flex; flex-direction: row; align-items: 

center; justify-content: flex-start;"> <img style="height: 50px; width: 355px !important;" 

src="{logo_file}" alt="logo"></div>\n' 

        f.write(html_content) 

 

    # Send notification if any new events have occurred since last time script was run 

    logger.info('Checking event flags and sending notifications, if necessary.') 

    if notify == True:  # only send notifications if script is running live 

        # Read in events from previous run 

        if os.path.exists(path_events_json): 

            with open(path_events_json, 'r') as f: 

                events_json = json.load(f) 

        else: 

            events_json = {'events': []} 

 

        # Check if any new events have occurred 

        list_new_events = [] 

        for event in list_detected_events: 

            if event not in events_json['events']: 

                list_new_events.append(event) 

 

        # If new events have occurred, send notification 

        if len(list_new_events) > 0: 

            logger.info('New event(s) detected. Sending notification.') 

            message = f"New event(s) detected. Refresh the dashboard to review the events: 

{list_new_events}" 

            notification.notify(title="Alert!", message=message) 

            events_json['events'] = list_detected_events  # update events_json 
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            with open(path_events_json, 'w') as f: 

                json.dump(events_json, f) 

        else: 

            logger.info('No new events have occurred since last time script was run.') 

 

if __name__ == '__main__': 

     

    # Initialize logger in current working directory 

    path_log = os.path.join(path_working, 'dashboard.log') 

    logger.add(path_log, retention='365 days', level='INFO', rotation='30 days', compression='zip') 

 

    # Run the main function for 24 hour time periods 

    # This is to test the script for a full month of data. 

    # After running the script each time, pause for user input to continue to the next time period. 

 

    start_datetime = datetime(2023, 5, 18, 0, 0, 0) 

    end_datetime = datetime(2023, 5, 18, 23, 59, 59) 

 

    # For loop to run the main function for each 24 hour time period 

    for i in range(31): 

 

        # Convert datetime to "YYYY-MM-DD HH:MM:SS" format 

        user_datetime_start = start_datetime.strftime("%Y-%m-%d %H:%M:%S") 

        user_datetime_end = end_datetime.strftime("%Y-%m-%d %H:%M:%S") 

 

        # Run main function 

        main() 

 

        # Pause for user input to continue to the next time period 

        input("Press Enter to continue to next time period...") 

 

        # Increment start and end datetimes by 24 hours 

        start_datetime += timedelta(days=1) 

        end_datetime += timedelta(days=1) 
Figure D-1.  Python Script “main.py” for EDS Dashboard. 
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""" 

Library of functions for the dashboard. 

""" 

 

# Import libraries 

import os 

import sys 

import numpy as np 

import sqlalchemy as sa 

import urllib 

import pandas as pd 

import seaborn as sns 

from loguru import logger 

 

# User defined functions 

def check_datetime_format(datetime): 

    """Check that datetime is in the correct format.""" 

    try: 

        datetime = pd.to_datetime(datetime) 

    except: 

        logger.error(f'Datetime {datetime} is not in the correct format. Please enter a datetime in the 

format "mm/dd/yyyy hh:mm:ss".') 

        raise 

    return datetime 

 

def check_datetime_order(datetime_start, datetime_end): 

    """Check that datetime_start is before datetime_end.""" 

    if datetime_start > datetime_end: 

        logger.error(f'Datetime {datetime_start} is after {datetime_end}. Please enter a datetime_start 

that is before datetime_end.') 

        raise 

 

def check_tags_table(df): 

    """ 

    Check that tags table has been loaded correctly from the configuration file.  

 

    Args:  

    df (pandas.DataFrame): Dataframe of tags table. 

 

    If tags table is not loaded correctly, log a warning. 

    """ 

 

    # Check that df is a dataframe 

    if not isinstance(df, pd.DataFrame): 

        logger.warning('check_tags_table(): df is not a dataframe.') 
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    # Check that there are rows in the dataframe 

    if df.shape[0] == 0: 

        logger.warning('check_tags_table(): df is empty.') 

 

    # Check that columns include TagID, Tag, Process, and Units 

    if 'TagID' not in df.columns: 

        logger.warning('check_tags_table(): TagID column not found in tags table.') 

    if 'Tag' not in df.columns: 

        logger.warning('check_tags_table(): Tag column not found in tags table.') 

    if 'Process' not in df.columns: 

        logger.warning('check_tags_table(): Process column not found in tags table.') 

    if 'Units' not in df.columns: 

        logger.warning('check_tags_table(): Units column not found in tags table.') 

 

    # Check that TagID column is type int 

    if df['TagID'].dtype != 'int64': 

        logger.warning('check_tags_table(): TagID column is not type int64.') 

     

    # Check that Tag column is type str 

    if df['Tag'].dtype != 'object': 

        logger.warning('check_tags_table(): Tag column is not type object.') 

 

    # Check that Process column is type str 

    if df['Process'].dtype != 'object': 

        logger.warning('check_tags_table(): Process column is not type object.') 

 

    # Check that Units column is type str 

    if df['Units'].dtype != 'object': 

        logger.warning('check_tags_table(): Units column is not type object.') 

 

    # Check that TagID column is unique 

    if not df['TagID'].is_unique: 

        logger.warning('check_tags_table(): TagID column is not unique.') 

 

    # Check that Tag column is unique 

    if not df['Tag'].is_unique: 

        logger.warning('check_tags_table(): Tag column is not unique.') 

 

    return 

 

def check_events_table(df):  

    """ 

    Check that events table has been loaded correctly from the configuration file. 
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    Args: 

        df (pandas.DataFrame): Dataframe of events table. 

 

    If events table is not loaded correctly, log a warning. 

    """ 

 

    # Check that df is a dataframe 

    if not isinstance(df, pd.DataFrame): 

        logger.warning('check_events_table(): df is not a dataframe.') 

 

    # Check that there are rows in the dataframe 

    if df.shape[0] == 0: 

        logger.warning('check_events_table(): df is empty.') 

 

    # Check that columns include Empty, EventID, Event Text, Event Process, and Event Type 

    if 'EventID' not in df.columns: 

        logger.warning('check_events_table(): EventID column not found in events table.') 

    if 'Event Text' not in df.columns: 

        logger.warning('check_events_table(): Event Text column not found in events table.') 

    if 'Event Process' not in df.columns: 

        logger.warning('check_events_table(): Event Process column not found in events table.') 

    if 'Event Type' not in df.columns: 

        logger.warning('check_events_table(): Event Type column not found in events table.') 

 

    # Check that EventID column is type int 

    if df['EventID'].dtype != 'int64': 

        logger.warning('check_events_table(): EventID column is not type int64.') 

 

    # Check that Event Text column is type str 

    if df['Event Text'].dtype != 'object': 

        logger.warning('check_events_table(): Event Text column is not type object.') 

 

    # Check that Event Process column is type str 

    if df['Event Process'].dtype != 'object': 

        logger.warning('check_events_table(): Event Process column is not type object.') 

     

    # Check that Event Type column is type str 

    if df['Event Type'].dtype != 'object': 

        logger.warning('check_events_table(): Event Type column is not type object.') 

 

    # Check that EventID column is unique 

    if not df['EventID'].is_unique: 

        logger.warning('check_events_table(): EventID column is not unique.') 

 

    return 
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def convert_items_to_list_of_ints(event_dict): 

    """ 

    Convert event dictionary items into a list of integers. 

    If an integer already, convert to list of integers. 

    If a string, convert to list of integers. 

    If empty, convert to empty list. 

    Otherwise, log an warning. 

     

    Args:  

        event_dict (dictionary): dictionary of event items to convert to a list of integers. 

 

    Returns: 

        event_dict (dictionary): dictionary of event items converted to a list of integers. 

     

    """ 

    # Check that parameter is a dictionary 

    if type(event_dict) != dict: 

        logger.error(f'Input argument is not a dictionary, it is {type(event_dict)}.') 

     

    # Convert dictionary items into a list of integers 

    for k, v in event_dict.items(): 

        if type(v) == int: 

            event_dict[k] = [v] 

        elif type(v) == str: 

            event_dict[k] = [int(i) for i in v.split(',')] 

        elif np.isnan(v): 

            event_dict[k] = [] 

        elif v == '': 

            event_dict[k] = [] 

        else: 

            logger.warning(f'Issue converting TagIDs {k} in Events table to a list of integers.') 

 

    return event_dict 

 

def create_engine(driver, server, database, username, password): 

    """ 

    Create engine with the project's SQL database. 

 

    Args: 

        driver (str): SQL driver name. 

        server (str): SQL server name. 

        database (str): SQL database name. 

        username (str): SQL username. 

        password (str): SQL password. 
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    Returns: 

        sqlalchemy.engine: Engine object for the project's SQL database. 

    """ 

 

    # Create SQL engine to read/write table data 

    cnxn_url= 

urllib.parse.quote_plus(f'DRIVER={driver};SERVER={server};DATABASE={database};UID={username};PWD={password

}') 

    engine = sa.create_engine(f'mssql+pyodbc:///?odbc_connect={cnxn_url}') 

 

    # Check the connection 

    try: 

        conn = engine.connect() 

        logger.info('Database connection test successful.') 

        conn.close() 

    except Exception as e: 

        logger.error(f'Database connection test failed: {e}') 

 

    return engine 

 

def check_tagids_missing_from_sql(engine, df, table, datetime_col, datetime_start, datetime_end): 

    """ 

    Compare the TagIDs in the SQL database to the TagIDs in the configuration file.  

    If there are TagIDs in the configuration file that are not found in the SQL database,  

    log a warning with the TagIDs that are missing from the database. 

 

    Args: 

        engine (sqlalchemy.engine.base.Engine): SQLAlchemy connection engine. 

        df (pandas.DataFrame): Dataframe of tags table. 

 

    Returns:  

        list_missing_tagids (list): List of TagIDs that are missing from the SQL database. 

    """ 

 

    ## Get a set of TagIDs from SQL database for datetime range 

    logger.info('compare_sql_config_tags(): querying TagIDs from SQL database.') 

    query1 = f'SELECT DISTINCT TagID FROM {table} WHERE {datetime_col} >= \'{datetime_start}\' AND 

{datetime_col} < \'{datetime_end}\'' 

    df_sql = pd.read_sql(query1, engine) 

    sql_tagids = set(df_sql['TagID'])  # convert from dataframe to a set 

 

    ## Get a set of TagIDs from config file 

    config_tagids = set(df['TagID']) 
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    ## Compare the two sets of TagIDs. If there are TagIDs in the config file that aren't found in the 

database, log a warning with the TagIDs that are missing from the database 

    if config_tagids.issubset(sql_tagids) == False: 

        missing_tagids = config_tagids - sql_tagids 

        logger.warning(f'The following TagIDs are missing from the database: {missing_tagids}') 

        list_missing_tagids = df[df['TagID'].isin(missing_tagids)] 

    else: 

        logger.info('All TagIDs in the config file are found in the database.') 

        list_missing_tagids = [] 

 

    return list_missing_tagids 

 

def create_df_from_sql(engine, table, datetime_start, datetime_end, tagid_set, datetime_col="[DateTime]"): 

    """ 

    Create a dataframe from a subset of the project's SQL database. 

 

    Args: 

        engine (sqlalchemy.engine): SQL engine to read/write table data. 

        table (str): SQL table name. 

        datetime_start (datetime): Start datetime for query. 

        datetime_end (datetime): End datetime for query. 

        tagid_set (set): Set of tagids to query. 

        datetime_col (str): Datetime column name in SQL database. 

 

    Returns: 

        pandas.DataFrame: Dataframe of SQL query results. 

 

    Warns: 

        UserWarning: If tagid_set cannot be converted to type set. 

    """ 

 

    # Convert tagid_set to type set, if cannot convert, log a warning 

    try: 

        tagid_set = set(tagid_set) 

    except: 

        logger.warning('create_df_from_sql(): tagid_set cannot be converted to a set.') 

     

    # Convert set to a string to pass to SQL query 

    tagid_str = '(' + ', '.join(str(e) for e in tagid_set) + ')' 

    print(tagid_str) 

    # Set up query 

    query= f'SELECT TagID, DateTime, Value FROM {table} WHERE {datetime_col} >= \'{datetime_start}\' AND 

{datetime_col} < \'{datetime_end}\' AND TagID IN {tagid_str}' 

 

    # Use pandas to query the database and return a pandas dataframe 



Integration of High-Frequency Performance Data for Microbial and Chemical Compounds Control in Potable  
Reuse Treatment Systems 159 

    sql_df = pd.read_sql(query, engine) 

 

    if datetime_col == '[DateTime]': 

        sql_df = sql_df.rename(columns={'DateTime':'Datetime'}) 

 

    # Truncate datetimes with seconds on the minute containing the seconds 

    sql_df['Datetime'] = pd.to_datetime(sql_df['Datetime']) 

    sql_df['Datetime'] = sql_df['Datetime'].dt.floor('min') 

 

    # Check if dataframe is empty. If so, log an error and exit the program. 

    if sql_df.empty: 

        logger.error(f'create_df_from_sql(): Error! No data found in {table} between {datetime_start} and 

{datetime_end}. Exiting program.') 

        sys.exit() 

 

    return sql_df 

 

def check_for_missing_status_tag(df_wide, tag): 

    """ 

    Check for missing columns in dataframe (df_wide) for each production status tag (tagid).  

    If a column is missing, log a warning and create a new column with all values set to 1.0. 

 

    Args: 

        df_wide (pandas.DataFrame): Dataframe with wide format. 

        tag (str): Tag name of production status tag. 

 

    Returns: 

        None 

    """ 

    if tag not in df_wide.columns: 

        logger.warning(f'The following column is missing from the dataframe: {tag}. Creating new column 

and setting all values to 1.0.') 

        df_wide[tag] = 1.0  # 1.0 = in production (assume in production for entire datetime range if 

column is missing) 

 

def check_for_missing_value_tag(df_wide, tag_dict, tagid): 

    """ 

    Check for missing columns in dataframe (df_wide) for each value tag (tagid). 

    If a column is missing, log a warning and create a new column with all values set to NaN. 

     

    Args:   

        df_wide (pandas.DataFrame): Dataframe with wide format. 

        tag_dict (dict): Dictionary of tagid:tagname. 

        tagid (int): TagID of value tag. 

 



160 The Water Research Foundation 

    Returns: 

        None 

    """ 

    tag = tag_dict[tagid] 

    if tag not in df_wide.columns: 

        logger.warning(f'The following column is missing from the dataframe: {tag}. Creating new column 

and setting all values to NaN.') 

        df_wide[tag] = np.nan  # create new column and set all values to NaN 

 

def check_all_tags_missing_for_event(df_wide, tag_dict, tagids): 

    """ 

    Check if all tags listed are missing. If so, then set event flag to True. 

 

    Args: 

        df_wide (pandas.DataFrame): Dataframe with wide format. 

        tag_dict (dict): Dictionary of tagid:tagname. 

        tagids (list): List of TagIDs. 

 

    Returns: 

        bool: True if all tags are missing, False if at least one tag is not missing. 

    """ 

    tags = [tag_dict[tagid] for tagid in tagids] 

 

    if not tags:  # if tags is empty return False 

        return False 

    elif all(tag not in df_wide.columns for tag in tags):  # if tags are not empty and all tags are 

missing, return True 

        logger.warning(f'All of the following columns are missing from the dataframe: {tags}. Setting 

event flag to True.') 

        return True 

    else: 

        return False 

     

def create_primary_event_tags_dict(event_dict, tag_dict, name_ro_process, name_ro_monitoring, name_ro_wq1, 

name_ozone_wq1): 

    """ 

    Create a dictionary of eventid:primary event tag. The primary event tag is the tag that is used to 

determine if the event is occurring or not. 

 

    Args: 

        event_dict (dict): Dictionary of eventid:tagids. 

        tag_dict (dict): Dictionary of tagid:tagname. 

        name_ro_process (str): Tag name of RO Process. 

        name_ro_monitoring (str): Tag name of RO Monitoring. 

        name_ro_wq1 (str): Tag name of RO WQ1. 
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        name_ozone_wq1 (str): Tag name of Ozone WQ1. 

 

    Returns: 

        dict: Dictionary of eventid:primary event tag. 

    """ 

    primary_event_tags = {} 

    for eventid in event_dict.keys(): 

        # If an event only has one tag, then that tag is the primary event tag 

        if len(event_dict[eventid]) == 1: 

            primary_event_tags[eventid] = tag_dict[event_dict[eventid][0]] 

        # If an event has multiple tags, set the primary event tag to the name of the calculated tag.  

        elif len(event_dict[eventid]) > 1: 

            if eventid == 5: 

                primary_event_tags[eventid] = name_ro_process 

            elif eventid == 6: 

                primary_event_tags[eventid] = name_ro_monitoring 

            elif eventid == 7: 

                primary_event_tags[eventid] = name_ro_wq1 

            elif eventid == 15: 

                primary_event_tags[eventid] = name_ozone_wq1 

            else:  

                logger.warning(f'create_primary_event_tags_dict(): Event {eventid} has multiple tags but 

no primary event tag has been defined.') 

        else: 

            primary_event_tags[eventid] = None             

     

    return primary_event_tags 

     

def pecos_check_missing(pm, event_tags): 

    """ 

    Apply Pecos check for missing data to the event tags. 

 

    Args: 

        pm (pecos.monitoring.Monitor): Pecos monitoring object. 

        event_tags (list): List of event tags. 

 

    Returns: 

        pm (pecos.monitoring.Monitor): Pecos monitoring object. 

    """ 

    for tag in event_tags: 

        pm.check_missing(tag) 

 

    return pm 

     

def facetplot_by_tag(df): 
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    """ 

    Create a multi-panel plot (facet plot) of the data. 

 

    Args: 

        df (pandas.DataFrame): Dataframe in tall format with columns: Datetime, Tag, Value. 

 

    Returns: 

        None. 

    """ 

 

    # Create the FacetGrid 

    g = sns.FacetGrid(data=df, col='Tag', hue='Tag', col_wrap=1, aspect=2.5, sharey=False) 

    g.map_dataframe(sns.lineplot, x='Datetime', y='Value') 

    g.set_axis_labels("", "") 

    g.add_legend() 

 

    # Rotate x-axis labels in FacetGrid 

    for ax in g.axes.flat: 

        for label in ax.get_xticklabels(): 

            label.set_rotation(90) 

 

# Folder management functions 

def reset_directory(folder_path): 

    """ 

    Deletes all files and subfolders in the specified folder. 

    If the folder does not exist, creates one. 

    """ 

    if not os.path.exists(folder_path): 

        os.makedirs(folder_path) 

    else: 

        for file_name in os.listdir(folder_path): 

            file_path = os.path.join(folder_path, file_name) 

            try: 

                if os.path.isfile(file_path): 

                    os.remove(file_path) 

                elif os.path.isdir(file_path): 

                    reset_directory(file_path) 

                    os.rmdir(file_path) 

            except Exception as e: 

                logger.warning(f"Error deleting {file_path}: {e}") 
Figure D-2. Python Script “library.py” with Library of Functions for the EDS Dashboard. 



Integration of High-Frequency Performance Data for Microbial and Chemical Compounds Control in Potable  
Reuse Treatment Systems 163 

References 
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, 
J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., 
Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., 
Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, 
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. 2015.  
TensorFlow: Large-scale machine learning on heterogeneous systems. USENIX Association, 12th 
USENIX Symposium on Operating Systems Design and Implementation 265-278.  

Affleck, M., Allen, G., Bozalongo, C.B., Brown, H., Gasson, C., Gasson, J., González-Manchón, C., 
Hudecova, M., McFie, A., Shuttleworth, H., Tan, M., Underwood, B., Uzelac, J., Virgili, F. and 
Walker., C.  2015.  Water’s Digital Future. Global Water intelligence. 

Bartos, M., Mullapudi, A. and Troutman, S.C.  2019.  “Implementation of the Robust Random 
Cut Forest algorithm for anomaly detection on streams.”  Journal of Open Source Software, 
4(35): 1336. 

Bartos, M. and Kerkez, B. 2021. “Observability-Based Sensor Placement Improves Contaminant 
Tracing In River Networks.” Water Resources Research, 57(7).   

Breitner, L. 2017.  Rejection of low molecular weight neutral organics by reverse osmosis 
membranes for potable reuse. University of New Mexico. 

Chen, E.C., Pisarenko, A.N., Kolakovsky, A., Howe, E.W., Trussell, R.S. and Trussell, R.R.  2020.  
“Evaluation of Four Dissolved Ozone Residual Meters' Performance and Disinfection Credits in 
Potable Reuse Applications”. Ozone-Science & Engineering, 42(3): 213-229. 

Dadakis, J. 2014.  Demonstration of GWRS process performance, San Diego, CA. 

Debroux, J. 2021.  Defining Potential Chemical Peaks and Management Options. Water 
Research Foundation, Project No. 4991. https://www.waterrf.org/research/projects/defining-
potential chemical-peaks-and-management-options 

Hall, J., Panguluri, S., Murray, R. and Burkhardt, J.  2017.  “CANARY Eases Water Quality Event 
Detection”. Opflow, 43(4): 30-32. 

Kaelin, D., Rieger, L., Eugster, J., Rottermann, K., Banninger, C. and Siegrist, H.  2008.  “Potential 
of in-situ sensors with ion-selective electrodes for aeration control at wastewater treatment 
plants”. Water Science and Technology, 58(3): 629-637. 

Klise, K.A., Stein, J.S. 2016. Automated Performance Monitoring for PV Systems using Pecos, 
43th Photovoltaic Specialists Conference (PVSC), Portland, OR, June 5-10. 

Klise, K.A. and McKenna, S.A. 2006a.  Multivariate applications for detecting anomalous water 
quality. 8th Annual Water Distribution Systems Analysis (WDSA) Symposium. Cincinnati, OH.: 
ASCE 

https://www.waterrf.org/research/projects/defining-potential
https://www.waterrf.org/research/projects/defining-potential


164 The Water Research Foundation 

Klise, K.A. and McKenna, S.A. 2006b. Water quality change detection: multivariate algorithms. 
SPIE Defense and Security Symposium. Orlando, FL.: SPIE 

Labbe Jr., R.R. 2015a.  FilterPy, GitHub. 

Labbe Jr., R.R. 2015b  Kalman and Bayesian Filters in Python, GitHub. 

Leow, A., Burkhardt, J., Platten, W.E., Zimmerman, B., Brinkman, N.E., Turner, A., Murray, R., 
Sorial, G. and Garland, J.  2017.  “Application of the CANARY event detection software for real-
time performance monitoring of decentralized water reuse systems.” Environmental Science-
Water Research &Technology, 3(2): 224-234. 

McKenna, S.A., Hart, D.B., Klise, K.A., Cruz, V.A. and Wilson, M.P. 2007. Event Detection from 
Water Quality Time Series. ASCE World Environmental and Water Resources Congress. Tampa, 
FL.: ASCE 

Nair, A.M., Fanta, A., Haugen, F.A. and Ratnaweera, H.  2019.  “Implementing an Extended 
Kalman Filter for estimating nutrient composition in a sequential batch MBBR pilot plant”. 
Water Science and Technology, 80(2): 317-328. 

Neemann, J., DeCarolis, J., ten Bosch, D., Snyder, S.A., Pepper, I.L. and Minkyu, P.  2019.  
Integrating Management of Sensor Data for a Real Time Decision Making and Response System. 
Water Environment & Reuse Foundation. 

Nilsson, P., Roser, D., Thorwaldsdotter, R., Petterson, S., Davies, C., Signor, R., Bergstedt, O. and 
Ashbolt, N.  2007.  “SCADA data and the quantification of hazardous events for QMRA”. J. 
Water Health, 5: 99-105. 

Patel, M. and Dadakis, J. 2018. Practical operational approaches to meet pathogen LRV 
requirements for GWRS, Monterey, CA. 

Pecson, B.M., Trussell, R.S., Pisarenko, A.N. and Trussell, R.R. 2015a. “Achieving Reliability in 
Potable Reuse: The Four Rs”. Journal - American Water Works Association. 

Pecson, B.M., Trussell, R.S., Pisarenko, A.N., Howe, E., Idica, E. and Triolo, S. 2015b. Draft 
Experimental Plan for Reliable Potable Reuse Demonstration.  

Pecson, B.M., Triolo, S.C., Olivieri, S., Chen, E.C., Pisarenko, A.N., Yang, C.C., Olivieri, A., Haas, 
C.N., Trussell, R.S. and Trussell, R.R.  2017.  “Reliability of pathogen control in direct potable 
reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train”. 
Water Research, 122: 258-268. 

Pecson, B.M., Chen, E.C., Triolo, S.C., Pisarenko, A.N., Olivieri, S., Idica, E., Kolakovsky, A., 
Trussell, R.S. and Trussell, R.R.  2018.  “Mechanical Reliability in Potable Reuse: Evaluation of an 
Advanced Water Purification Facility”. Journal - American Water Works Association, 110(4): 
E19-E28. 



Integration of High-Frequency Performance Data for Microbial and Chemical Compounds Control in Potable  
Reuse Treatment Systems 165 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., 
Perrot, M. and Duchesnay, É.  2011.  “Scikit-learn: Machine Learning in Python”. Journal of 
Machine Learning Research, 12: 2825-2830. 

Rajakumar, A.G., Kumar, M.S.M., Amrutur, B. and Kapelan, Z.  2019.  “Real-Time Water Quality 
Modeling with Ensemble Kalman Filter for State and Parameter Estimation in Water 
Distribution Networks”. J. Water Resour. Plan. Manage.-ASCE, 145(11). 

Snyder, S.A. and Pepper, I.L.  2016.  Monitoring for Reliability and Process Control of Potable 
Reuse Applications. Water Environment & Reuse Foundation. 

SWRCB, 2018. Regulations Related to Recycled Water. California Division of Drinking Water. 

State Water Board, 2021. DPR Framework 2nd edition Addendum – Early Draft of Anticipated 
Criteria for Direct Potable Reuse. 

Tackaert, R.A., Pisarenko, A.N., Chen, E.C., Kolakovsky, A., Pecson, B.M., Drewes, J.E., Trussell, 
R.R. and Trussell, R.S.  2019.  “Demonstrating process robustness of potable reuse trains during 
challenge testing with elevated levels of acetone, formaldehyde, NDMA, and 1,4-dioxane”. 
Journal of Water Supply: Research and Technology – AQUA, 68(5): 313-324. 

Taylor, S.J. and Letham, B.  2017.  Forecasting at scale. PeerJ Preprints 5. 

The Economist. 2018.  Python is becoming the world’s most popular coding language. 

Trussell, R.S., Pecson, B.M., Pisarenko, A.N., Idica, E.Y., Howe, E.W. and Trussell, R. 2017.  
Demonstrating redundancy and monitoring to achieve reliable potable reuse: Final Report for 
WE&RF Project 14-12 / WRF Project No. 4765. https://www.waterrf.org/research/projects/san-
diego-dpr 

U.S. EPA. 2005. Membrane Filtration Guidance Manual. 

U.S. EPA. 2010. Long Term 2 Enhanced Surface Water Treatment Rule Toolbox Guidance 
Manual. 

U.S. EPA  2012.  CANARY User’s Manual version 4.3.2.  EPA/600/R-08/040B. 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, 
E., Peterson, P., Weckesser, W., Bright, J., Walt, S.J.v.d., Brett, M., Wilson, J., Millman, K.J., 
Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, 
E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, 
C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., Mulbregt, P.v. and Contributors, S.  2020.  
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. Nature Methods, 
17(3): 261-272. 



166 The Water Research Foundation 

Walker, T., Stanford, B.D., Khan, S., Robillot, C., Snyder, S.A., Valerdi, R., Dwivedi, S. and Vickers, 
J.  2016. Critical Control Point Assessment to Quantify Robustness and Reliability of Multiple 
Treatment Barriers of a DPR Scheme. Water Environment & Reuse Foundation. 

Wickline, J. and Hopkinson, L.  2020.  “Detection of spills related to natural gas production”. 
Water Environ. Res., 92(8): 1104-1110. 

 


	Title Page
	Copyright-Disclaimer
	Acknowledgments
	Contents
	Tables
	Figures
	Acronyms and Abbreviations
	Executive Summary
	Chapter 1: Introduction
	1.1 Introduction
	1.2 Summary of Monitoring Advancements in WRF Projects
	1.3 Importance of Pathogen Control in DPR
	1.4 Response Time and Event Detection Systems
	1.5 Goals and Summary

	Chapter 2: Literature Review
	2.1 Utility Surveys
	2.2 Data Analysis for Engineering Applications
	2.3 Machine Learning, AI, and Statistical Modeling
	2.4 Statistical Process Control
	2.5 Literature Review Summary

	Chapter 3: Event Detection Framework
	3.1 Data Storage
	3.2 Data Screening
	3.3 Data Flagging
	3.4 Event Detection
	3.5 Guidance for Process Engineers
	3.6 Event Detection

	Chapter 4: Framework Implementation: City of San Diego
	4.1 Facility Description and Design Criteria
	4.2 Software and Data Workflow
	4.3 Ozone Configuration
	4.4 Microfiltration
	4.5 Reverse Osmosis
	4.6 UV/AOP Configuration
	4.7 Plant wide Configuration
	4.8 Event Notification
	4.9 Framework Implementation Summary

	Chapter 5: Implementation Testing and Validation
	5.1 Testing Methodology
	5.2 Testing Results
	5.3 Challenge Testing Summary

	Chapter 6: Project Conclusions
	6.1 Chapter 1 Conclusions—Need for EDS in DPR
	6.2 Chapter 2 Conclusions—Literature Review
	6.3 Chapter 3 Conclusions—Event Detection Framework
	6.4 Chapter 4 Conclusions—Tool Specifications
	6.5 Chapter 5 Conclusions—Proof-of-Concept
	6.6 Next Steps and Additional Considerations

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References



