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Abstract and Benefits 
Abstract: 

Real-time monitoring in sewersheds or wastewater influent has the potential to provide a 
critical early warning system to downstream processes and water quality. However, such 
monitoring also requires significant ongoing instrument maintenance and calibration. Expenses, 
such as auxiliary equipment and time for travel, maintenance, troubleshooting, and analysis, 
usually exceed the cost of the sensors themselves. These challenges can be barriers to the 
potential major benefits of real-time sewershed monitoring. In addition to an early warning 
system, real-time sewershed monitoring can detect and track down industrial discharges or 
other adverse water quality events back to their source. While broadly applicable to 
wastewater utilities, these benefits are especially important for potable reuse, where the water 
quality consequences can be significant.  

Previous WRF projects, most notably Steinle-Darling et al. 2022, Demonstrating Real-Time 
Collection System Monitoring for Potable Reuse, have explored this and closely related topics. 
That project found sensors that were resilient and accurate in other contexts required much 
more maintenance in sewersheds due to collection and buildup of debris, biofilm, etc. on 
sensors. More innovation was needed for resilient sensors, how to install them to minimizing 
fouling and ragging, and how to analyze the data to discern errors and real events. 
Furthermore, a step-by-step guide building upon lessons learned by pioneers in this area could 
enable utilities to achieve real-time sewershed monitoring with fewer setbacks.  

This new project (1) reviewed available sensors; (2) reviewed past related research reports 
including Steinle-Darling et al. 2020; (3) conducted new field testing on innovative sensors and 
sensor-holders; (4) reviewed enhanced source control programs and real-time monitoring 
programs (ESCPs) and synthesized how they could benefit each other; (5) applied machine 
learning to real-time wastewater influent and reuse data; and (6) culminated in a step-by-step 
framework for successful real-time monitoring. The report concluded that the challenges of 
real-time sewershed monitoring should not be understated but can be overcome with a clear 
goal and sufficient perseverance and resources, thus realizing the potential benefits of real-
time monitoring.  

Benefits: 

• This report will enable utilities to consider real-time sewershed monitoring with specific 
examples of what can be achieved but knowing the challenges and ongoing costs.  

• Through numerous real-time monitoring case studies, utilities can learn from the 
experiences of others. This includes both big picture lessons, such as the importance of 
goal-setting, but also details, such as what maintenance frequency to expect.  

• The framework (Chapter 8) serves as a step-by-step guide for utilities seeking to integrate 
real-time sewershed monitoring into ESCPs. 

  



vi The Water Research Foundation 

Contents 
Acknowledgments........................................................................................................................... iii 
Abstract and Benefits ....................................................................................................................... v 
Tables .............................................................................................................................................. ix 
Figures .............................................................................................................................................. x 
Acronyms and Abbreviations ......................................................................................................... xii 
Executive Summary ........................................................................................................................ xv 
  
Chapter 1: Introduction .................................................................................................................. 1 
 1.1 Background ............................................................................................................. 1 
 1.2 Objectives................................................................................................................ 4 
 1.3 Report Contents and Technical Approach .............................................................. 5 
 
Chapter 2: Review of Currently Available Real-Time Monitoring Tools ...................................... 7 
 2.1 Review of Currently Available Sensors ................................................................... 7 
 2.2 Summary of Related WRF Sensor Efforts ............................................................... 8 
 2.3 Coordination with WRF 4797 ................................................................................ 12 
 2.4 Experience with Sensors from Project Partners ................................................... 13 
  2.4.1 WRF–17-30/ DRPT-4908 ........................................................................... 13 
  2.4.2 s::can Installation Experiences at City of Phoenix .................................... 18 
 
Chapter 3: New Bench and Full-Scale Field Research ................................................................. 21 
 3.1 Clean Water Services Field Research .................................................................... 22 
  3.1.1 Introduction .............................................................................................. 22 
  3.1.2 Methods .................................................................................................... 22 
  3.1.3 Results and Discussion .............................................................................. 24 
 3.2 Morro Bay Field Research ..................................................................................... 29 
  3.2.1 Introduction .............................................................................................. 29 
  3.2.2 Equipment and Installation ....................................................................... 29 
  3.2.3 Methods .................................................................................................... 31 
  3.2.4 Probe Results ............................................................................................ 33 
 3.3 Los Angeles County Sanitation Districts Field Research ....................................... 43 
  3.3.1 Introduction .............................................................................................. 43 
  3.3.2 Equipment and Installations ..................................................................... 44 
  3.3.3 Probe Test Methods .................................................................................. 47 
  3.3.4 Probe Results ............................................................................................ 49 
Chapter 4: Review of Enhanced Source Control Programs ......................................................... 61 
 4.1 Ventura ................................................................................................................. 62 
  4.1.1 Potable Reuse Project and ESCP Overview ............................................... 62 
  4.1.2 Industrial Users ......................................................................................... 63 
  4.1.3 Enforcement Response Plan ..................................................................... 64 
  4.1.4 Monitoring Program ................................................................................. 64 
  4.1.5 Outreach Program .................................................................................... 66 
  4.1.6 Potential Opportunities for Incorporating Online Sensors into  



Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse vii 

  Ventura’s Source Control Program ....................................................................... 66 
 4.2 Oxnard ................................................................................................................... 67 
  4.2.1 Potable Reuse Project and ESCP Overview ............................................... 67 
  4.2.2 Industrial Users ......................................................................................... 67 
  4.2.3 Enforcement Response ............................................................................. 68 
  4.2.4 Monitoring Program ................................................................................. 68 
  4.2.5 Outreach Program .................................................................................... 69 
  4.2.6 Potential Opportunities for Incorporating Online Sensors into  
   Oxnard’s Source Control Program ............................................................ 69 
 
Chapter 5: Review of Real Time Collection System Monitoring Results .................................... 71 
 5.1 Overview of WRF 4908 Test Locations ................................................................. 71 
 5.2 Summary of Key Challenges from WRF 4908 ....................................................... 72 
 5.3 Summary of Challenges from Independent Analysis of Kando Systems  
  at LACSD ................................................................................................................ 74 
 
Chapter 6: Data Analysis for Online Monitoring Systems within WWTPs or AWTFs ................ 77 
 6.1 Introduction .......................................................................................................... 77 
 6.2 HRSD Machine Learning Case Study Conclusions ................................................. 81 
 6.3 CWS Case Study Conclusions ................................................................................ 82 
 6.4 Overall Conclusions and Considerations............................................................... 82 
 
Chapter 7: Potential Implementation of Real-Time Monitoring for ESCPs................................ 85 
 7.1 Morro Bay ............................................................................................................. 85 
  7.1.1 Existing ESCP Overview ............................................................................. 85 
  7.1.2 Future Use of Online Monitoring Systems to Detect Pollution  
   Events ........................................................................................................ 86 
 7.2 Clean Water Services ............................................................................................ 87 
  7.2.1 Existing ESCP Overview ............................................................................. 87 
  7.2.2 Future Use of Online Monitoring Systems to Detect Pollution  
   Events ........................................................................................................ 88 
 7.3 Los Angeles County Sanitation Districts ............................................................... 90 
  7.3.1 Existing ESCP Overview ............................................................................. 90 
  7.3.2 Future Use of Online Monitoring Systems to Detect Pollution  
   Events ........................................................................................................ 90 
 
Chapter 8: Real-Time Monitoring Framework ............................................................................ 93 
 8.1 Phase 1: Vision and Planning ................................................................................ 94 
  8.1.1 Step 1 – Identify Clear Goals and Targets of Online Monitoring  
   Program ..................................................................................................... 94 
  8.1.2 Step 2 – Select the Water Quality Criteria to be Monitored .................... 95 
  8.1.3 Step 3 – Plan A Pilot Test for Select Sensors............................................. 96 
  8.1.4 Step 4 – Identify Online Monitoring Locations and Approach ................. 96 
 8.2 Phase 2: Instrument Selection, Design, and Support ........................................... 99 



viii The Water Research Foundation 

  8.2.1 Step 5 – Select and Procure the Sensors and Instrumentation .............. 100 
  8.2.2 Step 6 – Develop Station Design and Ancillary Equipment .................... 100 
  8.2.3 Step 7 – Develop O&M Plan for Sensors ................................................ 104 
  8.2.4 Step 8 – Consider Cost and Resources Needed for Successful  
   System Operation ................................................................................... 105 
 8.3 Phase 3: Implementation and Optimization ....................................................... 107 
  8.3.1 Step 9 – Install Sensors and Conduct Training ........................................ 107 
  8.3.2 Step 10 – Integrate Sensor Data into Existing Procedures ..................... 108 
  8.3.3 Step 11 – Define Source Tracking Strategy and Compliance  
   Monitoring .............................................................................................. 110 
  8.3.4 Step 12 – Continuous Improvement ....................................................... 111 
 
Chapter 9: Conclusions ............................................................................................................... 113 
 9.1 Summary ............................................................................................................. 113 
 9.2 Recommendations for Integrating Real-Time Monitoring into ESCPs ............... 114 
 9.3 Recommendations for Future Research ............................................................. 114 
  9.3.1 Real-Time Sewershed Monitoring Cost-Benefit Analysis ....................... 115 
  9.3.2 Novel Sensors and their Application to Real-time Sewershed  

Monitoring .......................................................................................................... 116 
  9.3.3 Machine Learning with Real-time Sewershed Monitoring Data ............ 116 
 
Appendix A .................................................................................................................................. 119 
Appendix B .................................................................................................................................. 155 
Appendix C .................................................................................................................................. 191 
References .................................................................................................................................. 213 

  



Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse ix 

Tables 
 
2-1 Available Sensor Systems (Non-Exhaustive) ..................................................................... 11 
2-2 Sensor Systems Tested at HRSD as Part of WRF 4797 ...................................................... 12 
2-3 Summary of Select Utility Sensor Programs ..................................................................... 17 
3-1 Overview of Sensors Tested at Three Utilities for Bench and Full-Scale Field  
 Research in Chapter 3 ....................................................................................................... 22 
3-2 Summary of Experiments Conducted Using the Flume and Sensors ............................... 23 
3-3 Analytical Methods to be Used for Laboratory Analysis for Morro Bay ........................... 33 
3-4 Challenge Tested Compounds and Concentrations .......................................................... 49 
4-1 Aspects of ESCP and Benefit of Effective Online Monitoring ........................................... 61 
4-2 Ventura's Industrial Users ................................................................................................. 63 
4-3 Ventura ESCP: Routine Monitoring Program .................................................................... 64 
4-4 Specific Benefits of Online Monitoring to Ventura ESCP .................................................. 67 
4-5 Specific Benefits of Online Monitoring to Oxnard ESCP ................................................... 70 
6-1 Differences Between HRSD and CWS Datasets Used for SML Alert Systems ................... 80 
8-1 Advantages and Disadvantages of Different Sensor Locations ........................................ 97 
  



x The Water Research Foundation 

Figures 
 
1-1 Enhancement of Existing Pretreatment Programs for Potable Reuse ............................... 2 
1-2 Theoretical Faster, More Consistent Excursion Detection with Real-Time  
 Monitoring .......................................................................................................................... 3 
1-3 Gartner Hype Cycle as Applied to Real-Time Sewershed Monitoring ................................ 4 
2-1 Kando Monitoring Equipment .......................................................................................... 14 
2-2 Placement of Sensors and Sample Collection at El Paso Site ........................................... 14 
2-3 Illustration of Hardware Challenges Experienced by Ventura Staff ................................. 16 
2-4 Hardware Challenges Encountered by El Paso Water ...................................................... 17 
2-5 s::can ammo::lyser Installed at the Aeration Basin Site (City of Phoenix) ....................... 19 
2-6 The Red Highlighted Parts of the Graph Denote the Spikes (Spectral Alarms) 
 in COD Concentration at the WWTP Influent ................................................................... 19 
2-7 Multiple Individual Spectra Detected Which Implies Multiple Industrial  
 Discharges into the System ............................................................................................... 20 
3-1 Flume in Operation During Experiments .......................................................................... 23 
3-2 Rag Guard Sensor Holder Showing the Entire Device ...................................................... 24 
3-3 COD Measured by the s::can Spectro::Lyser Before and During A Spike Test In 

Experiment 6 After 7 Days In Influent Without Cleaning ................................................. 26 
3-4 Timeseries of pH in Experiment 2 as Measured by All Three pH Sensor Types ............... 27 
3-5 Timeseries of pH Measured by Both pH Sensors at a Test Manhole June 8  
 Through July 2, 2021 ......................................................................................................... 28 
3-6 s::can Probe System at Morro Bay .................................................................................... 30 
3-7 Morro Bay s::can Data Presentation on Web Browser ..................................................... 30 
3-8 Morro Bay Daily Field Checklist ........................................................................................ 32 
3-9 Electrical Conductivity Lab and Online Data Comparison ................................................ 34 
3-10 pH Lab and Online Data Comparison ................................................................................ 34 
3-11 COD Lab and Online (After Manual Cleaning) Data Comparison ..................................... 35 
3-12 BOD Lab and Online (After Manual Cleaning) Data Comparison ..................................... 35 
3-13 UVT Lab and Online (After Manual Cleaning) Data Comparison ...................................... 36 
3-14 TSS Lab and Online (After Manual Cleaning) Data Comparison ....................................... 36 
3-15 Week by Week EC Profiles ................................................................................................ 38 
3-16 Week by Week pH Profiles ............................................................................................... 39 
3-17 Weekly UVA Profiles for Weeks 1, 2, 4, and 5 .................................................................. 39 
3-18 Weekly UVA Profiles for Weeks 3 and 6 ........................................................................... 40 
3-19 Week by Week TSS Profiles .............................................................................................. 40 
3-20 Evaluation of spectro::lyser Probe Fouling Ratio .............................................................. 42 
3-21 Evaluation of spectro::lyser Probe Fouling Ratio Based Upon Cleaning Interval ............. 43 
3-22 Real Tech Sensor (right) and Communication Unit (left) .................................................. 44 
3-23 Real Tech in Primary Effluent (left) and Secondary Effluent (right) at JWPCP ................. 45 
3-24 Real Tech in Primary Effluent at SJCEWRP ........................................................................ 45 
3-25 Sentry Probe (left) and Communication Unit (right) ........................................................ 46 
3-26 Sentry Probe in Primary Effluent (left), Communication Unit (middle), and  
 Sentry Probe in an Anoxic Zone (right) of SJCEWRP ......................................................... 46 



Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse xi 

3-27 Sentry Probe in LCWRP Raw Influent ............................................................................... 46 
3-28 Sentry Probe in LANWRP Primary Effluent ....................................................................... 47 
3-29 Challenge Testing Setup (left) and Plan View of Sensors in the Tank (right) ................... 49 
3-30 SJCEWRP Real Tech and Grab Sample COD Results from June 8 to  
 June 25, 2021 .................................................................................................................... 50 
3-31 SJCEWRP Real Tech and Grab Sample COD Results from August 8 to  
 October 1, 2021 ................................................................................................................ 50 
3-32 SJCEWRP Real Tech and Grab Sample COD Results from September 8 to 

September 12, 2021 .......................................................................................................... 51 
3-33 JWPCP Real Tech and Grab Sample COD Results from May 30 to  
 July 4, 2021 ....................................................................................................................... 51 
3-34 JWPCP Real Tech and Grab Sample COD Results from May 30 to  
 September 2, 2021 ............................................................................................................ 52 
3-35 JWPCP Real Tech and Grab Sample COD Results from September 2 to  

October 14,2021 ............................................................................................................... 53 
3-36 SJCEWRP Real Tech Manual Cleaning ............................................................................... 54 
3-37 JWPCP Real Tech Manual Cleaning from June 30 to July 30, 2021 .................................. 54 
3-38 JWPCP Real Tech Manual Cleaning from August 15 to August 30, 2021 ......................... 55 
3-39 SJCEWRP Sentry Primary Effluent and ML MES from April 26, 2021 to  
 May 26, 2021 .................................................................................................................... 55 
3-40 LCWRP Raw MES and pH from September 17 to October 18, 2021 ................................ 56 
3-41 Lancaster WRP Influent COD, MES, and pH from November 4, 2021 to  

January 19, 2022 ............................................................................................................... 57 
3-42 Sentry Lightweight Organic Compound Challenge Testing .............................................. 58 
3-43 Real Tech Lightweight Organic Compound Challenge Testing: Formaldehyde ................ 58 
3-44 Real Tech Acetate Addition Challenge Testing ................................................................. 59 
4-1 Ventura Collection System: Four Drainage System Zones................................................ 65 
4-2 Example of Ventura Collection System Drainage Zone and Flow Path ............................ 66 
4-3 Oxnard’s Collection System Monitoring Zones and Industries ......................................... 69 
5-1 Corrosion and Damage to the Probe System.................................................................... 73 
5-2 Ragging of the Sensor Probes and Connective Wiring ..................................................... 74 
6-1 Example of an Alert and Alarm Based on a TOC Threshold .............................................. 78 
6-2 Water Qualities that would be Predicted as Event or Normal According  to  
 (A) Fixed Thresholds or (B) A Support Vector Machine with Radial Basis Kernel ............ 79 
8-1 Phases of the Industrial Enhanced Source Control Program Framework ........................ 93 
8-2 Phase 1 Framework Steps ................................................................................................. 94 
8-3 Phase 2 Framework Steps ................................................................................................. 99 
8-4 Phase 3 Framework Steps ............................................................................................... 107 
  



xii The Water Research Foundation 

Acronyms and Abbreviations 
AMI Advanced metering infrastructure 
ASR Aquifer storage and recovery 
AWPF Advanced water purification facility 
AWTF Advanced water treatment facility 
BIA Business intelligent architecture 
BOD Biological oxygen demand 
CCP Critical control points 
CIU Categorical industrial user 
CLR Calcium, lime, and rust remover 
COD Chemical oxygen demand 
CWS Clean Water Services 
CWT Centralized waste treatment 
DaaS Data-as-a-Service 
DPR Direct potable reuse 
EC Electrical conductivity 
ECD Electro-chemical devices 
ESCP Enhanced source control program 
FOG Fats, oils, and grease 
ft/s Feet per second 
gpm Gallons per minute 
H2S Hydrogen sulfide 
HRSD Hampton Roads Sanitation District 
IU Industrial user 
JWPCP Joint Water Pollution Control Plant 
LACSD Los Angeles County Sanitation District 
LANWRP Lancaster Water Reclamation Plant 
LCWRP Los Coyotes Water Reclamation Plant 
µS/cm Microsiemens per centimeter 
MCL Maximum contaminant level 
MES Microbial electrical signal 
mgd Million gallons per day 
mg/L Milligrams per liter 
ML Mixed liquor 
nm Nanometer 
NO2 Nitrogen dioxide 
NO3 Nitrate 
NONC Notices of non-compliance and correction 
NOV Notice of violation 



Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse xiii 

NPP National Pretreatment Program 
O&M Operations and maintenance 
ORP Oxidation reduction potential 
OWTP Oxnard Wastewater Treatment Plant 
PCA Principal component analysis  
PFAS Per- and polyfluoroalkyl substances 
POTW Publicly owned treatment works 
PVC Polyvinyl chloride 
sBOD Soluble biochemical oxygen demand 
SCADA Supervisory control and data acquisition 
SCWW Santa Clara Wastewater 
sCOD Soluble chemical oxygen demand 
SIU Significant industrial user 
SJCEWRP San Jose Creek East Water Reclamation Plant 
SML Supervised machine learning 
SOP Standard operating procedure 
sTOC Soluble total organic carbon 
TP Total phosphorus 
TSS Total suspended solids 
UV Ultraviolet 
UVA Ultraviolet absorbance 
UVT Ultraviolet transmittance 
VWRF Ventura Water Reclamation Facility 
WRF The Water Research Foundation 
WWTP Wastewater treatment plant 
 

 





Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse xv 

Executive Summary  

ES.1 Key Findings  
• Real-time monitoring technology in sewersheds or wastewater influent can now monitor 

and provide alarms based upon important chemical parameters, such as pH, conductivity, 
and organic compounds and surrogates. These alarms could trigger investigation, diversion, 
or treatment adjustment. Nevertheless, stability and accuracy continue to limit the 
applicability of certain sensors in this context, especially for organic compounds and 
surrogates.  

• Real-time monitoring in sewersheds or wastewater influent can be successfully 
implemented but often requires significant ongoing instrument maintenance and 
calibration. Expenses, such as auxiliary equipment and time for travel, maintenance, 
troubleshooting, and analysis usually exceed the cost of the sensors themselves. 

• Utilities should use real-time monitoring with a clear goal and a continuous improvement 
mindset, using key performance indicators to measure success. 

• Careful instrument selection and robust accessories (i.e., power supply, probe holders) are 
critical to success. 

• Real-time monitoring can be integrated into an Enhanced Source Control Program (ESCP) 
for reuse to detect illicit discharges, identify sources, provide water quality early warning 
alarms, and communicate with industry. 

• Pilot testing is highly recommended to compare sensors and verify site-specific 
performance and maintenance requirements.  

• Machine learning could be applied for early warning systems using data from wastewater 
influent or within reuse systems, but this requires site-specific modeling. 

ES.2 Background and Objectives 
Real-time sewershed monitoring has several benefits for utilities, such as detecting and 
source-tracking industrial discharges or other adverse water quality events. While broadly 
applicable to wastewater utilities, these benefits are especially important for potable reuse. 
Atypical water quality events that could disrupt wastewater treatment plant (WWTP) 
performance or result in partial pass-through of chemical pollutants could then potentially 
interfere with the finished water quality from advanced purification. These considerations 
become even more important as the water sector advances towards direct potable reuse (DPR), 
which would involve less lead time for response than managed aquifer recharge or 
augmentation of surface water supplies. 

Recent advances in commercially available sensor technology and data connectivity (e.g., 
internet-of-things, 5G) initially led to high expectations about real-time sewershed monitoring. 
However, previous projects funded by The Water Research Foundation (WRF) (e.g., Steinle-
Darling et al. 2020) revealed a more complex reality. Sensors that were resilient and accurate in 
other contexts required much more maintenance in sewersheds due to collection and buildup 
of debris, fats, oils & grease (FOG), etc. on sensors. Utilities are also paying close attention to 
the cybersecurity considerations of data connectivity systems to prevent intrusions into their 
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supervisory control and data acquisition (SCADA) or business systems. Engineered storage 
buffers, multibarrier treatment trains, and sensors in reclaimed or purified water can also 
provide a high degree of protection against atypical water quality events. These challenges and 
alternative safeguards raised the question of what—if any—level of sewershed monitoring is 
feasible, appropriate, or necessary for potable reuse. Furthermore, if a utility were to begin 
sewershed monitoring as part of their ESCP, it would be efficient and expedient to have a 
step-by-step guide based on the experiences of other utilities in this area.  

Therefore, our research objectives were to: 

• Determine what level of real-time collection system monitoring is feasible, appropriate, and 
necessary for protection of downstream potable reuse. 

• Develop a framework for integrating real-time monitoring into existing pretreatment 
program requirements, including data management and security considerations. 

ES.3 Project Approach 
To fulfill these objectives, this project was organized into four tasks as follows. Task 1 
(Chapter 2) was a review of currently available real-time monitoring tools. This included a 
review of currently available sensors (Task 1A), a summary of related past WRF sensor efforts 
(e.g. Steinle-Darling et al. 2020) (Task 1B), coordination with the contemporaneous WRF Project 
4797 (Thompson in process) (Task 1C), and summaries of experiences with sensors from project 
partners (Task 1D).  

Task 2 (Chapter 3) was new bench and field research to compare the latest sensors and test 
new methods to reduce fouling and ragging. This included studies at Clean Water Services 
(CWS) (Task 2A), Morro Bay (Task 2B), and Los Angeles County Sanitation District (LACSD) (Task 
2C).  

Task 3 was a review of existing ESCPs and real-time monitoring programs and how they might 
be integrated. This included the subtasks of a review of ESCPs (Task 3A, Chapter 4), a review of 
real-time collection system monitoring results at Ventura and Oxnard (Task 3B, Chapter 5), 
proof-of-concept machine learning analyses for early warning systems using data from CWS and 
Hampton Roads Sanitation District (HRSD) (Task 3C, Chapter 6), and discussion of the potential 
implementation of real-time monitoring for ESCPs at partner utilities Morro Bay, CWS, and 
LACSD (Task 3D, Chapter 7).  

The above gathering, generation, and analyses of data all informed a framework for integrating 
real-time monitoring into ESCPs (Task 4, Chapter 8).  

ES.4 Results  
Task 1: Many online water quality sensors are now commercially available. Many parameters 
measurable with these sensors are useful for detecting changes in raw wastewater quality, such 
as pH, conductivity, and different measurements of organic matter (e.g., chemical oxygen 
demand [COD]). Optical properties (e.g., absorbance, fluorescence) can be used as indicators 
directly, or used to estimate other water quality parameters (e.g., COD, total organic carbon, 
algae). Only a few specific organic chemicals can be measured by online instruments, such as 
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trihalomethanes and compounds with distinct optical signatures (e.g., optical brighteners). It is 
recommended to select sensors for sewershed monitoring that are least prone to water quality 
interferences. Also, it is recommended to have sensors without consumables or moving parts. 
Self-cleaning capabilities (e.g., air blast, ultrasonic cleaning) are especially helpful in this 
context. 

Task 2: Side-by-side trials are an ideal way to compare and select among sensors (Table ES-1). 
Constructed flumes tested at one of the research sites enabled sensor comparisons in a 
relatively controlled environment, as well as experiments like intentional ragging and known 
chemical spikes. CWS developed a custom sensor holder that curves in the direction of flow so 
that any ragging or debris would be minimized (Figure ES-1). This solution enhanced the 
accuracy and resilience of the sensors. Testing systems within full-scale plants allowed for 
detailed research of probe systems without laboratory optimization (at both Morro Bay and 
LACSD), presenting greater clarity on the performance and maintenance of systems in their 
current market form. Accuracy and the frequency of cleaning and calibration varied significantly 
among the sensors. Sensor location was found to be critical in order to optimize the cleaning 
and data quality. 

Table ES-1. Overview of Sensors Tested at Three Utilities for Task 2 Bench and Full-Scale Field Research.  
✔ indicates generally successful trial. X indicates tested but did not meet the utility’s criteria for continued use for 

real-time monitoring. *Successful when installed within CWS’s rag guard sensor holder. 
Brand Sensor CWS Morro Bay LACSD 

Yosemitech Y532-A ✔*   
ECD ORP Pt Cap peek, two-tang probe X   
ECD Extended Life pH Electrode RADEL body ✔*   

s::can Spectro::lyser ✔ ✔  
s::can condu::lyser ✔ ✔  
s::can pH::lyser ✔ ✔  

Real Tech Titanium Ba-X Series SA2010 multi-wave sensor   X 
Sentry Sentry-AD   X 
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Figure ES-1. Rag Guard Sensor Holder. 

Task 3: Utilities practicing or actively planning potable water reuse already have ESCPs in place. 
Real-time sewershed monitoring often increases the need for grab sampling in the short term 
for calibration and verification. However, in the long run, real-time monitoring could reduce 
grab samples if it is deemed sufficiently reliable to replace some existing grab sampling 
routines. Real-time monitoring could also benefit ESCPs by more closely monitoring industrial 
discharger compliance, and rapidly notifying industrial dischargers in the event of atypical 
water quality (Table ES-2). Installing sensors and getting reliable data alone will not make a 
monitoring program successful. Real-time monitoring requires a connection to the utility’s 
business or SCADA system and dedicated resources to interpret the data and set actionable 
criteria. Machine learning can expand upon the value of the sensor data through application for 
early warning systems using data from multiple sensors. However, machine learning can only 
detect types of events that have occurred before. So, these models should be employed 
alongside of (not instead of) traditional setpoint-based alerts. The use of spectral alarms and 
multi-parameter alarms has been shown to be successful at enhancing the detection of an 
unusual water quality anomaly.  
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Table ES-2. Aspects of ESCP and Benefit of Effective Online Monitoring. 
ESCP 

Concept Details Online Monitoring Benefits Include… 

Regulatory 
Authority 

The Sewer Use Ordinance (SUO) provides the authority of a 
utility to develop and enforce an industrial pretreatment 

program, including requirements to protect potable water 
reuse. 

Not applicable 

Industrial 
Dischargers 

The type and abundance of different industrial dischargers 
will define the level of effort and cost of a robust ESCP.  

Online monitoring systems can provide 
greater confidence in industrial discharger 

compliance.  

Enforcement 
Response 

Plan 

The Enforcement Response Plan (ERP) outlines the 
procedures followed by pretreatment program staff and 

management to identify, document, and respond to 
pretreatment violations. 

Online monitoring systems can be used to 
track abnormal discharges in the collection 

system and to the point of origin.  

Monitoring 
Program 

A robust ESCP relies upon a combination of industry-led and 
utility-led sampling efforts, and a tailored sampling 

campaign that adjusts with time to minimize laboratory 
analytical costs while closely monitoring water quality that 

can be of concern. 

Online monitoring systems can reduce the 
amount of utility-led grab sampling and 

composite samples through development of 
a database of “standard” wastewater quality 

downstream of industrial dischargers. 

Outreach 
Efforts 

An effective outreach plan includes: 
1. Communication between government 

departments (e.g., planning department and 
wastewater department) 

2. Engagement of businesses  
3. Development and sharing of Best Management 

Practices (BMPs) 
4. Rewarding and acknowledging model industry 

partners 
5. Notifying and enforcing non-compliant industries 

Online monitoring results can be used to 
more rapidly contact industrial dischargers 

to alert them of water quality changes.  

Interagency 
Agreements 

Potable water reuse projects often cross jurisdictional 
boundaries or require collaboration of water and 

wastewater utilities. The development of clear roles, 
responsibilities, and financial commitments from 

participating parties is central to long term project success. 

Online monitoring of wastewater from 
partner utilities provides for better cost 
recovery based upon flows and loads.  

 
Task 4: A framework for integrating real-time monitoring into ESCPs was developed based on 
these results, prior related WRF projects, and the project team’s extensive experience 
(Figure ES-2). This framework was organized into three phases, as shown below. It is also 
ordered chronologically, from planning to ongoing improvement. So, this framework serves as a 
step-by-step guide for utilities seeking to implement real-time sewershed monitoring. 
Measuring success in Phase 3 of the framework provides the opportunity to continuously 
improve on system performance. 
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Figure ES-2. Framework for Integrating Real-Time Sewershed Monitoring into ESCPs.  
 

ES.5 Benefits 
• Overall, this report will enable utilities to consider real-time sewershed monitoring with 

specific examples of what can be achieved, knowing the challenges and ongoing costs. Real-
time sewershed monitoring is possible, but it is not easy at this point.  

• Through numerous new and reviewed real-time monitoring case studies, utilities can learn 
from the experiences of others. This includes both big picture lessons, such as the 
importance of goal-setting, but also details, such as what maintenance frequency to expect 
for different sensors in different waters. The case studies also include two proofs-of-
concept for machine learning for improved alerts for water quality events.  

• The framework (Chapter 8) serves as a step-by-step guide for utilities seeking to integrate 
real-time sewershed monitoring into ESCPs. 

ES.6  Related WRF Research 
• Demonstrating Real-Time Collection System Monitoring for Potable Reuse (4908) 
• Designing Sensor Networks and Locations on an Urban Sewershed Scale with Big Data 

Management and Analytics (4797) 
• Integrated Management of Sensor Data for Real Time Decision Making (4759) 
• Leveraging Other Industries - Big Data Management: Phase I (4836) 
• Compendium of Sensors and Monitors and Their Use in the Global Water Industry (4428)

Phase 1: Vision and Planning
Identify program goals and parameters 
to be monitored and if pilot testing is 

needed.

Phase 2: Instrument Selection, Design, and 
Support

Select and design the pilot or full-scale 
sensors & sample collection points. 

Allocate resources to support the plan.

Phase 3: 
Implementation and Optimization

Install pilot or full-scale sensors, 
develop data analytics platform, 

integrate into existing operations and 
enforcement.
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CHAPTER 1 

Introduction 
1.1 Background 
Industrial and Illicit discharges to municipal sewers are a constant challenge and concern for 
potable water reuse systems. With a well-regulated and enforced pretreatment program, these 
industrial dischargers can be well managed to allow for safe and reliable drinking water, 
protection of water quality, and a thriving industrial community. However, even for well 
managed systems, periodic accidental or intentional discharges, (e.g., slug discharges) can be 
problematic to both the downstream WWTP and the potable reuse treatment system if one is 
in place. For example, oils and grease from food processing can resist biodegradation during 
secondary treatment due to low solubility and cause unsightly films or ecological harm. Acids or 
bases can disrupt biological treatment or even damage infrastructure.  

Industrial discharges have particularly high human health relevance at WWTPs that are water 
sources for potable reuse systems. For example, centralized hazardous waste treatment 
facilities can release extremely toxic radionuclides. Landfills can release bromide, which 
interferes with treatment by increasing bromate in ozonation or brominated disinfection 
byproducts in chlorine disinfection (Nading et al. 2022). Industries can release specific 
chemicals that are challenging to remove such as 1,4-dioxane or per- and polyfluoroalkyl 
substances (PFAS). 

Current regulations under the National Pretreatment Program (NPP) protect against the impact 
of industrial discharges on WWTPs and on receiving waters. However, existing source control 
programs under the NPP were designed primarily to protect wastewater infrastructure and the 
aquatic environment. Potable reuse has greater direct human health relevance and stricter 
regulatory water quality limits. So, it requires different and more stringent monitoring, i.e., 
ESCPs (Figure 1-1). Compared to indirect potable reuse like managed aquifer recharge, DPR 
would potentially have less lead time to respond to adverse water quality changes. This further 
reinforces the need for tighter monitoring of water quality in the sewer collection system. 
Accordingly, it is becoming even more important for reuse utilities to promptly detect surges of 
unwanted industrial effluent. 



2 The Water Research Foundation 

 

Figure 1-1. Enhancement of Existing Pretreatment Programs for Potable Reuse.  
Adapted from Nading et al. 2022. 

Real-time monitoring is the use of sensors that produce data continuously or frequently, i.e., at 
least hourly. If sufficiently precise and reliable, real-time monitoring in the sewershed could 
enable much more rapid and consistent detection of water quality excursions such as industrial 
discharges (Figure 1-2). Specific strategies include continuously monitoring at the WWTP raw 
influent, key nodes of the collection system, or the discharge of point sources of concern. It 
could also include mobile units to track contaminants or surrogates upstream towards their 
source. The potential benefits of real-time monitoring are great enough that certain states are 
considering requiring it. For example, the draft California DPR regulations would require “…a 
sewershed surveillance program to receive early warning of a potential occurrence that could 
adversely affect the DPR treatment and … on-line monitoring instrumentation at critical 
locations that measure surrogate(s) that may indicate a chemical peak.” 
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Figure 1-2. Theoretical Faster, More Consistent Excursion Detection with Real-Time Monitoring. 

The dashed line represents the true pollutant concentration. Diamonds represent grab samples. The solid dark 
gray line represents the real-time monitoring signal. 

Advances in commercially available online instrumentation—such as affordable, self-cleaning 
optical sensors—initially led to much optimism and enthusiasm about real-time sewershed 
monitoring (Figure 1-3). The WRF identified that less research had been done on real-time 
sewershed monitoring compared to advanced treatment, and funded several related projects, 
including: 

• SENG6R16 Phase 1/WRF 4835 – Designing Sensor Networks and Locations on an Urban 
Sewershed Scale – (Liggett et al. 2018). 

• SENG6R16 Phase 2/WRF 4797 – Designing Sensor Networks and Locations on an Urban 
Sewershed Scale with Big Data Management and Analytics – (Thompson in process). 

• Reuse 17-30/WRF 4908 – Demonstrating Real-Time Collection System Monitoring for 
Potable Reuse (Steinle-Darling et al. 2020). 

• WRF 4759 – Integrating Management of Sensor Data for a Real Time Decision Making and 
Response System (Neemann et al. 2019). 

However, practical limitations soon dampened these expectations. The unfavorable and highly 
variable water quality in raw wastewater caused instruments to require frequent maintenance 
or even replacement. Power supply, data connectivity (e.g., automatically, reliably transferring 
data to a platform where it can be readily visualized and used), and physical security were all 
major challenges in sewers. Growing cybersecurity concerns raised questions about the wisdom 
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of and best practices for transferring data from these widespread sensors to facility networks. 
Multibarrier treatment trains, other ESCP measures, and sensors in treated water at WWTPs or 
advanced treatment facilities already provide a high degree of protection against industrial 
discharges. So, the practicality, necessity, and cost-effectiveness of real-time monitoring came 
into question.  

 
Figure 1-3. Gartner Hype Cycle as Applied to Real-Time Sewershed Monitoring. 

1.2 Objectives 
Our goal was to make recommendations on whether and how to integrate real-time sewershed 
monitoring into ESCPs, considering both the benefits and the practical challenges. To this end, 
our research objectives were to: 

• Determine what level of real-time collection system monitoring is feasible, appropriate, and 
necessary to protect potable reuse. 

• Develop a framework for integrating real-time monitoring into existing pretreatment 
programs, including data management and security considerations.  
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1.3 Report Contents and Technical Approach 
To fulfill these objectives, this project was organized into the four tasks below. The chapter 
numbers for these tasks are shown in parenthesis. The team conducted state-of-the-industry 
reviews of instruments available, real-time monitoring projects, and ESCPs. New field research 
was conducted to test the accuracy and maintenance requirement of cutting-edge instruments 
under different conditions (water velocity, ragging) and in different locations within sewersheds 
or WWTPs. The team conducted two desktop proof-of-concepts for machine-learning-based 
alert systems using data from WWTPs or advanced treatment trains. These activities, as well as 
the project team’s experience and prior related WRF-funded projects, then informed a step-by-
step framework for integrating real-time monitoring in ESCPs. 

Task 1 – Review Current Available Real-Time Monitoring Tools (Chapter 2) 
• 1A – Review of Currently Available Sensors 
• 1B – Summary of Related WRF Sensor Efforts 
• 1C – Coordination with WRF 4797 
• 1D – Experience with Sensors from Project Partners 
Task 2 – New Bench and Field Research (Chapter 3) 
• 2A - Clean Water Services Field Research (Appendix A) 
• 2B - Morro Bay Field Research 
• 2C - Los Angeles County Sanitation Districts Field Research 
Task 3 – ESCP and Real-Time Monitoring Review  
• 3A - Review of ESCPs (Chapter 4)  
• 3B - Review of Real-Time Collection System Monitoring Results (Chapter 5) 
• 3C – Data Analysis for Online Monitoring Systems within WWTPs or Advanced Water 

Treatment Facilities (Chapter 6, Appendix B, Appendix C) 
• 3D – Potential Implementation of Real-Time Monitoring for ESCPs (Chapter 7) 
Task 4 – Framework for Real-Time Monitoring (Chapter 8)
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CHAPTER 2 

Review of Currently Available Real-Time Monitoring 
Tools 
The goal of this chapter was to provide a comprehensive look at commercially viable and 
proven sensor technologies as well as some emerging sensor technologies for biologic 
monitoring that can potentially be used within the sewer collection system and/or at various 
locations at a WWTP. The information presented within this chapter is organized as follows: 

• A review of currently available sensors from different suppliers, which documents a large 
range of sensor technologies that can be deployed; 

• A summary of experience from different WRF grants on similar sensor-related topics, which 
documents both the potential and the challenges of existing sensor systems; 

• Coordination and information sharing with ongoing Thompson in process (Designing Sensor 
Networks in an Urban Sewershed); and 

• Experience with sensors from project partners.  

2.1 Review of Currently Available Sensors 
The project team reviewed information from both internal and external resources to assemble 
the information for available physical and inorganic parameters, organic parameters, 
radionuclides, biological parameters, and integrated systems. Key resources included the 
following: 

• SENG6R16 Phase 1/WRF 4835 – Designing Sensor Networks and Locations on an Urban 
Sewershed Scale – (Liggett et al. 2018). 

• SENG6R16 Phase 2/WRF 4797– Designing Sensor Networks and Locations on an Urban 
Sewershed Scale with Big Data Management and Analytics – (Thompson in process). 

• SENG7R16/WRF 4836 – Big Data Management - Phase I (Kadiyala and Macintosh 2018). 
• WRF 17-30/4908 – Demonstrating Real-Time Collection System Monitoring for Potable 

Reuse (Steinle-Darling et al. 2020). 
• WRF 4759 – Integrating Management of Sensor Data for a Real Time Decision Making and 

Response System (Neemann et al. 2019). 
• Water Quality Sensors – Global Horizon Scan (Livaniou et al. 2020). 
• SENG1C11– Compendium of Sensors and Monitors and Their Use in the Global Water 

Industry (GWRI & WERF) (van den Broeke 2014). 
• WE&RF 11-01/WRF 1688 – Monitoring for Reliability and Process Control of Potable Reuse 

Applications (Pepper and Snyder 2016). 
• Prior evaluations conducted for the USEPA Water Security Division Surveillance and 

Response Program (USEPA 2021b). 

The information includes provider, sensors, parameters measured, and maturity level, as listed 
in Table 2-1.  
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This project focused on real-time monitoring systems that can track and detect challenging 
water quality from upstream industrial dischargers. This could include physico-chemical 
properties (e.g., pH), bulk organics, optical signatures, or specific inorganics that could be 
problematic themselves or surrogates correlated with specific chemicals. A small number of 
online biological instruments (i.e., measuring pathogens or measuring toxicity using microbes) 
are commercially available or may become available soon (Table 2-1). If sufficiently accurate 
and reliable, online pathogen sensors could be used for an early warning system or even 
adaptive control. However, with the possible exception of hospitals, pathogens would not come 
from industries or point sources. Rather, pathogens would inevitably come from domestic 
wastewater with no intention or fault from any person or organization. Source control is 
designed to “reduce conventional and toxic pollutant levels discharged by industries and other 
nondomestic wastewater sources into municipal sewer systems” (USEPA 2021a). So, online 
pathogen sensors could not be used to identify, prevent, or penalize problematic point source 
discharges. Thus, online pathogen sensors would not technically be part of an ESCP. Online 
pathogen sensors were then not a focus of this report, which is about integrating real-time 
collection system monitoring approaches into ESCPs for potable reuse.1 

2.2 Summary of Related WRF Sensor Efforts 
A number of projects have evaluated sensors in raw wastewater or within water reclamation 
plants. These past and ongoing projects provide an important perspective as the team looks to 
find the most value in online monitoring systems as they apply to potable water reuse projects. 
The benefits and challenges of sensor systems tend to appear in multiple efforts, with key 
references for the summary items below being Liggett et al. 2018, Neemann et al. 2019, and 
Steinle-Darling et al. 2020. Select findings are presented below.  

Liggett et al. 2018 collected surveys from 20 utilities and 20 technology providers, and noted 
the following important items regarding online monitoring: 

• Reactive Sampling: Having a sensor system that measures a significant change in water 
quality and triggers a sampling event initiates documentation of an illicit intermittent 
discharge that is above permit levels, which may be enforceable. 

• Identification of Water Quality Variation: A sensor system can assist staff in developing an 
understanding of baseline water quality and thus identify intermittent pollutant spikes.  

• Direct Monitoring of Known Discharges: Online monitoring systems allow utilities to 
monitor industrial dischargers directly and continuously, providing better enforcement and 
billing.  

• Deterrence Effect: Knowledge by an organization or industry that they are being monitored 
improves discharger compliance with local limits.  

 
1 For further information on online sensors for pathogen monitoring, the team refers the reader to work by the 
National Water Research Institute (NWRI 2020). 
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Pepper et al. summarized why utilities would benefit from implementing real time monitoring 
in support of potable reuse projects. The reasons are these:  

• Cost: Online systems can better determine where utility-sponsored sampling should occur 
within the collection system.  

• Regulatory Support: Online monitoring within the collection system provides confidence to 
local regulators concerned about industrial and illegal discharges.  

• Event Detection/Response: The ability to detect a potentially toxic water quality and 
proactively divert flow to downstream purification systems would reduce water quality 
concerns. An example of this would be a statistically significant increase or decrease of a 
particular parameter from baseline data, indicative of an abnormal water quality change.  

• Ease of Maintenance and Data Management: Online systems would, should they be 
reliable and of minimal maintenance, reduce the overall collection system monitoring costs 
and data management challenges. 

From various other experiences and surveys, the project team compiled the following 
additional benefits of real time monitoring, whether in the raw wastewater or within the 
treatment plant: 

• Monitoring Specific Parameters Relevant to Potable Reuse: 
o Example parameters include: TOC, turbidity, pH, and water temperature, organics, 

dissolved oxygen, chlorine, conductivity, flow, and water level. 
o Pathogens, once the technology is available and validated (NWRI 2020).  

• Stringent Control on Discharges: Real-time monitoring induces a deterrent effect, which is 
expected to limit discharge at the source. Limited discharge benefits a potable reuse 
program and benefits effluent discharge to receiving water bodies. For example, many 
potable reuse projects utilize reverse osmosis, which concentrates pollutants. Industrial 
pollutants that pass through biological treatment, of which there are many, end up 
concentrated in reverse osmosis concentrate.  

• Industrial Discharge Source Tracking: Smart systems can help utilities understand the 
spatiotemporal variations of contaminants that enter the source water for potable reuse 
and use that information to reduce or eliminate some industrial discharges should they be 
problematic. 

Past deployments of sensor systems have seen a share of challenges, which has been well 
documented in Steinle-Darling et al. 2020. Highlights from Steinle-Darling et al. 2020 are listed 
below and explored in more detail as part of Section 2.4.  

Implementing collection system monitoring for potable reuse applications was tested in close 
partnership with three utilities: Ventura Water in California, El Paso Water in Texas, and Clean 
Water Services in Oregon. A general assessment was made of the value and readiness of the 
sensor-based approach to real-time monitoring and decision-making for potable reuse. Lessons 
learned in these three experiences follow:  

• Desirable monitoring locations within the sewershed (e.g., manholes, force mains) can be 
challenging in practice. 
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• Limited number of sensor technologies are suitable for monitoring wastewater at the 
source as raw wastewater presents fouling, corrosion, and ragging challenges.  

• Low sensor accuracy leading to low confidence in performance (e.g., pH drifts). 
• Data logging can be problematic at times, with some periods not documenting any 

information (as seen in Steinle-Darling et al. 2020) where wireless connections and low 
batteries both resulted in lost data). 

• Power supply, including battery issues, in remote locations can be challenging. 
• Clogged sample lines were frequently seen.  
• Corrosion and degradation of components were witnessed during the short trial time period 

(approximately 3 months), including damage to antennas, broken pH sensors, worn-out 
strainers, and damaged Electrical Conductivity sensors.  

• False positives and subsequent alarms were noted. 
• The systems were monitored and controlled based upon wireless communication, and thus 

present data security and shareability issues. 
• Evolution in communication from mobile and LTE networks to faster networks such as 5G 

for better data transfer capability.  
• The maintenance needed on sensor systems within the collection system was substantial, 

with ragging and grease requiring field maintenance of the sensors several times a week. 

Looking to the future, SENG7R16 (Kadiyala and Macintosh 2018) provides several opportunities 
to enhance real time monitoring, including: 

• Implementation of the following would benefit data transfer and management:  
o 5G (for faster data communication). 
o AutoML (i.e., automation of the entire pipeline from raw dataset to deployment of 

machine learning). 
o Apache Sparke (a unified analytics engine for big data processing). 

• Deployment of artificial intelligence for security against Trojans (disguised malware).  
• Implementation of quantum computing technology to process Big Data. 
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Table 2-1. Available Sensor Systems (Non-Exhaustive). 

Available Providers Sensors Provided Parameters Measured 
Level of 

Maturity Website 
Physical and Inorganic Parameters 

Aqua COLOR Sensors Aqua COLOR Algae Sensor Temperature, Oxygen R&D https://www.aquacolorsensors.nl/  
Systea S.p.A Easychem Online Comprehensive physico-chemical parameters, COD, color, phosphate, nitrite, nitrate, TN, hardness. R&D http://www.systea.it/index.php?lang=en 

Eco Detection HTG-1535 Comprehensive Water Quality Monitoring, Flow and Heavy metals monitoring (in development). R&D https://www.ecodetection.com/ 

SouthWest Sensor DropletSens Nitrate, Phosphate and ammonia (in development) R&D https://southwestsensor.co.uk/ 

TelLab Aquamonitrix Nitrite, Nitrate Pilot. https://tellab.ie/product-development/ 

TriOS eCHEM Comprehensive physico-chemical parameters, humic acids, HS, Br, HCO3-, Cl, NH2Cl Pilot https://www.trios.de/en/sensors.html 

Hach Individual Sensors FCl, TCl, Turb., pH, ORP, EC, DO, TOC, SS, F, NH4+, NO3-, PO42-, UVA254, others Commercial https://www.hach.com/ 

Analytical Technologies, Inc. 
(Badger) 

Individual Sensors Chlorine, pH, conductivity, others Commercial https://www.analyticaltechnology.com/ 

s::can (Badger) Individual sensors Total and Free Chlorine, pH, conductivity, ammonia, nitrate, nitrite, others Commercial https://www.s-can.at/ 

Partech Watertech, Waterwatch series. ORP, pH, turb., SS, color, EC, UVA254. Commercial https://www.partech.co.uk/ 

Rosemount Individual Sensors Pressure, Flow, Level, Temperature,  Commercial https://www.emerson.com/en-us 

Capital Controls Individual Sensors pH, ORP, conductivity, Cl, ClO2. Commercial https://denora.com/ 

Chemtrac PC Series Particle Counter Commercial https://www.chemtrac.com  
Electro-Chemical Devices Model S80 Intelligent Sensors pH, ORP, pION, DO, Conductivity, Resistivity Commercial https://ecdi.com/portfolio-entries/s80-intelligent-sensors/ 
Yosemite Technologies Y532-A digital probe pH Commercial http://en.yosemitech.com/aspcms/product/2020-6-

15/154.html 
Detection Services kando Comprehensive Physico – Chemical Parameters Commercial https://www.detectionservices.com.au/technologies/kando/ 

Organic Parameters 
Multisensor Systems Ltd. MS2000 – THM Total Trihalomethane Pilot https://www.multisensorsystems.com/ms-company/ 

 
Real Tech UV254 Online Analyzer TOC, DOC, Color Commercial https://realtechwater.com/ 

Hach UVAS Plus UVA254, TOC Commercial https://www.hach.com  
Sievers Individual Sensors TOC Commercial https://www.suezwatertechnologies.com/products/sievers-

analyzers-and-instruments  
Biological Parameters 

iBioscan 7000RMS Real-time Microbial detection, turbidity. R&D www.ibioscan.com 

Biological Monitoring, Inc. BioSensor Toxicity (Biomonitoring) Commercial www.biomon.com 

Yokogawa Electric Corporation RAPID RNA Pathogen Monitoring R&D www.yokogawa.com 
Integrated Systems (Multiple Parameter Categories) 

D2K Information Systems QualitEye Comprehensive water quality parameters, THMs, Organics, Total Chlorine. Pilot https://www.d2kinformation.com/qualiteye/ 

Ecosen Solutions Water Lab Comprehensive Water Quality Parameters, Biological pigments and Particles. Pilot https://ecosensolutions.com/products/ 

Libelium Waspmote Smart Water platforms Extensive Water Quality Monitoring Pilot https://www.libelium.com/ 

Proteus Proteus P Comprehensive Water Quality Parameters, pH, Temperature. Commercial https://www.proteus-instruments.com/ 

Blue I Technologies SMART ONE Comprehensive Water Quality parameters Commercial 
(China Only) 

https://blueitechnologies.com/product/smart-one-2/ 

ChemScan ChemScan Sensor family Comprehensive water quality parameters, Blue Green Algae, Fluorescein Water Tracer. Commercial http://www.chemscan.com/ 

Krohne OPTISENS series pH, ORP, COD, turb., EC, FCl, ClO2, O3, DO, SS, Sludge Blanket, Biofilm Commercial https://krohne.com/en/products/flow-measurement/ 

s::can (Badger) Spectro::lyser V3 COD, BOD, Turb., SS, color, Total Hydrocarbons, UV Fingerprint, Nitrite, Nitrate Commercial https://www.s-can.at/ 

s::can (Badger) i::scan BOD, COD, Color, UV254, Turbidity Commercial https://www.s-can.at/ 

Tethys Instruments UV and EL series. H2S, Color, pH, ORP, NO3, NH4, turb., PO4, UV254, DOC, EC, Chl A, hydrocarbons, DO, Phenol Commercial http://www.tethys-instruments.com/ 

YSI (Xylem) Individual sensors NH4, PhC, PhE, Cl, Chl A, DO, FCl, NO3, hydrocarbons, ORP, PAR, pH, EC, Rhodamine, turb Commercial https://www.ysi.com/ 

ZAPS Technologies, Inc. ZAPS LiquID Comprehensive Water Quality Parameters Commercial https://www.environmental-expert.com/companies/zaps-
technologies-inc-47664/ 

Turner Designs Multiple Types of Fluorometers Chlorophyll, fluorescent dye tracing, blue-green algae (phycocyanin and phycoerythrin), crude oil, 
refined fuels, tryptophan, CDOM, optical brighteners, turbidity and pCO2 

Commercial https://www.turnerdesigns.com/fluorometers-and-sensors  

https://www.aquacolorsensors.nl/
http://www.systea.it/index.php?lang=en
https://www.ecodetection.com/
https://southwestsensor.co.uk/
https://tellab.ie/product-development/
https://www.trios.de/en/sensors.html
https://www.hach.com/
https://www.analyticaltechnology.com/
https://www.s-can.at/
https://www.partech.co.uk/
https://www.emerson.com/en-us
https://denora.com/
https://www.chemtrac.com/
https://ecdi.com/portfolio-entries/s80-intelligent-sensors/
http://en.yosemitech.com/aspcms/product/2020-6-15/154.html
http://en.yosemitech.com/aspcms/product/2020-6-15/154.html
https://www.detectionservices.com.au/technologies/kando/
https://www.multisensorsystems.com/ms-company/
https://realtechwater.com/
http://www.hach.com/
https://www.suezwatertechnologies.com/products/sievers-analyzers-and-instruments
https://www.suezwatertechnologies.com/products/sievers-analyzers-and-instruments
https://www.d2kinformation.com/qualiteye/
https://ecosensolutions.com/products/
https://www.libelium.com/
https://www.proteus-instruments.com/
https://blueitechnologies.com/product/smart-one-2/
http://www.chemscan.com/
https://krohne.com/en/products/flow-measurement/
https://www.s-can.at/
https://www.s-can.at/
http://www.tethys-instruments.com/
https://www.ysi.com/
https://www.turnerdesigns.com/fluorometers-and-sensors
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2.3 Coordination with WRF 4797 
As part of the WRF Project 4797 (Thompson in process), specialized online water quality 
monitoring will be conducted at HRSD. This demonstration project testing is scheduled for a six-
month period beginning in July 2022. So, results were not fully available at the time of 
submission of this report. Nevertheless, the sensors and system problems investigated are 
described in the table below (Table 2-2). 

Table 2-2. Sensor Systems Tested at HRSD as Part of WRF 4797. 
Sensor Type System Problem Desired Outcome 

s::can Spectro::lyzer The WWTP that provides secondary 
treatment for the Sustainable Water 
Initiative For Tomorrow (SWIFT) Research 
Center is experiencing periodic spikes in 
organic loading that impacts the final 
water quality for groundwater injection.  

The s::can spectro::lyzer will be used to 
conduct pollution load tracing upstream of 
the WTP. Using the 256 wavelengths from 
the spectral array, it may be possible to 
identify the chemical classification which 
would aid in the investigation of the illegal 
discharger. The team has been effectively 
transferring the s::can spectral data as a 
256-point array every 2 minutes into either 
a PostgreSQL or Mongo BD in the clients on-
premises or cloud servers for over a decade.  
The spectral array data is then processed 
into a 3-D image for a 24-hour period 
Additionally, the s::can con::cube provides 
real-time spectral alarms using ana::tool. 
s::can supports clients in identifying specific 
compound from the raw data. If a specific 
compound is a recurring problem, the 
con::cube can be set-up to look for that 
specific compound and report it every 
2 minutes along with the other parameters. 

s::can conductivity 
and bromide 

One portion of the wastewater collection 
system is adjacent to the Chesapeake Bay 
and is suspected to be impacted by sea 
water intrusion associated with high 
tides.  

The s::can sensors will be used to validate 
the source of the high salinity water so 
HRSD can evaluate the magnitude of the 
problem and corrective procedures. While 
conductivity sensors have been used to find 
sources such as seawater infiltration for 
many years, the ability to track and 
communicate the changes real-time has 
been the value added. Also, one of the goals 
is to be able correlate the increased salinity 
and bromide with tidal surges and other 
potential discharges, such as boat bilge 
dumping. Understanding the root cause for 
the water quality issues are required to 
develop a practical solution. 
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2.4 Experience with Sensors from Project Partners 
The following reports have been used to detail experiences of Project Partners with Sensors. 

1. Steinle-Darling et al. 2020 
2. s::can experiences. 

2.4.1 WRF–17-30/ DRPT- 4908 
WRF–17-30/ DRPT- 4908 (Steinle-Darling et al. 2020) was detailed research on implementation 
of Water Quality sensors for monitoring Potable Reuse system. This project evaluated 
deployment of pilot sensor networks with three utilities: Ventura Water in California, El Paso 
Water in Texas, and Clean Water Services in Oregon. The experiences with each utility are 
discussed in this section. 

Pilot demonstration partnership with utilities: 
Both s::can and Kando sensors were chosen candidates for the pilot demonstration of real time 
monitoring of water for Potable Reuse with the three partner utilities. Although s::can sensors 
were suitable for the purpose on paper, the staff from Ventura or El Paso were unable to 
choose optimal sites to install the sensors. Therefore, Kando sensors were chosen for this 
evaluation. 

Sensors Used:  
The sensors equipped to the Kando units trialed in Steinle-Darling et al. 2020 included ORP, 
temperature, pH and conductivity. The sensor used for the Steinle-Darling et al. demonstration 
are shown in the figure below (Figure 2-1). The monitoring station consisted of two sensor 
probes, a data logger with antenna for data transmission via the cellular network, and an 
automated sampler. Data is recorded in the loggers and transmitted to the cloud for storage 
and analysis. Kando provides units which are intended to be networked at multiple strategic 
monitoring points throughout the wastewater collection system. Using proprietary algorithms, 
the relative change of the sensors at a single location relative to others across the collection 
system can be used to infer the location and severity of pollution events, which are normalized 
to a "pollutant index." 
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Figure 2-1. Kando Monitoring Equipment. 

(with automated sample pump, tubing, reservoir, two sensor probes, a sensor holder, and a data logger) 
Source: Steinle-Darling et al. 2020 

Summary of Field Deployments:  

• Ventura Water: Three online sensor stations were installed during the week of 
October 8, 2018, with automated samplers installed in the first week of January 2019. 

• El Paso Water: Four sensors were installed on February 18, 2019. This is illustrated in the 
figure below (Figure 2-2). 

• Clean Water Solutions: Five sensor stations were installed, and data transmitted from 
March to October 2019. 

 
Figure 2-2. Placement of Sensors And Sample Collection at El Paso Site. 

Source: Steinle-Darling et al. 2020 

Sensor Evaluation Approach: 

• After a few weeks of initial monitoring, baselines were established for the monitored 
parameters. 

• Two thresholds were set for each measured parameter:  
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o Automated collection of samples. 
o System alert for extreme “Pollution events”. 

• These deviations from baseline values, if detected, can be correlated with illegal discharges 
upstream of the collection system. Once triggered the sampling volume drawn is 
approximately three liters. This allowed the utilities to track upstream pollution events. 

The goal of these demonstrations was to evaluate sensor performance based on a set of 
criteria. The summary of results has been discussed below: 

• Sensor Response: 
o Kando sensors have not been consistent in detecting trends of parameters such as EC, 

pH, oxidation reduction potential (ORP), and temperature. 
• Sensor Accuracy: 

o Kando sensors were not necessarily accurate compared to readings from calibrated field 
instruments. 

• Identification of Pollutant Spikes: 
o Sensors were successful at detecting anomalies when kept free of foulants [ragging and 

FOG]. 
• Direct Monitoring of Known Discharges: 

o The sensors were able to document several compliant and challenging dischargers at all 
three sites. 

• Deterrent effect: 
o In case of the CWS demonstration, dischargers were notified of the monitoring and 

thereafter they adhered to the discharge limits. Hence, a deterrence effect was 
observed.  

• Data Management and Software Usability:  
o Kando offers an intuitive map – based dashboard. This was a very useful tool to visualize 

the collected data. 
• Ease of Maintenance:  

o Sensor and hardware failures were common and sensor maintenance was a challenge in 
all three sites. 

• Physical Limitations: 
o Flow was intermittent in several locations. Selecting suitable locations for installation 

was also a challenge. 

Overall summary of the experiences: 

• Benefits: 
o The study was able to confirm the ability of a commercially available monitoring 

platforms to provide 24/7 continued monitoring.  
o Kando’s sensors were able to collect triggered samples but at the time of  Steinle-Darling 

et al. were not necessarily available for full commercial implementation of the system. 
Early installations did suffer from challenges due to hardware failures and challenges 
with sensor fouling. Since the pilot described in Steinle-Darling et al., Kando has made 
improvements to the user interface and system operability.. 
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• Challenges: 
o Of the systems considered, only Kando sensors were suitable for upstream installation. 

A wider choice of technologies was not available to the partner utilities and the research 
team. 

o Once installed, the following maintenance issues began to show up in the sensor 
networks: 
 FOG and moisture buildup. 
 Sample line clogging. 
 Battery issues. 

o Some hardware related challenges (see Figures 2-3 and 2-4) that affected sensor 
performance include: 
 False positive alarms. 
 No data collections by EC sensors at times. 

 
Figure 2-3. Illustration of Hardware Challenges Experienced by Ventura Staff. 

(ragging (top photos) and corrosion due to moisture entering cable connections (bottom photos))  
Source: Steinle-Darling et al. 2020 

 



 

Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse 17 

 
Figure 2-4. Hardware Challenges Encountered by El Paso Water. 

(including corrosion on antenna connector (top left), broken pH sensor (top right), a worn strainer (bottom left), 
and a worn EC sensor (bottom right)) 

Source: Steinle-Darling et al. 2020 

A summary of sensor experiences from Steinle-Darling et al. is in Chapter 5. A more detailed 
review of sensor experiences from Houston, St. Louis, Omaha, Irvine Ranch Water District, and 
the City of Phoenix is provided in Table 2-3 and following discussion below. 

Table 2-3. Summary of Select Utility Sensor Programs. 
Agency Sensor Types Application Maintenance Problems 

Houston Collection System 
Kando System being 

installed 
Influent tracking No history 

St. Louis No online water quality monitoring in the collection system 
WWTPs (Collecting data from 4 facilities) 

Irvine Ranch Water 
District 

No online water quality monitoring in the collection 
The Michelson Water Reclamation Plant uses sensors for tracking influent water 

quality and optimizing aeration for secondary treatment. 
pH Influent Tracking Daily fouling until floating 

sensor boat installed 
Conductivity Influent Tracking Daily fouling until floating 

sensor boat installed 
DO Secondary Treatment No unusual maintenance 

experienced 
Omaha No online water quality monitoring in the collection system 

Missouri River WWTP (New facility) 
The Missouri River WWTP has large diurnal fluctuations in the influent ammonia that 
impacts the effectiveness of chlorination. To gauge effectiveness of the chlorination 
practice, the operations uses influent ammonia levels to control the chlorine feed to 
prevent the system from transitioning into breakpoint. The use of ammonia sensors 

for tracking ammonia levels in the influent provides the information for adjusting the 
free chlorine feed to reduce the ammonia levels in the discharge for compliance. 
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Agency Sensor Types Application Maintenance Problems 
Without the influent ammonia level variation, the operators could easily overfeed or 
underfeed free chlorine, either of which could lead to non-compliance in the effluent. 

 

Free Chlorine (Capital 
Controls) 

Effluent Disinfection No unusual maintenance 
experienced 

Total Chlorine (Capital 
Controls) 

Effluent Disinfection No unusual maintenance 
experienced 

pH Understanding 
breakpoint curve location 

No unusual maintenance 
experienced 

Bisulfite (ATI) Dechlorination No unusual maintenance 
experienced 

ORP (Hach) Back-up for Chlorine 
Analyzer 

No unusual maintenance 
experienced 

Ammonia Influent ammonia levels 
are used to determine 
when the plant produces 
free chlorine or 
chloramines 

No unusual maintenance 
experienced 

2.4.2 s::can Installation Experiences at City of Phoenix 
Summary of Field Deployment: 
The City of Phoenix installed s::can spectro::lyser and ammo::lyser (Figure 2-5) in their aeration 
basins and at the WWTP influent to measure the following parameters: nitrogen dioxide (NO2), 
nitrate (NO3), NH4, COD (Figure 2-6), soluble COD, and total suspended solids (TSS). The 
objective of the installations was to monitor and detect illegal COD load specific to industrial 
discharge. The s::can spectro::lyzer on the WWTP influent was configured to produce alarms 
based on abnormal values in the ultraviolet (UV)-Visual spectra data (Figure 2-7). 
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Figure 2-5. s::can ammo::lyser Installed at the Aeration Basin Site (City of Phoenix). 

Sensor Evaluation Approach: 

 
Figure 2-6. The Red Highlighted Parts of the Graph Denote the Spikes (Spectral Alarms) in COD Concentration at 

the WWTP Influent.  
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Figure 2-7. Multiple Individual Spectra Detected Which Implies Multiple Industrial Discharges into the System. 

Dump Type A refers to a spill the utility had observed, later identified as a heavy metal. 

• The COD concentrations are measured at the wavelength range of 250-400 nanometers 
(nm) of the UV-Visual spectra. S::can reviewed the spectral data collected at the WWTP 
influent after reports of a possible industrial discharge. Apart from the expected normal 
diurnal fluctuations, abnormal peaks were identified for short durations over a two-month 
period. 

• A closer investigation revealed that abnormal UV-Visual spectral peaks were visible in the 
raw spectral data during which spectral alarms were also raised by the sensors. The alarms 
also occurred during the same time of the day on multiple days over a two-month period. 

• An added feature of spectro::lyzer is the Spectral Fingerprint alarm which is helpful in 
investigating individual spectra. Multiple abnormal spectrums were identified suggesting 
multiple industrial dischargers. 

Overall Summary of Experiences: 

• s::can spectro::lysers have been able to detect and differentiate between different 
industrial discharges over the operation period of 2 years. 

• Ammo::lyser installed in the Aeration Basin has been able to detect changes in NO2/NO3 
following detected industrial discharges. 

• This information has been useful to the City in tracking down and issuing fines to illegal 
dischargers. The City of Phoenix now has plans to install an extended network of sensors in 
their collection system. 
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CHAPTER 3 

New Bench and Full-Scale Field Research 
The goal of this chapter was to provide a focused evaluation of sensor technologies by 
deploying them at various locations in four wastewater treatment facilities and their 
sewersheds, and analyzing the data. For these efforts, sensor systems were provided from 
multiple technology suppliers (Table 3-1). These efforts looked to define and understand 
accuracy, precision, drift, and fouling aspects of a select group of sensors. Another goal of the 
field research was to understand if and how probe containment devices can be employed to 
protect the sensors for issues related to FOG and ragging when the probes are installed in the 
collection system. 

Generally speaking, the results presented below indicate: 

• pH and EC probes, under the right circumstances, can be reliably used within the collection 
system and at the influent to a WWTP to measure water quality in real time. 

• Spectrometer based probes that measure multiple parameters (e.g., COD, biological oxygen 
demand [BOD], UV254) also demonstrated direct value in measuring pollutant variation and 
spike events, and if placed in a screened or primary effluent can be reasonably accurate and 
reliable. 

• ORP probes did not function well. 
• The probe location and the probe operations and maintenance (O&M) program, including 

staff consistency, matters.  
o Cleaning of spectrometry-based systems may be needed weekly, several times per 

week, or daily, depending upon the location of the sensor and site-specific water 
quality. Some sensors with self-cleaning systems might still reliably detect large water 
quality events with manual cleaning less than weekly.  

o Changing of O&M staff impacts results, as cleaning approaches will differ. Having a 
detailed and repeatable standard operating procedure for sensor maintenance and 
calibration is essential. 

• Pilot testing of any sensor system should be performed prior to purchase and installation. 
That pilot testing should define the accuracy and long-term O&M of any sensor system for 
the specific tested location and water quality.  

• In total, a combination of low maintenance probes within the collection system (e.g., pH, 
EC) coupled with a spectrometer-based probe in screened or primary effluent can 
effectively monitor a broad range of raw or partially treated wastewater qualities and 
provide an early warning system to water quality for a potable reuse system. 
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Table 3-1. Overview of Sensors Tested at Three Utilities for Bench and Full-Scale Field Research in Chapter 3. 
✔ indicates generally successful trial. X indicates tested but did not meet the utility’s criteria for continued use for 

real-time monitoring. *Successful when installed within CWS’s rag guard sensor holder. 
Brand Sensor CWS Morro Bay LACSD 

Yosemitech Y532-A ✔*   
ECD ORP Pt Cap peek, two-tang probe X   
ECD Extended Life pH Electrode RADEL body ✔*   

s::can Spectro::lyser ✔ ✔  
s::can condu::lyser ✔ ✔  
s::can pH::lyser ✔ ✔  

Real Tech Titanium Ba-X Series SA2010 multi-wave sensor   X 
Sentry Sentry-AD   X 

 

3.1 Clean Water Services Field Research 
3.1.1 Introduction 
This chapter included two research tasks: 

1. Conduct an evaluation of continuous sensors in a continuous-flow flume environment. 
2. Develop a sensor containment device to minimize ragging and test the device in the 

collection system environments to determine its effectiveness. 

This section summarizes the methods and findings of these experiments. A more complete 
report on these experiments can be found in Appendix A. 

3.1.2 Methods 
A Plexiglass flume was constructed near the headworks of the Forest Grove WWRF to perform 
controlled experiments on the sensors (Figure 3-1). The influent flow was diverted to the flume 
immediately after passing through the bar screens, grit removal, and a wet well. The flume was 
12 inches by 12 inches by 72 inches and received 150 gallons per minute (gpm) of flow. Six 
different sensors were installed in the flume including three pH probes (ECD, Yosemitech, and 
s::can), one ORP probe (ECD), one conductivity probe (s::can), and one spectrometer (s::can) 
that detected COD, BOD, TSS, nitrate, and ultraviolet absorbance (UVA) at 254 nm wavelength 
(UVA254). Sensors were maintained, calibrated, and installed using manufacturer 
recommendations. 
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Figure 3-1. Flume in Operation During Experiments. 

Ten experiments were run using the flume (Table 3-2). Three different velocities and depths 
were used to determine the effects these have on sensor performance with two replicates each 
(Experiments 1-6). Three fouling tests were also conducted where the probes were exposed to 
increased FOG and/or rags to observe the effects of fouling on their performance and their 
ability to recover from a fouling event (Experiments 7a-7c). Finally, a long-term experiment was 
conducted with an increased duration to test the probe performance over a longer period. Each 
experiment began with cleaning the probes and calibrating (if necessary) followed by setting up 
the conditions (velocity, depth, fouling) for that experiment. An initial “spike test” was then 
performed where pH, conductivity, BOD, COD, and ORP were increased in the flow using a 
spiking solution of sodium hydroxide, table salt, humic acid, and hypochlorite. The spike test 
typically lasted 20 minutes. The sensors were then operated for a certain duration (typically 
7 days) while handheld readings and samples for laboratory analysis were collected every other 
day for comparison with the sensor readings. Finally, a final spike test was performed similar to 
the one at the beginning of the experiment. Some experiments also included an additional 
spike test in the middle of the duration. 

Table 3-2. Summary of Experiments Conducted Using the Flume and Sensors. 
Experiment 

Number 
Velocity  

(ft/s) 
Depth 

(inches) Spikes 
Duration 

(days) 
FOG/rag 

introduction 
1 1.3 3 2 (start/end) 7 Normal 
2 0.8 5 2 (start/end) 7 Normal 
3 0.6 7 2 (start/end) 7 Normal 
4 1.3 3 2 (start/end) 7 Normal 
5 0.8 5 2 (start/end) 7 Normal 
6 0.6 7 2 (start/end) 7 Normal 

7a 0.6 7 3 (start/mid/end) 2 Grease dipped 
7b 0.6 7 3 (start/mid/end) 2 Rag wrapped 
7c 0.6 7 3 (start/mid/end) 2 Increased FOG 
8 0.6 7 3 (start/7-day/14-day) 24 Normal 
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CWS developed a sensor holder called the ‘rag guard’ designed to decrease fouling of the 
sensors in the sanitary collection system (Figure 3-2). The rag guard is a section of 4-inch 
diameter polyvinyl chloride (PVC) pipe with a 3-foot radius 90 degree bend with slats cut into 
the final 1-foot of the pipe that get progressively wider at the submerged end of the tube 
(Figure 3-2). The rag guard is suspended by stainless steel cables so that the slats are parallel 
with the flow, and the sensors are installed to be inside the slatted area. For this experiment, 
two identical ECD pH probes were installed in a manhole in the collection system. One of the 
sensors was placed inside the rag guard, and the other was placed in a typical sensor holder as 
designed by the manufacturer’s representative in previous deployments. The performance of 
the two sensors was compared over the combined duration of the flume experiments.  

 
Figure 3-2. Rag Guard Sensor Holder Showing the Entire Device. 

3.1.3 Results and Discussion 
Experiments 1 through 6 showed that changes in velocity and depth did not affect sensor 
performance. This was surprising as general experience has shown that sensors placed in 
manholes with a higher velocity tend to build up less FOG. However, the range of velocities 
available in the flume while maintaining a minimum 3-inch depth to keep the sensors wet was 
small, with a maximum of 1.3 feet per second (ft/s). Higher velocities than measured are 
certainly present in the collection system, and it is possible that such higher velocities may 
reduce fouling.  
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The largest factor affecting sensor performance was the sensor type itself. More specifically, 
those sensors that were more resistant to fouling performed better than those more 
susceptible to fouling. While all sensors detected the spikes well and matched the lab, 
handheld, or SCADA values well when they were clean, they differed greatly in their ability to 
resist fouling and their response to being fouled during the course of each experiment. The 
s::can spectro::lyser had similar results for each of the parameters it measured (COD, BOD, TSS, 
nitrate, and UVA254), so only the results for COD are summarized here. The sensor detected the 
diurnal pattern of COD consistently, detected real spikes that occurred, had a consistent 
baseline without drifting, and consistently detected all spiking events during each experiment. 
Figure 3-3 shows the COD measured by the spectro::lyser at the end of experiment 6 which had 
the lowest velocities. After 7 days, it detected the spike event very accurately. Even in 
experiments 7a-7c, the tests with intentionally increased foulants, the spectro::lyser recovered 
from the deliberate fouling within minutes and accurately detected the spiking events. Overall, 
the spectro::lyser showed that it can be used for detecting patterns in all of the optical 
parameters very well and was very resistant to fouling. The only exception was during 
experiments 1 and 8, when an unknown event occurred in the influent that affected the lens. 
The coating on the lens caused the baseline to drift upwards over time. In experiment 1, 
cleaning the lens fully corrected it, but cleaning the lens in experiment 8 did not correct the 
problem. It is unknown what caused this, but other utilities have had similar experiences with 
iron addition. This was not found to be the case in these experiments. 

While the spectro::lyser captured the patterns and temporal changes very well, laboratory COD 
tests on the grab samples often differed from the value reported by the spectro::lyser by up to 
several hundred milligrams per liter (mg/L). The sensor was calibrated to ten samples, but it is 
likely that additional calibration could have corrected the issue. TSS measured by the 
spectro::lyser agreed very well with the laboratory measurements, for example.  
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Figure 3-3. COD Measured by the s::can Spectro::Lyser Before and During A Spike Test In Experiment 6 After 

7 Days In Influent Without Cleaning. 

The s::can condu::lyser consistently detected discharge events, matched handheld values, had a 
stable baseline and detected all spiking events in all experiments. It was not affected by the 
deliberate fouling in experiments 7 or even the events in experiments 1 and 8 that caused the 
spectro::lyser to drift. It is well suited for detecting conductivity accurately and precisely in 
wastewater with minimal maintenance. 

The three pH sensors in the flume performed differently in these experiments. While all three 
detected the initial spikes and matched the temporal pattern measured by the influent pH 
probe when they were clean, the s::can pH::lyser was much more consistent in its ability to 
detect spikes at the end of experiments and match the SCADA values over time than the other 
two sensors (the influent pH sensor where the SCADA came from was cleaned and maintained 
daily by treatment plant staff). Figure 3-4 shows the pH values reported during experiment 2 
compared to the SCADA pH sensor in the influent which was cleaned daily. The observations 
during this experiment were typical of the other experiments, as well. The s::can pH sensor 
matched the SCADA pH accurately and precisely, detected the real pH events that occurred on 
April 6th through 8th, and detected all spike tests. The ECD sensor detected the initial spike, but 
fouled and drifted after 1-3 days depending on the experiment and typically did not detect the 
final spike event. It also had much higher variability than the other sensors. The Yosemitech 
sensor had periods where it matched well and others where it didn’t, but it was less predictable 
than the ECD sensor in that these periods were not consistent (i.e., it didn’t always match well 
for the first few days, then drift away for the rest of the experiment). It sometimes detected the 
final spike, but was not consistent. It also had a consistent offset of 0.5 units from the other 
sensors even though all were calibrated. The squared Pearson correlation coefficients with the 
SCADA pH were 0.84, 0.04, and 0.03 for the s::can, Yosemitech, and ECD pH sensors, 
respectively (all had p values <<0.05). 
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Figure 3-4. Timeseries of pH in Experiment 2 as Measured by All Three pH Sensor Types. 

The Handheld Multimeter, And The Influent SCADA Ph. 

Comparison of the performance of the two ECD pH sensors installed in the manhole 
demonstrated the effectiveness of the rag guard. Both of these were the same as the ECD pH 
sensor installed in the flume. Figure 3-5 shows the pH timeseries for the sensor in the rag guard 
and the sensor in the generic sensor holder from when it was cleaned on June 8th until it was 
cleaned again on July 2nd. Issues with the datalogger, hardware, and installation caused data 
before this period to either not be available or not be reliable. Nevertheless, the figure 
illustrates the differences caused by the rag guard over nearly a month-long period. In the 
generic sensor holder, the performance of the ECD pH sensor was similar to that in the flume, 
where it drifted a few days after cleaning, sometimes periodically recovering, presumably when 
a collected rag was dislodged. It was generally able to detect the diurnal pattern, but the 
measured values themselves were well below the real value, as has typically been observed for 
pH sensors in the CWS collection system in multiple pilot studies. In the rag guard, however, the 
ECD pH probe had a much more stable baseline and detected the diurnal pattern and several 
small events very well. There were short periods of drift such as on June 27th, but it recovered 
much more quickly and returned to the stable baseline. This suggests that the rag guard may 
enable the maintenance interval for this probe to be approximately one month, which is CWS’s 
target interval for feasibility. As to why or how the rag guard specifically helps, it is speculated 
that initial contact with strings, hair, and small debris start to foul the sensors, which then leads 
to a micro-environment where fouling can occur more aggressively. Because there are no 
surfaces perpendicular to the flow and nothing to catch strings, hair, rags, etc. when the rag 
guard is in place, it helps to prevent rapid fouling. 
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Figure 3-5. Timeseries of pH Measured by Both pH Sensors at a Test Manhole June 8 Through July 2, 2021. 

Overall, the field research at CWS demonstrated that water quality sensors can be successfully 
deployed in sanitary sewers without an excessive maintenance burden. The main factors 
affecting the success of the deployments were the ability to limit fouling and the type of sensor 
used. Fouling was shown to be limited by air-blast self-cleaning in the case of the s::can sensors 
deployed in the flume and by the rag guard deployed at a manhole in the collection system. 
Resistance to the effects of fouling was also a function of the type of technology used by the 
sensor (see Appendix A). Velocity and depth were not shown to be major variables in the 
success of the different deployments, but this may be limited by the range of velocities 
available to test at this flume and/or the counter effects of changes in depth. 

In general, the s::can sensors were successful except when events occurred that affected the 
lens/sensors. They were consistently able to track measured values and detect spikes after 
more than a week in the influent, even when impacted by FOG and rags. The combination of 
the self-cleaning and the technology made them very resistant to typical fouling, and caused 
them to outperform the other sensors. However, they are expensive, require more power, and 
cannot currently be deployed in manholes (though this may change in the future). These could 
be an excellent choice for sensors at the influent or at established monitoring stations in the 
collection system equipped with power and a utility box. While the spectro::lyser detected the 
temporal patterns in the influent consistently, it sometimes varied greatly from measured 
values despite calibration. This may be solvable with better calibration as shown in the case of 
TSS and at other cities, but it may also mean that the sensors can be used more for detecting 
patterns rather than replacing laboratory samples of COD and other parameters.  
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The ECD pH probes were not successful for more than a few days at a time except when 
deployed inside the rag guard. With the rag guard, the ECD pH probes performed well for a 
month with no maintenance. These can currently be deployed in the collection system inside 
manholes.  

The Yosemitech probes showed promise that these inexpensive probes could perform similarly 
to the ECD probes in the collection system. However, they will likely also require a rag guard to 
avoid excessive maintenance, and their dataloggers cannot currently be deployed inside 
manholes (though that may change in the future). 

The ORP probes did not perform well in any of the applications regardless of the methods used 
to prevent fouling and will not be used by CWS in their continuous monitoring program. 

3.2 Morro Bay Field Research 
3.2.1 Introduction 
The Morro Bay WWTP is a relatively small facility, with flow ranging from around 0.2 million 
gallons per day (mgd) to 1.2 mgd. Morro Bay is implementing a potable reuse program with the 
capability to recharge the groundwater with 1 mgd of purified water. The pilot testing for 
Morro Bay was focused upon a less controlled experiment, where the sensor systems were 
deployed in the screened primary influent, calibrated, inspected daily, and left to run without 
spiking or challenge events.  

3.2.2 Equipment and Installation 
The same probe system from s::can used for CWS was also deployed to Morro Bay. A summary 
of the equipment and installation of the s::can equipment is as follows, and is described in 
more detail in the subsequent sections: 

• Probes installed: 
o s::can spectro::lyser was supplied by s::can for measuring COD, BOD, TSS, UV254, 

bisulfide (a surrogate for hydrogen sulfide [H2S]) and NO3. The sensor was connected to 
a con::cube for data logging, telemetry, and control. 

o s::can pH::lyser was supplied by s::can for measuring pH. The sensor was connected to a 
con::cube for data logging, telemetry, and control. 

o s::can condu::lyser was supplied by s::can for measuring conductivity. The sensor was 
connected to a con::cube for data logging, telemetry, and control. 

o Various hardware for automatic cleaning. 
• Human Machine Interface: 

o V3 con::cube with integrated event detection and data validation. 
o NEMA 4X, outdoor installation (Figure 3-6). 

• WIFI & Remote Monitoring: 
o Terminal is equipped with external modem for remote connection. 
o The system is monitored remotely in real time and data can be downloaded for 

evaluation (Figure 3-7). 
• Installation: 

o Various hardware for in situ installation and handrail mounting. 
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o Equipped with a sun shield. 
• Sensors were installed at the Morro Bay WWTP before primary treatment but after the bar 

screens and aerated grit to minimize fouling. The probe system was installed outdoors. 
• Morro Bay doses approximately 1-2 mg/L ferrous chloride at their headworks (targeting 

approximately 1.65 mg/L). Iron has caused lens fouling issues on s::can probes at other 
sites. So, the high frequency of (daily) maintenance required at this location might not be 
representative of the maintenance requirements at other sites. Generally, daily 
maintenance could be considered overly burdensome in practice, but was deemed 
acceptable for this short duration trial.  

 
Figure 3-6. s::can Probe System at Morro Bay. 

 
Figure 3-7. Morro Bay s::can Data Presentation on Web Browser. 

The s::can system at Morro Bay underwent startup and calibration on site, with direct 
supervision by s::can personnel, following these procedures: 

• Day 1 is for equipment installation and configuration. 
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• Day 2 and 3 are for testing and calibration. 
o Up to four grab samples are/were taken to verify probe accuracy for COD, BOD, TSS, 

NO3, and Bisulfide. These samples were shipped to an off-site laboratory. 

3.2.3 Methods 
The Morro Bay installation of the s::can probes in screened primary effluent was in the influent 
to primary treatment, and was intended to evaluate probe accuracy, precision, and fouling in a 
real-world environment. The trial also enabled a comparison to the CWS laboratory flume 
experiments with much of the same equipment (Section 3.1).  

Morro Bay experiences diurnal changes in water quality and flow. The water velocity fluctuation 
in this experimental approach was intentionally uncontrolled to provide a comparison with the 
controlled velocity flume at CWS.  

Daily over 3+ months, the probes were removed from service, examined, and manually cleaned. 
Recordings pre- and post-cleaning were noted as well as other visual observations in the daily 
checklist below (Figure 3-8).  

It should be noted that the s::can equipment had an automated air blast sensor cleaning 
system. However, unless specifically noted, the sensors were manually cleaned on a daily basis 
(with measurements taken, cleaning performance, and measurements retaken).  
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Figure 3-8. Morro Bay Daily Field Checklist. 
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Over the 3+ month period of operation, both the daily checklists and weekly online data 
downloads were collected and shared with the project team for evaluation and potential 
modification of efforts at Morro Bay. The con::cube sent data from the s::can sensors to their 
proprietary cloud, allowing for project team access.  

Twice monthly grab sampling and calibration for COD, BOD, TSS, NO3, UV254, pH, EC, and ORP, 
with all other samples were sent off site. The off-site laboratory work was performed by 
Abalone Coast Analytical using standard methods (Table 3-3). The online s::can data were 
adjusted based upon the results of these calibration results. Furthermore, the Morro Bay 
sampled their effluent for TSS and BOD twice weekly.  

Table 3-3. Analytical Methods to be Used for Laboratory Analysis for Morro Bay. 
Analysis Method Laboratory 

Chemical Oxygen Demand (COD) Standard Methods 5220 D Abalone Coast Analytical 
Total Suspended Solids (TSS) Standard Methods 2540 D Abalone Coast Analytical 

Biochemical Oxygen Demand (BOD) Standard Methods 5210 B Abalone Coast Analytical 
UV254 Standard Methods 5910B Abalone Coast Analytical 

pH Standard Methods 4500H + B Abalone Coast Analytical 
Nitrate EPA 300.0 Abalone Coast Analytical 

Hydrogen Sulfide Standard Methods 4500-SF Abalone Coast Analytical 

3.2.4 Probe Results 
The s::can equipment at Morro Bay ran nearly continuously from mid-January 2021 and was 
shut down May 10, 2021.  

3.2.4.1 Probe Accuracy 
Grab sample data is plotted in the figures below alongside hand recorded values from the 
online probes over the test period (Figures 3-9 through 3-14). The first full calibration of the 
probes was completed on February 6, 2021. Values were hand recorded immediately after 
performing a manual cleaning of all but the pH and EC probes. The pH and EC probes were 
cleaned only one time, on February 16, 2021. Lab samples taken on and after February 6, 2021 
were used to calibrate the probes, which can be seen in some of the data sets as the online 
meters level out and read closer to lab measured values. Notable observations include: 

• Online EC values matched well with grab samples, noting that there is substantial EC 
variation inherent to the raw wastewater. 

• Online pH values over time trended low compared to grab samples. The pH probe was only 
calibrated at startup of the pilot, and monthly calibration may have corrected for the sensor 
drift. 

• COD, BOD, and TSS online values had initially wide variations in value and were well off of 
grab sample values (i.e., by greater than a factor of two). Calibration was completed which 
dramatically reduced the variability and brought the values reasonably close to grab sample 
values.  

• UV transmittance (UVT) readings (calculated based upon UVA readings) were continuously 
higher than lab samples, with only one exception. The team believes that this was due to 
the timing of the calibration sample being below peak values seen online. More frequent 
calibration is needed.  
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• Generally, calibration of probes monthly or more frequently would be recommended for 
primary influent based on this dataset.  

• Bisulfide and nitrate results were not informative and so are not shown below for brevity. 

 
Figure 3-9. Electrical Conductivity Lab and Online Data Comparison.  

Dashed green bar represents calibration. 

 
Figure 3-10. pH Lab and Online Data Comparison.  

Dashed green bar represents calibration. 
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Figure 3-11. COD Lab and Online (After Manual Cleaning) Data Comparison.  

Dashed green bar represents calibration. 

 
Figure 3-12. BOD Lab and Online (After Manual Cleaning) Data Comparison.  

Dashed green bar represents calibration. 
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Figure 3-13. UVT Lab and Online (After Manual Cleaning) Data Comparison.  

Dashed green bar represents calibration. 

 
Figure 3-14. TSS Lab and Online (After Manual Cleaning) Data Comparison.  

Dashed green bar represents calibration. 

3.2.4.2 Measurements and Trends 
A week-by-week comparison of data sets was generated, looking to define wastewater quality 
patterns for the monitored parameters. Six consecutive weeks of data after initial operation 
and calibration were used with all data presented below starting at 12:00 a.m. Monday 
morning. The spectro::lyser was cleaned daily, typically between 8 a.m. and 2 p.m., unless 
noted otherwise. The pH::lyser and condu::lyser were only cleaned once over the test period. 
More detail on fouling is presented below.  
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These data and related investigations indicated: 

• Electrical Conductivity: 
o Monday through Friday saw multiple spikes of EC of more than double the baseline EC 

of approximately 1400 microSiemens per centimeter (µS/cm) (Figure 3-15). 
o Saturday and Sunday saw one EC spike each day in the mid-morning, though these 

spikes were relatively low. 
o Results, week by week, were comparable, clearly indicating an industrial and community 

pattern. Variations from this pattern, which have not yet been seen, would indicate an 
abnormal or new discharge to the system. 

o The weekday EC spikes were the result of brine discharge from a large bottled water 
company. Morro Bay is currently working with that company to develop both 
equalization of salt spikes (near term) and direct ocean disposal (future). 

• pH: 
o Both weekdays and weekend days saw pH spikes at about 8 am, raising pH from 

approximately 6.7 to 7.2 or 7.3 (Figure 3-16). 
o Some week to week changes in the “baseline” pH were evident, in the range of 6.6 to 

6.9. 
o The pH varied diurnally, with the higher spikes following the diurnal pattern from 

municipal flows. pH was historically a concern, with a commercial laundry discharging 
substantial flow with elevated pH in the past. Recent discussions have led to better 
collaboration and pretreatment by the industry, with the industry adding acid to drop 
the pH in their discharge, which this data shows was successful. 

o While there was some variability, the profile of pH day by day and week by week 
indicated a stable and predictable water quality. Potential variations, either patterns or 
spikes, would be indicative of abnormal or new discharge to the system.  

• UVA and UVT: 
o Online UVT averaged 44 percent while lab UVT averaged lower, 30 percent 

(Figure 3-13). 
o UVA254 (showed variability daily within a band with no discernable daily pattern 

(Figure 3-17). 
o UVA appeared to be highest on Monday. 
o For the 3rd week of study and the 6th week of the study, both Wednesday through 

Thursday or Friday, there were substantial, prolonged, and atypical upward trend in 
UVA, followed by a steep drop back to “normal” levels (Figure 3-18). A similar trend was 
seen in the online readings for COD, BOD, and TSS. While it may at first appear to be a 
water quality event, these “events” directly correlated to test periods where the 
spectro::lyser was intentionally not cleaned. Thus, the witnessed events simply attest to 
the need for daily cleaning for this application. 
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• TSS: 
o Except for one point, the online TSS data did not match the lab TSS closely (Figure 3-14). 
o TSS showed some variability daily with less of a consistent pattern compared to other 

variables. 
o The week to week data sets did not overlap consistently. Further evaluation for reasons 

for this difference is needed.  

 
Figure 3-15. Week by Week EC Profiles. 

(notes: Conductivity1 is Week 1 Values, Time 0 is 12 am Monday Morning) 
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Figure 3-16. Week by Week pH Profiles. 

(notes: pH1 is Week 1 Values, Time 0 is 12 am Monday Morning) 

 
Figure 3-17. Weekly UVA Profiles for Weeks 1, 2, 4, and 5. 

Time is hours since 12 am Monday morning. Parenthesis after UV254 indicate week number. 
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Figure 3-18. Weekly UVA Profiles for Weeks 3 and 6. 

Time is hours since 12 am Monday morning. Parenthesis after UV254 indicate week number. Cleaning was 
performed after 3 to 4 days of operation, as noted by the drop in UV254. 

 
Figure 3-19. Week by Week TSS Profiles. 

(notes: TSS1 is Week 1 Values, Time 0 is 12 am Monday Morning) 
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3.2.4.3 Probe Fouling 
As stated previously, Morro Bay doses ferrous chloride at 1 to 2 mg/L (targeting approximately 
1.65 mg/L) into the feed of the WWTP to control H2S and improve primary clarification 
performance. The expectation from the project team was that this dosing would lead to fouling 
of the s::can spectro::lyser [COD, BOD, TSS, UV254, bisulfide (a surrogate for H2S), and NO3] but 
not the other s::can probes because of differences in the sensor window. The operations staff 
cleaned the spectro:lyser sensor daily, but not the other s::can probes (which were only 
cleaned once). As expected, minimal fouling of EC and pH probes was seen.  

Evaluation of fouling results for the spectro:lyser was based upon daily comparisons of 
recorded values, pre and post cleaning, referred to as a “Fouling Ratio”, which is the pre clean 
value divided by the post clean value for a given time point. These results include a 3-day 
period from March 8th to March 11th where the ferrous was turned off (see highlight in Figure 
3-20), the probes where cleaned, and the fouling rate was evaluated with the hopes of seeing 
less fouling. These results also included several periods of time where there was no sensor 
cleaning. The results indicated: 

1. Turning off the ferrous for 3 days did not appear to reduce probe fouling. The daily cleaning 
of the spectro:lyser was sufficient to minimize fouling impacts, even while ferrous was being 
dosed. 

2. Daily cleaning minimized fouling, as evident by a large cluster of data at the Fouling Ratio of 
1, with data spread both above and below this value. 

3. Extending the cleaning interval to two or three days did not show dramatically higher 
Fouling Ratios, but all of these longer test period data showed Fouling Ratios >1, so there 
was clearly a negative impact on fouling due to longer days between cleaning (Figure 3-21). 

4. TSS and COD measurements saw daily fouling ratio of up to approximately 1.2. 
5. UVA and BOD measurements saw a daily fouling ratio of up to approximately 2.0. 
6. The daily variability shown in the earlier figures for UVA, COD, BOD, and TSS may be more 

related to fouling than true underlying variability in the water quality or random analytical 
variation. 
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Figure 3-20. Evaluation of spectro::lyser Probe Fouling Ratio. 

(3 day period with no ferrous dosing highlighted) 
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Figure 3-21. Evaluation of spectro::lyser Probe Fouling Ratio Based Upon Cleaning Interval. 

(48 hour and 72 hour cleaning intervals had no ferrous chloride dosing) 

3.3 Los Angeles County Sanitation Districts Field Research 
3.3.1 Introduction 
The Sanitation Districts’ wastewater pretreatment program is broad, intended to protect all of 
the Sanitation Districts’ water reclamation plants and the downstream permit compliance for 
both NPDES discharge and for potable water reuse. The program includes: 

• Collection of wastes from 850 square miles and 78 cities and unincorporated territory 
within Los Angeles County. 

• Serving 5.7 million people in Los Angeles County. 
• Tracking of all wastes to one ocean discharge facility and 10 water reclamation plants, 

respectively: Joint Water Pollution Control Plant, La Cañada, Lancaster, Long Beach, Los 
Coyotes, Palmdale, Pomona, San Jose Creek (East and West), Saugus, Valencia, and Whittier 
Narrows. 

• Approximately 400 categorical industrial users (CIUs). 
• Approximately 1,000 significant industrial users (SIUs). 
• Approximately 1,500 other industrial dischargers. 

Because of the extent of the Sanitation Districts wastewater treatment program, their research 
department actively pursues innovation, including online monitoring of water quality.  
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In parallel to this research, the Sanitation Districts pilot tested two Sentry online water quality 
analyzers. In direct support of this research, the Sanitation Districts pilot tested two Real Tech 
spectrometers. All pilot testing was done within specific wastewater treatment plants (e.g., 
primary effluent). Details and results from all tested sensor systems are provided below.  

3.3.2 Equipment and Installations 
Two probe systems composed of a single probe and communication unit, provided by Real 
Tech, were installed and started in April 2021 by LACSD. Each probe system consisted of a 
Titanium Ba-X Series SA2010 multi-wave sensor (which utilizes select wavelengths to monitor 
water quality), a Controller (communication unit), an air clean system, and a backboard and 
mounting stand (Figure 3-22). Real Tech systems offer remote monitoring for COD, BOD, and 
TSS. One Real Tech probe system was installed at the Joint Water Pollution Control Plant 
(JWPCP, Figure 3-23) and one at San Jose Creek East Water Reclamation Plant (SJCEWRP, 
Figure 3-24). Both were initially installed in a primary effluent channel. The probe system at 
JWPCP was moved to secondary effluent on September 2, 2021 to compare performance of the 
probe in primary and secondary effluent. The probe system at SJCEWRP was moved to a 
different location in the primary effluent channel on September 9, 2021 due to reactor 
shutdowns.  

 
Figure 3-22. Real Tech Sensor (right) and Communication Unit (left). 
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Figure 3-23. Real Tech in Primary Effluent (left) and Secondary Effluent (right) at JWPCP. 

  
Figure 3-24. Real Tech in Primary Effluent at SJCEWRP. 

At initial location adjacent to Unit 3 (left) and secondary location west of the primary sedimentation tanks (right). 

One Sentry system composed of two probes and one communication unit for remote 
monitoring were also provided to LACSD (Figure 3-25). Sentry probes, which work by measuring 
signals from biological activity of exoelectrogenic bacteria on the surface of a sensor, were 
installed in SJCEWRP in February 2021 in the primary effluent channel and in an anoxic zone of 
a secondary treatment reactor (Figure 3-26). On September 17, 2021, the Sentry system and 
one probe were relocated to the raw influent of Los Coyotes Water Reclamation Plant (LCWRP), 
which is known to have the largest industrial waste loading as a percentage of total flow 
upstream and had more opportunities to observe toxic shocks (Figure 3-27). On 
November 4, 2021, the Sentry system and one probe was relocated into primary effluent at 
Lancaster Water Reclamation Plant (LANWRP), a remote facility in a separate collection system 
from SJCEWRP and LCWRP (Figure 3-28).  
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Figure 3-25. Sentry Probe (left) and Communication Unit (right). 

 
Figure 3-26. Sentry Probe in Primary Effluent (left), Communication Unit (middle), and Sentry Probe in an Anoxic 

Zone (right) of SJCEWRP. 

 
Figure 3-27. Sentry Probe in LCWRP Raw Influent. 

(attached to the yellow cord) 
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Figure 3-28. Sentry Probe in LANWRP Primary Effluent. 

3.3.3 Probe Test Methods 
3.3.3.1 Test Method for Real Tech 
The Real Tech sensors required initial calibration, and each instrument was monitored to 
ensure it continued to read accurately over the measurement period. For the first two weeks 
after installation, starting May 10, 2021, three samples a week were collected to establish the 
calibration of the sensors. Analyses for these samples included soluble chemical oxygen 
demand (sCOD), soluble biochemical oxygen demand (sBOD), soluble total organic carbon 
(sTOC), and TSS. 

Following the first two weeks after installation, one sample a week was collected to check the 
accuracy of each analyzer for 24-weeks. sCOD analyses for each sample were performed for a 
24-week duration.  

In agreement with Real Tech’s recommendations, the following cleaning/maintenance was 
done on the sensors: 

• Automated Cleaning: 
o Air blast was initially done every 10 minutes, but reduced to 5 minutes as the evaluation 

progressed. 
• Manual Cleaning: 

o The sensor was initially cleaned weekly. However, weekly cleaning was insufficient and 
manual cleaning was performed daily for a short period at JWPCP. Though conducted 
for the sake of this study, in practice, many utilities would consider a daily cleaning 
frequency overly burdensome. After observing relatively stable signals following a 
period of daily manual cleaning, the cleaning interval was changed to three times per 
week from August 18, 2021 onward. 
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o To clean the sensor, it was removed from the channel, rinsed off with wash water, the 
optical lens was wiped a few times with a cloth soaked with the mild acid/CLR (calcium, 
lime, & rust remover) in a “flossing” type action, and re-rinsed with wash water before 
replacement to the channel.  

o The maintenance was done on the same days of the week to try to keep cleaning 
intervals as consistent as possible. Initial weekly manual cleanings for the sensor at 
SJCEWRP were on Tuesday mornings. Weekly manual cleanings for the sensor at JWPCP 
were on Wednesday afternoons. Three times a week manual cleanings for both sensors 
were on Monday, Wednesday, and Friday mornings.  

Calibrations were performed on June 16 and September 15, 2021. Calibrations could only be 
performed by Real Tech through their proprietary model and not by LACSD staff. Real Tech 
testing was completed in November 2021. 

3.3.3.2 Test Method for Sentry 
As the Sentry was designed to detect signals of toxicity, the results from the sensor were 
monitored and compared to the Real Tech sensor, monitored flows, and routinely monitored 
constituents to see if there was a correlation with COD, BOD, or TSS and changes in microbial 
activity. Ideally, this sensor would have provided an early warning to nitrification inhibitory 
events.  

No sampling or calibration was done for this sensor at it measures microbial activity and there 
is no standard lab method for comparison. The Sentry system and probes were rented for one 
year so testing may continue through early 2022. 

3.3.3.3 Challenge Testing 
Challenge testing was conducted for the Sentry and Real Tech sensors at SJCEWRP through 
batch tests. The purpose of challenge testing was to determine if the sensors detect known 
concentrations of low molecular weight organics that may pass through advanced treatment 
and increases in soluble COD through the addition of sodium acetate. The compounds selected 
were mostly common industrial chemicals that cannot fully be removed by reverse osmosis. In 
some cases, the concentrations selected were thought to be inhibitory for nitrification. In other 
cases, no inhibitory concentration was found in literature. Notably, neither sensor was 
necessarily designed with the goal of detecting these specific chemicals. 

For testing the low molecular weight organics, Sentry and Real Tech sensors were placed in a 
70-gallon tank with a mixer (Figure 3-29). The tank was filled with 20 gallons of primary effluent 
and spiked with compounds at low and high concentrations (Table 3-4). Following a short 
stabilization period (baseline), a single compound was spiked into 20 gallons of primary effluent 
at a time. After a few minutes of mixing the primary effluent with the spiked compound, the 
tank was drained and refilled with primary effluent and the next compound was spiked. 
Duplicate testing of each compound was performed. Low concentrations were tested first in an 
abundance of caution (in case a specific compound permanently inhibited the Sentry), followed 
by higher concentrations.  
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For testing of soluble COD through sodium acetate addition, the tank with the mixer and 
sensors was filled with 20 gallons of primary effluent and the sensors were given a few minutes 
to develop a baseline. Following a baseline, sodium acetate was added to the desired increase 
in concentration, a few minutes of mixing was allowed for sensor acclimation, and additional 
sodium acetate was added to the next desired increase in concentration. Additions of sodium 
acetate to achieve 100, 200, 300, 500, and 1000 mg/L were tested.  

 
Figure 3-29. Challenge Testing Setup (left) and Plan View of Sensors in the Tank (right). 

Table 3-4. Challenge Tested Compounds and Concentrations. 

Compound 
Low High 

Concentration (mg/L) 
Acetone 20 100 

Chloroform 5 10 
Methylene Chloride 10 50 

Toluene 10 100 
1,2-Dichloropropane 5 100 

Carbon Disulfide 10 20 
Formaldehyde 100 200 

3.3.4 Probe Results 
3.3.4.1 Real Tech Performance 
The Real Tech at SJCEWRP exhibited a clear diurnal pattern following installation (Figure 3-30). 
Prior to the initial calibration, the laboratory grab sample results did not appear to match the 
sensor results. Following calibration on June 16th, the fit with the grab samples improved. 
There was a considerable amount of noise in the signal –the source of this was unknown. The 
channel where the instrument was located had adequate velocity and should have been well 
mixed.  
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Figure 3-30. SJCEWRP Real Tech and Grab Sample COD Results from June 8 to June 25, 2021. 

When re-calibration was performed on September 15th to improve accuracy, the diurnal 
pattern did not seem to be as pronounced (Figure 3-31).  

 
Figure 3-31. SJCEWRP Real Tech and Grab Sample COD Results from August 8 to October 1, 2021. 

After the SJCEWRP Real Tech was moved from one location in the primary effluent channel to 
another, the sensor signal was smoothed out (Figure 3-32). It appears that the source of the 
noise in the COD signal was not from the instrument but from a hydraulic condition in the 
channel.  



 

Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse 51 

 
Figure 3-32. SJCEWRP Real Tech and Grab Sample COD Results from September 8 to September 12, 2021. 

The Real Tech at JWPCP initially exhibited a clear diurnal pattern following installation in 
primary effluent (Figure 3-33). However, following the June 16th calibration, the diurnal pattern 
disappeared. In addition, the signal pattern appeared to indicate some accumulated fouling. 

 
Figure 3-33. JWPCP Real Tech and Grab Sample COD Results from May 30 to July 4, 2021. 
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The Real Tech did not appear to trend well with laboratory grab samples in JWPCP primary 
effluent (Figure 3-34).  

 
Figure 3-34. JWPCP Real Tech and Grab Sample COD Results from May 30 to September 2, 2021. 

It was thought that perhaps the Real Tech frequently cleaning to prevent calibration drift in 
JWPCP primary effluent was due to the chemical interferences from iron and caustic dosing 
upstream. However, when the sensor was moved from primary effluent to secondary effluent, 
the fit with the grab sample data did not appear to improve, even after calibration on 
September 15th, which appeared to increase the noise in the sensor results (Figure 3-35). 
Perhaps the matrix effects of JWPCP wastewater were too great. The secondary effluent COD 
was also on the low end of the specified range of the instrument. Lower range models of this 
instrument are also available from Real Tech but were not tested for this study.  
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Figure 3-35. JWPCP Real Tech and Grab Sample COD Results from September 2 to October 14, 2021. 

3.3.4.2 Real Tech Maintenance 

For the SJCEWRP Real Tech, drift was observed starting mid-June (Figure 3-36), when new staff 
was assigned to clean the sensor. This highlights one of the risks of multiple individuals 
responsible for sensor maintenance. Starting on June 19th there was a clear pattern that 
appeared to represent sensor fouling. Deep cleaning (CLR soaking) performed on July 23rd 
assisted with recovery of some of the signal, but not to the level prior to drift. The increased 
cleaning frequency, from weekly to daily, in early August helped with maintaining a steady 
signal. Cleaning with 7.25 percent hydrochloric acid on August 6th helped the signal to recover 
to values prior to the signal drift. For instances of significant drift, cleaning with hydrochloric 
acid may be the best remedy for signal recovery. This indicates that after fouling is allowed to 
occur, more aggressive cleaning measures may be needed to restore the instrument.  
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Figure 3-36. SJCEWRP Real Tech Manual Cleaning. 

Weekly cleaning was not sufficient for the Real Tech in JWPCP primary effluent. At each manual 
cleaning event, the signal would drop and slowly increase for a few days (Figure 3-37). The 
sensor appeared to consistently foul rapidly after cleaning, which was suspected to be due to 
the ferrous chloride dosed upstream of JWPCP. 

 
Figure 3-37. JWPCP Real Tech Manual Cleaning from June 30 to July 30, 2021. 

When cleaning was changed to daily, the signal appeared to be maintained relatively stable 
(Figure 3-38). At cleaning three times a week, the signal also seemed to be maintained. This 
suggests that a minimum manual cleaning interval of three times a week was necessary to 
maintain stable measurements. 
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Figure 3-38. JWPCP Real Tech Manual Cleaning from August 15 to August 30, 2021. 

3.3.4.3 Sentry Results 
No correlation was found between the Real Tech parameters and the Sentry toxicity signal 
(microbial electrical signal [MES]). No nitrification inhibitory events occurred during the trial at 
SJCEWRP to assess the Sentry probes’ sensitivity in those scenarios directly.  

When overlaid with flow patterns, significant signal fluctuations in primary effluent due to plant 
shutdowns were notable but did not translate to significant fluctuations in the mixed liquor 
(ML) (Figure 3-39). This suggests that while minor plant shutdowns may affect the signal in 
primary effluent, there is little effect observed in ML. It is likely that when flow stops in the 
primary channel, this leads to a localized depletion of substrate in the immediate vicinity of the 
sensor. This suggests good sensitivity to substrate variations.  

 
Figure 3-39. SJCEWRP Sentry Primary Effluent and ML MES from April 26, 2021 to May 26, 2021. 
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At LCWRP, the Sentry detected a weekly pattern in the raw influent (Figure 3-40). On Friday 
afternoons, between 14:00 and 17:00 weekly shock dosing with sodium hydroxide is added 
directly to the sewers for sulfur-oxidizing bacteria control. This disrupted the MES, dropping it 
significantly. Following the drop, the MES increased over the course of a week, decreasing again 
on Friday afternoon. The recovery time required for the sensor from the high pH wastewater, 
and thus the time the sensor has lost sensitivity, suggests that high pH shocks may be 
problematic for this type of biological sensor.  

 
Figure 3-40. LCWRP Raw MES and pH from September 17 to October 18, 2021. 

Results of the Sentry at Lancaster WRP were compared with routine 24-hour composite COD 
laboratory data and ambient air temperature (Figure 3-41). Although ambient temperature is 
not an ideal comparison (water temperature would be much better), it was only available 
temperature parameter for this facility.  

The COD data and the Sentry data appear to have a similar trend, which suggests that Sentry 
can be used to try to monitor influent substrate loading. However, it appears that the Sentry is 
affected by temperature, and the decline in signal may be due to a decline in temperature, 
which suggests that substantial analysis to isolate temperature effects is required to use the 
Sentry results.  
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Figure 3-41. Lancaster WRP Influent COD, MES, and pH from November 4, 2021 to January 19, 2022. 

3.3.4.4 Challenge testing Results 
While some of the compounds tested were thought to be at inhibitory levels for nitrification, 
challenge testing of the low molecular weight organic compounds on the Sentry resulted in no 
significant changes in all compounds except for 200 mg/L formaldehyde. Figure 3-42 shows a 
typical result from most compounds (left) and the result from high concentration formaldehyde 
(right). Biological life on the surface of the sensor was more robust and did not demonstrate a 
signal change at the concentrations tested. It is possible that the Sentry was not designed to 
specifically detect some of the compounds and concentrations tested, which is important to 
know prior to procurement or full-scale implementation. 
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Figure 3-42. Sentry Lightweight Organic Compound Challenge Testing. 

The Real Tech sensor exhibited no significant changes in COD results for all compounds tested. 
The results of the COD for the high concentration formaldehyde test is shown in Figure 3-43. 
The reason for the lack of detection is likely that the tested chemicals do not significantly 
absorb light at the wavelengths measured by this Real Tech sensor.  

 
Figure 3-43. Real Tech Lightweight Organic Compound Challenge Testing: Formaldehyde. 
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In the acetate addition experiment, no significant changes were observed in the Real Tech COD, 
suggesting that the sensor was not responding to soluble COD as acetate (Figure 3-44). 

 
Figure 3-44. Real Tech Acetate Addition Challenge Testing. 
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CHAPTER 4 

Review of Enhanced Source Control Programs 
Only a handful of utilities have robust ESCPs for potable reuse right now, though a number of 
projects are developing such programs. Further, the industry has relatively little experience—
which has yielded mixed results—with sensors installed in wastewater collection systems and 
within WWTPs. This WRF report compiled existing industry practices and information including:  

• Examples of typical ESCPs that are currently planned or implemented by utilities today 
[Chapter 4 (this chapter)]. 

• Utility experiences deploying real-time monitoring within collection systems in Steinle-
Darling et al. 2020 (Chapter 5). 

• Utility experiences with online sensors within wastewater treatment plants, along with an 
analysis of how existing online WWTP and advanced water treatment facility (AWTF) 
monitoring data and machine learning could be used for enhanced source control to detect 
industrial discharges (Chapter 6, Appendices B and C). 

• New case studies of utility experiences deploying real-time monitoring within collection 
systems ( Chapter 7). 

Below are examples of two ESCPs developed in support of existing and future potable reuse 
programs. The reviews below highlight the key aspects of an ESCP that are important to all 
potable reuse projects and examines how an effective online monitoring program could benefit 
the ESCP (Table 4-1). A more detailed review of ESCPs for potable reuse is provided in Nading et 
al. 2022, which will be completed in early 2022. 

Table 4-1. Aspects of ESCP and Benefit of Effective Online Monitoring. 

ESCP Concept Details Online Monitoring Benefits Include… 
Regulatory 
Authority 

The Sewer Use Ordinance (SUO) provides the 
authority of a utility to develop and enforce an 
industrial pretreatment program, including 
requirements to protect potable water reuse. 

No applicable 

Industrial 
Dischargers 

The type and abundance of different industrial 
dischargers will define the level of effort and cost 
of a robust ESCP.  

Online monitoring systems can provide 
greater confidence in industrial 
discharger compliance.  

Enforcement 
Response Plan 

The Enforcement Response Plan (ERP) outlines 
the procedures followed by pretreatment 
program staff and management to identify, 
document, and respond to pretreatment 
violations 

Online monitoring systems can be used 
to track abnormal discharges up into the 
collection system and to the point of 
origin.  

Monitoring 
Program 

A robust ESCP relies upon a combination of 
industry led and utility led sampling efforts, and a 
tailored sampling campaign that adjusts with time 
to minimize laboratory analytical costs while 
closely monitoring water quality that can be of 
concern 

Online monitoring systems can reduce 
the amount of utility led grab sampling 
and composite sampling through 
development of a database of “standard” 
wastewater quality downstream of 
industrial dischargers. 
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Table 4-1. Aspects of ESCP and Benefit of Effective Online Monitoring. (Continued) 

ESCP Concept Details Online Monitoring Benefits Include… 
Outreach 

Efforts 
An effective outreach plan includes: 

• Communication between government 
departments (e.g., planning department 
and wastewater department) 

• Engagement of businesses  
• Development and sharing of Best 

Management Practices (BMPs)  
• Rewarding and acknowledging model 

industry partners 
• Notifying and enforcing non-compliant 

industries 

Online monitoring results can be used to 
more rapidly contact industrial 
dischargers to alert them of water quality 
changes.  

Interagency 
Agreements 

Potable water reuse projects often cross 
jurisdictional boundaries or require collaboration 
of water and wastewater utilities. The 
development of clear roles, responsibilities, and 
financial commitments from participating parties 
is central to long term project success 

Online monitoring of wastewater from 
partner utilities provides for better cost 
recovery based upon flows and loads.  

4.1 Ventura 
4.1.1 Potable Reuse Project and ESCP Overview 
The City of Ventura (population: 110,000) is located along the California Coast. The City is in the 
process of planning an IPR (groundwater injection) project with the potential to add on a future 
DPR component.  

The City of Ventura owns and operates a publicly owned treatment works (POTW) that includes 
375 miles of sewer mains, 14 lift stations, and the Ventura Water Reclamation Facility (VWRF). 
The VWRF currently treats an annual average influent flow of approximately 7.4 mgd of 
combined domestic, commercial, and industrial wastewater. Six SIUs—including four CIUs—one 
groundwater remediation discharger, and two external jurisdictions contribute flows to the 
POTW. 

Ventura is in the process of planning for a 4.8 mgd potable reuse project consisting of a new 
advanced water purification facility (AWPF) and injection wells for IPR. The AWPF will be 
designed with the potential to expand production capacity to 6.0 mgd for DPR via treated water 
augmentation. 

In preparation for its planned potable reuse project, Ventura augmented its existing 
USEPA-approved industrial pretreatment program. Ventura’s ESCP includes routine monitoring 
of IUs, within the sewer system, and within the WWTP and AWPF. Ventura also intends to 
increase its public outreach program, including both more frequent communication with IUs, 
and a public campaign that will include potable reuse-specific information on flushing domestic 
products. Ventura is also in the process of updating its Local Limits (as of 2021), potentially 
including additional pollutants of concern that are relevant specifically to a potable water reuse 
project. Ventura also has a plan in place to trace contaminants through the collection system if 
necessary. 
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4.1.2 Industrial Users 
Ventura has six SIUs, including four CIUs. 

Ventura’s CIUs, SIUs, groundwater discharger, and contributing jurisdictions are summarized in 
Table 4-2 along with their regulatory classifications, wastewater type, pretreatment, and 
potential contaminants. Ventura also has two major hospitals that contribute to its collection 
system that are not formally permitted under its pretreatment program, but the collection 
system downstream of their discharge points is monitored under the ESCP. 

Table 4-2. Ventura’s Industrial Users. 

Industrial 
User ID 

Regulatory 
Classification 
of Industrial 

User 
Wastewater 

Type Pretreatment 

Potential 
Contaminants from 
Subject Discharger 

1 SIU & CIU Metal Finishing 
(Categorical standard 
40 CFR 4330) 

Clarification Cu, Zn, pH 

2 SIU & CIU Metal Finishing 
(Categorical standard 
40 CFR 4330) 

Metals Precipitation, Filter 
Press, and pH Adjustment 

Ca, Mg, Na, Fe, Ni, Cr, 
Zn, pH, TDS 

3 SIU & CIU Polishing Operations 
(Categorical Standard 
40 CFR 469 
Electrical and Electronic 
Components) (CFR 
2023a) 

Trench floor drain with 
clarifier pit 

HF, HCl, H2O2, NH4OH, 
KOH, HNO3, pH  

4 SIU & CIU Metal Finishing 
(Categorical standard 
40 CFR 4330) 

Primary: Metal precipitation 
with MgOH pH Control, 
Settling, Filter Press. Sulfite 
Salt to Reduce Cr(VI). 
Auxiliary: pH Adjustment with 
NaOH Controller and Settling. 

Ni, Cu, Cr, Zn 

5 SIU Fruit Washing Screens and Solids Filters TDS, Fixed Dissolved 
Solids (FDS), pH, 
Fungicide, Chlorides, 
Solids 

6 SIU Resin Regeneration and 
Service Tank Rinse 
Water; RO Reject 

Clarification TDS, Chlorides 

7 Contributing 
Jurisdiction 

Domestic Air Injection, Line Flushing Sulfides, Settleable 
Solids 

8 Contributing 
Jurisdiction 

Municipal None Municipal sewage only 

9 Groundwater 
Discharger 

Petroleum 
Hydrocarbon Impacted 
Groundwater 

GAC Media Filter TPHg, BTEX, MTBE, 
TBA 
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4.1.3 Enforcement Response Plan 
Enforcement procedures for industrial dischargers are in place to ensure that 
out-of-compliance industries bring themselves into compliance, or their service terminated. For 
minor incidents of non-compliance, Verbal Warnings or written notices of non-compliance and 
correction (NONCs) may be issued. If an SIU has clearly violated its permit, a notice of violation 
(NOV) is sent to the SIU. The SIU then has 14 days to submit an explanation of violation and a 
plan for correction. For further exceedances, increasing enforcement action is taken as 
necessary. Such actions can include public notification, fines, cease-and-desist orders, civil and 
criminal actions, and termination of service, including emergency severance of the POTW 
connection. 

4.1.4 Monitoring Program 
Ventura’s ESCP, once fully implemented, includes routine monitoring and monitoring response 
plan. All ESCP activities are overseen by one program point person. The key components of the 
program are summarized below. 

4.1.4.1 Routine Monitoring 
The routine monitoring program is summarized in Table 4-3. Samples of specific constituents 
are routinely collected (2X to 4X per year) within the collection system during discrete sample 
events; by contrast, online monitoring of surrogates only occurs within treatment facilities. 

Table 4-3. Ventura ESCP: Routine Monitoring Program. 

Monitoring Type Description 
Industrial Sampling 

Program 
Industry-specific sampling that occurs at each industry’s sample port. Includes both 
self-monitoring and city sampling. 

Sector Sampling 
Program 

Sampling for a number of constituents (including some by not all MCLs) is performed at 
10 manholes throughout the service area to capture representative contributions from 
residential, commercial/industrial, and hospital dischargers within the collection system. 
Constituents are also sampled in the VWRF plant influent. 

Hospital 
Monitoring 

Limited (2X) sampling of 29 pharmaceuticals, hormones and personal care products 
collected downstream of the hospital discharge points. Select chemicals were detected 
above the monitoring trigger levels (MTLs) set by SCCWRP (Drewes et al. 2018) but those 
same chemicals were below the MTL values in the VWRP secondary effluent. 

Collection System 
Drainage Zone 

Nodes 

Sampling of drinking water constituents (e.g. all regulated MCLs and NLs within the State 
of California) and Local Limits at the four major nodes within the collection system. The 
results serve as a baseline so that elevated levels can be detected in the case of a 
contaminant tracking event. 

VWRF Influent Sampling for all drinking water constituents, NPDES constituents, and Local Limits. 
VWRF Effluent Sampling for all drinking water constituents, NPDES constituents, and Local Limits. 
AWPF Effluent Sampling for all drinking water constituents and Local Limits 

Treatment Facilities 
Online Monitoring 

Online monitoring of surrogates (e.g. electrical conductivity) at the influent to the VWRF, 
effluent to the VWRF, and within the AWPF for surrogates. 
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4.1.4.2 Monitoring Response Plan 
The ESCP include provisions for AWPF effluent monitoring data to trigger response actions. A 
response is triggered if a constituent is detected in purified water at a level higher than 
10 percent of its applicable level (maximum contaminant level [MCL], sMCL, AL, NL, or MTL). 
The first response is to reach out directly to potentially culpable IUs. In parallel with industrial 
outreach, additional monitoring is triggered for the problematic constituent. A confirmation 
sample is collected and analyzed; the confirmation and initial samples are averaged. If the 
average of the two samples is still above 10 percent of the applicable level, samples are 
collected within the VWRF effluent, VWRF influent, and at the four main nodes within the 
collection system. If one of the four main nodes appears to have abnormal loading, the 
constituent will be traced through the collection system using the minor nodes that contribute 
to the implicated major node. 

The constituent is then monitored at a higher frequency in both AWPF effluent and VWRF 
effluent for at least six months until the average of six consecutive months of sampling is lower 
than 10 percent of the applicable level. 

Figure 4-1 shows how the collection system is divided up into four drainage zones that each 
drain to a single point in the collection system (node). Figure 4-2 provides an example the 
smaller sewersheds and their minor nodes that comprise one of the four zones. 

 
Figure 4-1. Ventura Collection System: Four Drainage System Zones. 
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Figure 4-2. Example of Ventura Collection System Drainage Zone and Flow Path. 

4.1.5 Outreach Program 
Industrial outreach includes regularly scheduled meetings with IUs including reminders of the 
potable water reuse program, and any updates including monitoring trends, plant upsets, or 
concerning constituent detections. 

The residential outreach program is focused on community education rolled out up front as 
part of the broader outreach program for the project. Planned educational materials include a 
website developed to address safe disposal practices of household items such as 
pharmaceuticals. 

4.1.6 Potential Opportunities for Incorporating Online Sensors into Ventura’s 
Source Control Program 
The potential benefit to Ventura’s ESCP from an effective sensor system is shown in Table 4-4. 
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Table 4-4. Specific Benefits of Online Monitoring to Ventura ESCP. 
ESCP 

Concept Specific Benefits of Online Monitoring to Ventura 
Industrial 
Dischargers 

With the small number of industrial dischargers in Ventura, a probe network could be installed 
at select nodes in their collection system which would be in proximity to each of the industrial 
dischargers. With a small number of industrial dischargers, online sensors could potentially be 
placed directly into the effluent from each discharger.  

Enforcement 
Response 
Plan (ERP) 

Online sensors can be used in two ways as part of an ERP. First, online sensors can be used to 
track a pollutant back to a source. As part of Steinle-Darling (2020), Ventura staff used a 
network of Kando sensors to track a large daily TDS discharge back to the source. Second, online 
sensors can be used to verify that a discharger has amended/adjusted their operation to be 
back in compliance.  

Monitoring 
Program 

While industry led monitoring and reporting should be maintained, with sufficient online data 
and correlations with grab sample data, the “baseline” water quality in different sections of the 
collection system can be determined. Sampling of industrial dischargers could be minimized to 
events when the “baseline” water quality is not maintained, such as a spike in one or more of 
the online monitored parameters.  

Outreach 
Efforts 

Immediate communication between Ventura staff and industrial dischargers can be made in the 
event of abnormal collection system wastewater quality.  

Interagency 
Agreements 

Not applicable for Ventura, as they own and maintain their collection system.  

4.2 Oxnard 
4.2.1 Potable Reuse Project and ESCP Overview 
The City of Oxnard owns and operates a regional POTW that serves the City, City of Port 
Hueneme, the Naval Base Ventura County, and several surrounding unincorporated 
communities. It is comprised of the Oxnard Wastewater Treatment Plant (OWTP) and its 
associated wastewater collection system and outfall line. The OWTP is a secondary treatment 
facility with a design flow of 31.7 mgd and an average daily flow of 20 to 22 mgd. 
Approximately 75 percent of the influent to the OWTP is residential. The remaining 25 percent 
is derived from commercial and industrial users. 

The City's AWPF can divert 8 to 9 mgd of biologically treated secondary effluent for purification 
using MF, RO, and UV/advanced oxidation process with hydrogen peroxide, resulting in up to 
6.25 mgd of advanced treated water. Oxnard has been granted regulatory approval for a 
groundwater recharge project with the purified water and is in the process of constructing 
aquifer storage and recovery (ASR) wells that will both inject and extract the advanced treated 
water into and out of an aquifer for potable reuse. 

Oxnard updated its source control program for the potable reuse project including evaluating 
the local limits and developing a collection system monitoring and response plan. 

4.2.2 Industrial Users 
Thirty-five SIUs discharge to the OWTP collection system, including 11 CIUs (categories include: 
aluminum forming; metal molding and casting; steam electric power generating; metal 
finishing; pulp, paper, and paperboard). The City also permits 2 non-SIUs with effluent limits 
and monitoring requirements. 
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Oxnard previously hosted one of the largest centralized waste treatment (CWT) facilities in 
California within their service area, Santa Clara Wastewater (SCWW). CWTs treat hazardous and 
nonhazardous wastes (e.g. industrial tank residuals called “tank bottoms”, oil field operations 
wastes). They are regulated under 40 CRF 437 (CFR 2023b), and are managed by POTWs 
through their industrial pretreatment programs. The major issue surrounding the acceptance by 
POTWs of the discharge from CWT facilities—especially Subcategory D facilities like SCWW that 
accept multiple wastestreams—is their potential impact on water reuse programs. Oxnard has 
experienced the discharge of chemical pollutants, such as grossbeta, that are challenging to 
treat at their AWPF, leading to banning certain CWT facilities from discharging to their 
collection system. 

4.2.3 Enforcement Response 
Enforcement procedures for out-of-compliance industrial dischargers are built into the City’s 
Code of Ordinances. If an SIU violates its permit, a written NOV is sent to the SIU. The SIU then 
has 10 days to submit an explanation of violation and a plan for correction. For BOD and TSS 
limit violations, the SIU is surcharged based on a predetermined formula. For other 
exceedances, increasing enforcement action is taken as necessary. Such actions can include 
discontinuing sewer or water service, a cease and desist order, issuance of a fine, or 
termination of permission to discharge to the system. 

4.2.4 Monitoring Program 
4.2.4.1 Routine Monitoring 
Oxnard’s monitoring program provides necessary information for evaluating industry 
compliance, assessing OWTP loading and operation, and determining illicit discharges. SIUs are 
monitored via three mechanisms: self-monitoring, monitoring by the City, and surveillance 
sampling. Self-monitoring is performed by industries as required by their permit. In addition to 
industry self-monitoring, the City conducts facility sampling twice per year. The sampling 
location is outlined in each SIU’s permit. To facilitate detection of illegal discharges of 
prohibited materials into the collection system, surveillance monitoring is also conducted. Such 
monitoring is performed if the City suspects illegal dumping or if there are complaints.  

The City also regularly monitors the advanced treated water and secondary effluent for local 
limits, MCLs, sMCLs, NLs, and CECs. Monitoring of the raw influent wastewater and within the 
collection system is not conducted regularly, but is done to establish baseline trends and if 
there is an issue with the purified water. 

4.2.4.2 Monitoring Response Plan 
Similar to Ventura, Oxnard prescribes increased monitoring in response to elevated levels of 
routinely monitored constituents or odd online monitoring data.  

Routinely monitored purified water quality data triggers actions for enhanced source control. A 
response is triggered if a constituent is detected in purified water at a level higher than 
10 percent of its applicable regulatory level (e.g. MCL). The first response is direct outreach 
with potentially culpable industries. In parallel with industrial outreach, increased monitoring is 
triggered for the problematic constituent. A confirmation sample is collected, and the initial 
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and confirmation samples are averaged. If the average of the two samples exceeds 10 percent 
of the applicable limit, and outreach efforts have not yet identified a culpable industry, samples 
are collected in the purified effluent, secondary wastewater effluent, raw wastewater, and 
within the collection system. 

The collection system is broken up into six monitoring zones as shown in Figure 4-3, with major 
trunk lines and industries identified. 

 
Figure 4-3. Oxnard’s Collection System Monitoring Zones and Industries. 

4.2.5 Outreach Program 
Oxnard conducts outreach to its IUs. Industrial outreach includes regular meetings where the 
industries are reminded of the potable reuse project and the impacts of violating their permit 
requirements, as well as updates to the program about any noted slug discharges or monitoring 
concerns. To encourage engagement, annual awards – Enhanced Source Control Responsible 
Partner Awards – are given to companies who have not had a discharge violation that year. 

4.2.6 Potential Opportunities for Incorporating Online Sensors into Oxnard’s 
Source Control Program 
The City of Oxnard has historically seen some challenging industrial discharges worth 
documenting below.  

• CWT: 
o In 2014 the OWTP was witnessing high gross-beta values in the effluent that was 

eventually tracked to a CWT facility. That facility was receiving, diluting, and discharging 
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a broad range of liquid wastes. The City of Oxnard issued a cease and desist to this 
particular CWT, ending its operation within the City. 

o An online monitoring program would not have detected the gross-beta, but considering 
that the gross-beta wastes were co-mingled with other wastes, abnormal discharge 
patterns could have potentially been detected by a broad spectrum online monitoring 
system. 

• Large Industrial Discharger: 
o In 2020, a large industrial discharger was improperly discharging waste to the Oxnard 

collection system, not incorporating the necessary pretreatment ahead of discharge 
leading to BOD and pH violations in their discharge. 

o Online monitoring, if in place, could have effectively detected such improper discharge. 

The potential benefit to Oxnard’s ESCP from an effective sensor system is shown in Table 4-5. 

Table 4-5. Specific Benefits of Online Monitoring to Oxnard ESCP. 
ESCP 

Concept Specific Benefits of Online Monitoring to Oxnard 
Industrial 

Dischargers 
Like Ventura, an online sensor network could be installed at select nodes in the Oxnard 
collection system allowing for better monitoring of industrial dischargers. However, Oxnard has 
a much larger collection system with many more industrial dischargers than Ventura, and thus 
would likely not implement online monitoring at each discharger.  

Enforcement 
Response 

Plan 

Online sensors could provide both a better early warning system and be incorporated into a 
more rapid response plan. With the right network of probes, the aforementioned non-compliant 
discharges could be detected in real time.  

Monitoring 
Program 

Similar to Ventura, installation of a sensor network would reduce utility led analytical sampling 
needs and provide for a clear understanding of “baseline” and abnormal water quality within 
the collection system.  

Outreach 
Efforts 

Immediate communication between Oxnard staff and industrial dischargers can be made in the 
event of abnormal collection system wastewater quality.  

Interagency 
Agreements 

Not applicable for Oxnard, as they own and maintain their collection system.  
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CHAPTER 5 

Review of Real Time Collection System Monitoring 
Results 
Steinle-Darling et al. 2020—Demonstrating Real-Time Collection System Monitoring for Potable 
Reuse—deployed a network of probes into the collection systems of three agencies and 
demonstrated the ability to track and trend water quality including pollutant spikes and to 
positively impact industrial discharger water quality. The project also saw substantial challenges 
related to probe system accuracy, precision, and reliability as well as fouling and ragging 
complications. Many of the participants in Steinle-Darling et al. 2020 carried over into this WRF 
5048 project, looking to improve upon the results of the first project, such as minimizing 
ragging and fouling and better understanding online analyzer accuracy and the ability to 
confidently detect changes in wastewater quality.  

5.1 Overview of WRF 4908 Test Locations 
The three to five Kando sensor stations were deployed at each utility monitored for EC, pH, 
ORP, and temperature. Initial grab samples were collected at the location of the station and 
online data was analyzed to establish “baseline” conditions. Following the initial monitoring 
periods, online sensor data that deviated from baseline triggered the collection of an automatic 
grab sample to be analyzed by a laboratory for confirmation. These triggered samples can 
ideally capture non-compliant industrial discharges or illegal industrial discharges. The three 
participating utilities – Ventura Water, El Paso Water, and CWS – each focused on different 
phenomena within their sewersheds. 

Ventura’s pilot successfully tracked the source of EC spikes well up into the collection system. 
Ventura’s three sensor stations were deployed for a total of eight months, and were moved to 
different locations several times over the duration of the trial. During the first phase, Ventura 
traced EC spikes upstream in the collection system and confirmed the spikes to be attributable 
to residential water softener regeneration “slugs”. During the next phase, a sensor station was 
installed downstream of the largest CIU in Ventura’s collection system; the data from the 
sensor station did not indicate deviation significantly above baseline during the deployment 
period, providing confidence in prior sampling data that indicated consistent permit compliance 
by this CIU. 

El Paso Water installed four sensor stations downstream of a copper refinery and several 
discharge locations used by an oil refinery. The deployment helped confirm the significant 
impact that the oil refinery was having to pollution spikes of hydrocarbons in a downstream 
manhole, as well as the compliance of the copper refinery. 

CWS installed five consecutive sensor stations along a sewer pipeline route that receives 
discharge from a number of industries. A high pH signal from a sensor station directly 
downstream of a major industrial user triggered a grab sample collection that was analyzed and 
found to be low in organics and solids but high in metals and ammonia. The pH deviation was 
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suspected to be a result of the major industry’s (permitted) cleaning practices, and the elevated 
levels of pH, metals, and ammonia spurred further query by CWS to determine if the local limits 
or permitted levels for the industry should be adjusted to provide additional plant protection. 

CWS also investigated suspected sensor failure/fouling. CWS intentionally spiked the collection 
system with brine on two occasions and noted that the signals from one of the downstream 
sensors did not register a change, even while CWS’ handheld EC meter indicated persistent high 
EC. CWS concluded fouling mitigation for the sensors to be critical to the usefulness of sensor 
deployment. 

5.2 Summary of Key Challenges from WRF 4908 
While the results of Steinle-Darling et al. 2020 demonstrated the value of real-time monitoring, 
there were also challenges, some of which were a direct tradeoff (accessibility versus security, 
for example) that apply differently depending upon the type (supplier) of sensor systems, as 
illustrated in the bullets and photos below. Further discussion on recommendations to the 
challenges identified in Steinle-Darling et al. 2020 can be found in Chapter 8. 

• Sensor Locations – Sensors can be placed within manholes or adjacent to manholes.  
o Safety - Manholes are often in the middle of streets. Accessing the manholes disrupts 

traffic and can present a safety risk to staff. Minimizing the frequency of access for 
maintenance is crucial to minimize impacts to the public and risks to the staff. Further, 
manhole entry is a confined space entry, which requires time and effort to safely access 
equipment.  
 Fouling of sensors required weekly or more frequent site visits to sensor locations, 

deemed too frequent by some (but not all) project team members.  
o Power - Most sewer access points, other than pump stations, do not have access to 

power, requiring battery power for sensor systems. Battery life and reliability thus 
become important factors for remote installation. Some sensor systems, including 
automated cleaning, cannot be sustained on battery power.  
 The sensor system from Kando was able to run entirely on battery power, including 

sample stations. Battery life was challenging during the demonstration, requiring 
frequent staff visits to replace (and recharge) batteries.  

o Security – The sensor systems and sampling stations are costly, and above ground 
installations are often not secure. The entire sensor systems and sampling stations are 
located within the manhole, which reduces security risk.  

o Depth – If the water quality sensors require a sample brought to the surface via suction, 
there is a depth limitation. 

• Intermittent Flow - Some parts of the collection system have intermittent flow that can be 
dominated by periodic industrial discharges. 
o Sensors not consistently immersed in liquid appear to lose accuracy.  

• Fouling and Maintenance – Considering the time and impact of accessing sensor systems, 
fouling of sensors (e.g., FOG, rags, hair, debris, metals, precipitates, and other solids that 
can buildup on sensors and affect their performance) presents challenges.  
o For Steinle-Darling et al. 2020, fouling and ragging of sensors required multiple staff 

visits per week at some locations to clean and de-rag system (Figure 5-2). 
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o In turbulent flow regimes, sensors can be subject to breakage.  
• Sensor Accuracy and Precision – The value of sensor systems as part of an ESCP includes 

monitoring for upset events, monitoring for compliance, and monitoring for revenue 
collection.  
o Pertaining to the first item, monitoring for upset events, accuracy and precision are not 

critical. The goal is to witness an “event” which is a water quality change significantly 
over the “baseline” value. For Steinle-Darling et al. 2020, the project team did see the 
direct benefit of the systems to monitor for large changes in water quality, such as the 
detection of salt spikes in the system.  

o For the latter two methods, accuracy and precision of sensor systems is needed. For 
Steinle-Darling et al. 2020, the project team did not gain confidence in either the 
accuracy or precision of the online readings, with repeated laboratory samples or other 
online meters showing the inaccuracy of the installed sensor systems.  

• Communication – remote locations often have poor signal availability for telemetry.  
o Hardware Maintenance – In addition to the battery longevity, damage and corrosion to 

system components (including sensors) presents challenges (Figure 5-1). 
• For Steinle-Darling et al. 2020, humidity impacts and corrosion were seen on system 

components. Over the trial period, hardware connectors had to be replaced due to 
corrosion.  

• Data Security – All data for the Steinle-Darling et al. 2020 trials was handled by a third party. 
How data is protected is an important consideration.  

 
Figure 5-1. Corrosion and Damage to the Probe System. 
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Figure 5-2. Ragging of the Sensor Probes and Connective Wiring. 

Source (right photo): Steinle-Darling et al. 2020 
Photo on left: Courtesy of Carrollo Engineers Inc. 

5.3 Summary of Challenges from Independent Analysis of Kando 
Systems at LACSD 
LACSD, as part of their own independent evaluation, installed and operated the Kando sensor 
systems at 2 locations for 6 months. 

The Kando system online monitoring system demonstrated potential for: 

• Determining the dynamic variation of wastewater quality. 
• Characterizing wastewater quality. 
• Capturing daily and longer-term wastewater quality patterns. 
• Determining “out of ordinary” episodic events. 
• Determining sources, their loading contribution, and discharge patterns. Sources can 

include industrial waste dischargers, residential patterns, and sewer interconnections. 
• Providing advanced notice to the treatment plant depending on: 

o Whether the parameter of interest can be measured online. 
o The time it takes the “pollution” front to reach the plant. 

• Collecting a sample automatically. 

Challenges associated with the Kando system included:  

• Sensor reliability: Sensors needed frequent maintenance, which can be costly and labor 
intensive as the number of units deployed increases. An algorithm correcting for drifting 
appears promising and could reduce the maintenance frequency. The benefit of the system 
to LACSD must outweigh the maintenance cost. EC, pH and temperature (T) were useful 
parameters but required: (a) proper sensor maintenance, and (b) proper sewer conditions. 
ORP was not reliable. Over the test period, there were no extensive periods when all four 
sensors, EC, pH, ORP, T, functioned properly at the same time. 
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• Sewer conditions: Sewer depth and velocity may not allow for monitoring at some 
manholes. 

• Manhole location: The monitoring location must have a good signal for data transmission, 
and also allow for proper installation (e.g. datalogger and antenna) and maintenance (not 
suitable for high traffic areas). 
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CHAPTER 6 

Data Analysis for Online Monitoring Systems within 
WWTPs or AWTFs 

6.1 Introduction 
Upsets in WWTPs caused by transient industrial discharges can lead to exceedances of 
discharge permits. These upsets may have human health relevance at WWTPs that are water 
sources for advanced treatment facilities for potable reuse. Hence, proposed regulations for 
direct potable reuse in California would require: “on-line monitoring instrumentation at critical 
locations that measure surrogate(s) that may indicate a chemical peak” (SWRCB 2021). 
However, the best strategy for analyzing the on-line data for accurate, proactive, real-time 
alerts has not yet been determined. Said another way, once the team gains confidence in the 
ability to collect meaningful data in real time from the sewer system or from within the WWTP 
(which is a focal point of this project), how can the team best apply this data to detect adverse 
water quality events? 

One application for the data from instruments in the sewershed, WWTP, or AWTF would be for 
alert or alarm systems. An alarm would indicate a high degree of confidence that an event is 
occurring that could pose a risk to the public health, requiring the shutdown or diversion of 
water from the AWTF. Due to the high consequences of a false positive, alarms should arguably 
only be based on bench-scale data or reliable, redundant online instruments sampling the same 
location in parallel. In contrast, an alert would indicate a reasonable probability (e.g., greater 
than 50 percent) that an event may be occurring that requires attention or corrective action 
(e.g., increased ozone dose), but not a treatment shutdown. An alert would be more sensitive 
(i.e., triggered by smaller changes) compared to an alarm. Thus, an alert could trigger prior to 
an alarm during the early onset of an event, allowing time for corrective action and potentially 
preventing alarm-level changes to the treated water quality (Figure 6-1). To improve upon the 
status quo (i.e., data visualization monitored 24/7 by human operators), an alert system would 
need to detect an event before or equally as soon as it would become visually apparent to a 
human operator. An alert system with this capability would: (1) allow corrective action to be 
conducted more promptly or with greater confidence and justification, and (2) serve as a 
redundant measure to human monitoring.  
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Figure 6-1. Example of an Alert and Alarm Based on a TOC Threshold. 
Settled TOC data is from the HRSD proof-of-concept below. 

Machine learning could be applied for alert systems in drinking water, wastewater, or reuse. 
Machine learning is the study of algorithms that improve automatically through experience 
with data. Specifically, supervised machine learning (SML) creates mathematical models to 
predict outputs based on a set of labelled input data. In the context of wastewater and drinking 
water treatment facilities, input variables could include water quality variables, such as pH, and 
operational information, such as ozone dose. SML requires a training dataset to construct 
models and a testing dataset to evaluate and compare their accuracy. The training and testing 
sets must both have known outputs or labels for the models to be constructed and so their 
predictive accuracy can be compared in a meaningful way. Labels in the water context could be 
categories, such as “Normal” or an “Industrial Discharge Event”, or numerical, such as 
percentage of influent coming from industrial wastewater. Once the SML models have had their 
accuracy confirmed on the testing set with known labels, they can then be applied in the field 
on new data with unknown outputs. This training and testing procedure avoids overfitting, 
which is when an increasingly complicated model more closely matches the data upon which it 
was trained, but makes less accurate predictions with new data.  

SML models could be more accurate for detecting and categorizing upsets than simpler 
alternatives, such as fixed thresholds on single variables (e.g., pH above 8 indicating an 
industrial discharge event). SML models can recognize high outliers on a single variable—while 
other variables remain near average—as likely instrument malfunctions or maintenance rather 
than true water quality events. Contrastingly, if all variables differ from the average only slightly 
but in directions associated with a particular type of upset, SML models could detect low levels 
or early onsets not yet apparent to human operators or fixed threshold-based alarms. 
Additionally, unlike a fixed threshold on a single variable or calculated metric, many SML 
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models can categorize data into three or more categories. This could be beneficial, for example, 
for distinguishing among industrial discharges from different sources. Furthermore, SML 
models are nonlinear and more flexible than thresholds. That is, thresholds essentially 
categorizing anything within a rectangular space as Normal, and anything outside that 
rectangular space as an Event (Figure 6-2A). In contrast, SML models, such as k-nearest 
neighbors or support vector machines with radial basis kernels, can draw boundaries as any 
variety of complex, curving shape as dictated by the data (Figure 6-2B).  

 

Figure 6-2. Water Qualities that would be Predicted as Event or Normal According to (A) Fixed Thresholds or 
(B) A Support Vector Machine with Radial Basis Kernel.  

X’s represent Normal data and +’s represent Event data. Blue areas represented Normal predictions and Red areas 
represent Event predictions. Influent turbidity and settled TOC data are from the HRSD proof-of-concept below.  
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In this chapter, SML was applied to historical online sensor datasets from two utilities as a 
proof-of-concept for SML-based alert systems. There were important differences between 
these utility datasets (Table 6-1). The online sensor data from CWS was from a grit screened 
primary effluent. The online sensor data from Hampton Roads Sanitation District (HRSD) was 
from multiple locations in the treatment system, but mostly from secondary effluent or 
advanced purified water after ozonation or biofiltration. Thus, the water being monitored at 
HRSD was cleaner and more equalized, and subject to both less instrument fouling and fewer 
non-event water quality fluctuations. 

Table 6-1. Differences Between HRSD and CWS Datasets Used for SML Alert Systems. 
Normal data in this table refers to datapoints that were not part of an industrial event.  

 HRSD Case Study CWS Case Study 
Sensor Locations Mostly secondary effluent or advanced 

purified water 
Grit screened influent 

Number of Sensors or Variables 30 10 
Industrial Discharge Origin Real/Unknown Simulated/Known 
Industrial Discharge Types 1 2 
Classification Type Binary (Normal v Event) Multiclass (Normal v Spike 1 v 

Spike 2) 
Data Frequency Hourly 10-minute 
Total Sample Size Used 878 5275 
Percent “Normal” Data in the 
Testing Set 

76.7% 99.5% 

Instruments located in the sewershed or influent like at CWS would require more maintenance 
but could provide more advanced warning in terms of the time between first detection and 
when the detected water plug would exit the treatment facility. Since HRSD had a “cleaner” 
dataset, one might expect SML models to achieve greater accuracy, but simpler methods or 
human judgement might also perform relatively well. For example, if there is less random noise 
in a variable, the early onset of a true, new, upward trend would become visually clear to a 
human observer sooner. Furthermore, in HRSD’s dataset, all variables had data for all times. In 
CWS’s dataset, certain sensors had missing data for much of the time. Sensors with missing 
data could be omitted, sacrificing number of variables but increasing the usable number of 
observations. This tradeoff needed to be investigated for CWS, but not HRSD. 

The noisiness of the data can also affect which machine learning algorithms perform best 
(Atla et al. 2011). At CWS, the industrial discharge events were simulated by spiking known 
contaminants into a flume, so the true beginning and end of the events were fully known. At 
HRSD, the industrial discharge events were real and from an unknown source, so their 
beginning and end were labeled based on human judgement after visual interpretation of the 
data. Furthermore, the HRSD dataset had more variables while the CWS had more sample size 
of observations. Thus, HRSD would be considered a relatively “wide” dataset while CWS would 
be considered a “long” dataset. The length vs wideness of the dataset can affect, for example, 
which SML algorithms can be trained quickly (Lindgren et al. 1993; Rännar et al. 1994). 
Furthermore, the HRSD data was labelled and predicted among two classes (Normal vs Event) 
while the CWS data was labelled and predicted among three classes (Normal vs Spike 1 vs Spike 
2, where Spike 1 was a blend of bleach, NaCl, and NaOH, and Spike 2 was humic acid). Lastly, 
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the CWS had a higher percentage of data labelled “Normal,” making it inherently easier for 
models to achieve higher accuracy (overall percent of correct predictions). For example, a 
model that predicts every day is not Christmas would be over 99 percent accurate, but not 
useful. So, higher test set accuracies on the CWS dataset should not be perceived as indicating 
that specific models or SML methods in general were more successful on that dataset. 
Considering all the above, it is not surprising if the overall success or best SML methods differ 
among the datasets.  

The SML analysis with HRSD’s and CWS’s datasets are described in detail in Appendix B and 
Appendix C, respectively. Key conclusions from these analyses that could be broadly applicable 
are summarized below. 

6.2 HRSD Machine Learning Case Study Conclusions 
• The model type Boosted Tree (bstTree) had the highest testing set accuracy for this dataset. 

bstTree would have detected the industrial event in about an hour with zero false positives 
over the 5-day testing set. So, bstTree would have been selected for future monitoring and 
alerts among the SML models investigated in this study.  

• If a fixed threshold had been set for influent UVT using a data-driven, SML-style training 
approach, this could have resulted in a testing set accuracy of 98.3 percent. This accuracy 
would be below bstTree, but only by about 1 percent. This influent UVT trained threshold or 
the actual threshold for influent turbidity both would have detected the event in about two 
hours, one hour slower than bstTree. However, the actual threshold on influent turbidity 
had two false alerts within the five-day testing set unrelated to the industrial event. 

• The most beneficial preprocessing method differed among the SML model types. Two 
models performed best without preprocessing, one with principal component analysis 
(PCA), and three with raw data and differences from the rolling median. So, one best 
preprocessing method could not be universally recommended based on this analysis. 

• In many cases, some variables could be omitted to decrease training time without loss in 
accuracy. However, like preprocessing, the optimal set of variables depended on the model.  

• Certain SML model types (e.g. ORFsvm, rfRules) had testing set accuracies that depended on 
random chance. So, the accuracy of these models would be more uncertain in full-scale 
applications, even with appropriate validation and testing procedures.  

Looking to the future, the team would make the following recommendations:  

• As next steps to engineer an accurate, practical, SML-based alert system at HRSD, the team 
would recommend repeating the above analyses, but with greater sample size, including 
multiple instances of the industrial events in the testing set. This would provide greater 
confidence about the relative performance of the models, particularly whether the highest-
performing model would be best for detecting all events of this type, not just the individual 
event in this testing set. After that, a small number of high-performing SML models could be 
piloted in real-time, until an additional event occurs. The time until first detection of the 
SML models could then be compared in the field against human monitoring and other alert 
approaches.  
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• Since Event and Normal datapoints in this dataset were distinguished based on human 
judgement, the best the models could possibly do would be to match—not exceed—human 
judgement. On the other hand, a human monitoring the data in real-time might not have 
concluded that an event was occurring as soon as a human evaluating the whole dataset 
retrospectively. In future research, machine learning for wastewater or reuse alert systems 
could be achieved by simulating industrial discharges in a pilot or flume like the one at 
Clean Water Services (CWS) (see Appendix C). Alternatively, real full-scale industrial events 
could be labelled objectively if the industrial source is known and keeps records of 
discharge flow (e.g., the landfill that discharges limited quantities of leachate to the WWTP 
that feeds SWIFT RC) (Gonzalez et al. 2021; Nading et al. 2022). 

• A limitation of SML-based alert systems is that they are designed to detect events of a 
known, previously documented type. If a new type of industrial discharge were to occur 
associated with difference responses from the online instrumentation, this may or may not 
trigger an SML-based alert. Changes in the water quality pattern at the AWTF during 
industrial discharge events could also occur due to changes in the treatment operation 
response at the WWTP. So, a strategic solution would be to employ both SML-based alerts, 
and alerts or alarms based on fixed thresholds. This would combine the sensitivity of SML 
with the generalizability of thresholds. These additional thresholds could be set based on 
training set data, health-based goals, or operational considerations. Advanced multivariate 
statistical methods for fault or outlier detection other than SML also merit further research 
in the context of wastewater and reuse (Klanderman et al. 2020).  

6.3 CWS Case Study Conclusions 
• pcaNNet, bagEarth, and C5.0Rules were the most accurate models for CWS’s dataset. 
• pcaNNet, bagEarth, and C5.0Rules had zero false positives and at least one detection of 

both spike types in the testing set. 
• Considering the relative importance of types and locations of errors, pcaNNet, bagEarth, 

and C5.0Rules were equally successful.  
• However, considering training time and interpretability, the team would recommend 

C5.0Rules for this application.  
• Omitting ECD ORP to increase the effective sample size of the other variables did not 

decrease bagEarth’s accuracy and increased C5.0Rules’s accuracy. So, omitting variables 
with missing data could be a worthwhile tradeoff, especially for relatively non-
informative variables like ORP at CWS (see Appendix A).  

• Preprocessing with PCA or median-based methods to remove diurnal patterns and drift 
did not increase the testing set accuracy of pcaNNet, bagEarth, or C5.0Rules. So, 
preprocessing might not always be needed or beneficial, even with relatively noisy data. 

6.4 Overall Conclusions and Considerations 
• SML models using online sensor data from influent or treated wastewater could be applied 

for useful, practical alert systems. 
• For both datasets studied, multiple SML models performed adequately in terms of accuracy, 

sensitivity, false positive rate, and Cohen’s Kappa.  
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• However, there were key differences in the results between the datasets in terms of the 
most accurate model or the helpfulness of the preprocessing methods tested. This indicates 
the importance of site- and application-specific model comparisons and the need for more 
research on data preprocessing techniques for online water quality data.  

• Models for the CWS influent dataset had higher overall testing set accuracy. However, this 
was because there was a higher proportion of data labelled Normal. So, a model for the 
CWS dataset with zero false positives and 60 percent sensitivity would have higher accuracy 
than a model for the HRSD dataset with the same false positives and sensitivity. Models of 
the HRSD treated effluent dataset performed better in other performance metrics (e.g., 
sensitivity, balanced accuracy, and Cohen’s Kappa). So, as expected, it was easier for models 
to make predictions for the less noisy treated effluent dataset. However, an alert system 
using data from sensors in influent would provide earlier warnings. In either case, models 
could detect at least half of the event datapoints with zero false positives over the course of 
the testing sets.  

• While the SML studies in this report were proofs-of-concept only, the next step would be to 
test the models on live, real-time data. Models could then be continuously retrained with 
additional data and retested on new data in real-time. While the highest performing model 
would be applied for the alert system, other high-ranking models could also be continuously 
retrained and retested. These alternative models might then be implemented if they 
perform best with the additional sample size. 

• For the scenario with two categories (HRSD, Normal vs Event), SML performed only slightly 
better than a data-driven fixed threshold on a single variable. However, given the noisiness 
in the CWS dataset and the fact that there were three categories (Normal, Spike 1, and 
Spike 2), it is difficult to envision a “simple” approach that could achieve similar accuracy, 
specificity, and low false positives.  

• Despite overall satisfactory performance, SML models for the CWS dataset did not detect 
some of the spikes and did not detect suspected real industrial events which they were not 
trained to detect. This demonstrates the importance of a hybrid approach with both 
SML-based alerts and threshold-based alarms.  

• Simulated spikes can provide more control and allow more definitive datapoint labelling. In 
some cases, simulated spikes may provide more true positive sample size or events for 
models to detect. On the other hand, data from past real events may better prepare models 
for detecting future real events. 

• Developing a ML model requires skill in data science and coding. Implementing one in 
practice also takes expertise in information technology, SCADA, or controls. For a utility not 
only to implement but also maintain, refine, or retrain such a model for an alert system 
could require either a dedicated staff member or a Data-as-a-Service (DaaS) contract. 

• Utilities may also need to consider whether to house the model in the cloud or onsite (e.g., 
an edge server). Modeling in the cloud facilitates model refinement by a remote employee 
or within a DaaS contract. Onsite modeling provides the greatest cybersecurity.  
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CHAPTER 7 

Potential Implementation of Real-Time Monitoring for 
ESCPs 
Three partner utilities (Morro Bay, CWS, and LACSD) were interviewed to determine how their 
ESCPs could benefit from real time monitoring, utilizing the results of the demonstration work 
at each site. These utilities provide a useful comparison ranging from a very small collection 
system with minimal industry (Morro Bay), to a mid-sized system with some industry (CWS), to 
a very large multi-jurisdiction collection system with a large number of industries (LACSD). 

Below, an overview was provided on the existing ESCP at each utility. Then, looking to the 
future, the three different agencies were interviewed to best understand their perspective on 
use of real-time sensors, how an online monitoring system could best benefit them and how 
would it be implemented. These interviews considered the points below and were used in the 
development of the ESCP Framework (Chapter 8): 

• Goals of online monitoring. 
• Preferred locations of online monitoring. 
• Operations and maintenance. 
• Sampling. 
• Permitting and enforcement. 
• Security and integration. 

7.1 Morro Bay 
As part of Nading et al. 2022, Review of Industrial Contaminants Associated with Water Quality 
or Adverse Performance Impacts for Potable Reuse Treatment, a detailed case study of Morro 
Bay’s developing ESCP was completed. Excerpts from that case study are summarized below. 

7.1.1 Existing ESCP Overview 
Morro Bay California is implementing an approximately 1 mgd potable reuse project, called Our 
Water (City of Morro Bay 2020). The project includes the construction of a new WWTP and 
advanced treatment facility. Morro Bay is a small town with few industrial users (IUs), and does 
not currently have a formal, EPA-approved pre-treatment program. The City does currently 
implement a small pretreatment program, including having a list of prohibited substances from 
discharge into the sewer, policies and procedures to enable the City to address the potential 
need for pretreatment of conventional pollutants, and several specific discharge restrictions. 

The City has developed, but not yet implemented, an ESCP. Morro Bay’s ESCP includes an 
industrial waste survey (IWS), Local Limits, a Sewer Use Ordinance, Raw Wastewater Sampling, 
Narrative Limits, IU Discharge Sampling, Source Control Outreach Program, Enforcement 
Response Plan, Source Mapping, a Funding and Resources Report, and a Collection System and 
Treatment Plant Monitoring Program Manager. 
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As part of the development of the ESCP, a thorough evaluation of all industrial dischargers was 
completed (this is the point of the IWS). This IWS concluded that there were essentially two 
industrial dischargers of concern, as follows: 

• Bottled Water Company - Salt is clearly an important challenge for Morro Bay, as high salt 
loads must be removed by the City’s future new RO system. In particular, the bottled water 
company currently discharges variable and sometimes high salt spikes into the sewer, which 
will challenge the production capacity of the future new RO system. The bottled water 
company has been collaborative on future solutions, with a likely result that discharges will 
be either equilibrated into the discharge to the sewer or removed entirely from the sewer.  

• Industrial Laundry - The industrial laundry discharges more than 25,000 gallons per day, 
which is greater than 5 percent of the City’s wastewater flow. The laundry can provide both 
high and low pH wastewater, ranging from a pH of 6 to 10. In some cases, they overdose 
acid. As part of the ESCP, the laundry will need to install a dedicated and reliable 
pretreatment system, to which the laundry has indicated a willingness to follow the ESCP 
requirements.  

The argument could be made that Morro Bay’s industrial source control can be small and cost 
effective, focusing upon only these two dischargers. However, current California regulations 
and a precautionary principle lead to a comprehensive grab sampling monitoring program as 
part of the ESCP. 

Morro Bay prepared a Funding and Resources Report, which specifically details what staff is 
needed to implement the ESCP, what sampling will be done, who will do it, and how frequently 
it will be done. In total, the effort is extensive, estimating approximately $150,000 in annual 
personnel costs, $60,000+ in new monitoring equipment, and annual laboratory costs of 
greater than $5,000. The City notes that today, before the ESCP and potable reuse program is 
implemented, staff is already the City’s highest expense. The inclusion of online monitoring, if 
proven accurate and reliable, will reduce staffing and sampling needs in the ESCP and provide a 
real-time early warning system ahead of advanced treatment for potable reuse.  

7.1.2 Future Use of Online Monitoring Systems to Detect Pollution Events 
Key points from the exit interview with Morro Bay were: 

• Maintenance: 
o Daily maintenance of a single probe system within the WWTP is manageable. 

• Location of Probes: 
o Inside the WWTP – For a small utility such as Morro Bay, having the probes out in the 

collection system may not provide much greater value than being within the WWTP, 
where O&M is the most readily done. 

o At Major Industries – There may be value in placing targeted probe systems at the 
discharge of some industries. However, for a small community where there are only a 
few SIUs, the value is limited.  

• Probe Accuracy: 
o Probe accuracy was within acceptable range.  
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• Actionable Value: 
o From Morro Bay’s perspective, the immediate actionable value of the probe system has 

yet to be demonstrated. Potential value includes: 
 Water quality alarm and response. If it can be demonstrated that one or more online 

values correlate to a risk to water quality, then a probe system could have 
immediate value to provide alarm and diversion. 

 Automated sampling. If the sensor system was tied to a reactive sampling system, 
significant variations in water quality could result in sampling and thus 
determination of the constituents within subject water. 

 Regulatory. The costs of an ESCP are substantial for small utilities such as Morro Bay. 
If the installation of a real time monitoring system allowed for a reduction in ESCP 
sampling (e.g., within the collection system, at IUs, etc), then a direct value could be 
assigned to the online system.  

7.2 Clean Water Services 
7.2.1 Existing ESCP Overview 
CWS’s four water reclamation facilities serve a population of over 600,000 people and 
75 permitted IUs, some of which are very large. These IUs include many high-tech and 
semiconductor manufacturers, food processors, a landfill, metal finishers, wineries, and many 
more which contribute approximately 13.3 mgd of the average dry weather total flow of 
57 mgd to the facilities. CWS has a non-potable reuse program that currently applies 1 mgd to 
agricultural fields, golf courses, and other irrigation needs. This is planned to expand to 5 mgd 
in the next 4 years. In addition, CWS has a small pilot-scale intermittent potable reuse of 
approximately 7,200 gallons per day delivered to a brewery. Biosolids from the water 
reclamation facilities are land-applied to agricultural fields, and struvite is recovered and sold as 
commercial and residential fertilizer. 

CWS implements a robust EPA-approved source control program to protect the water quality of 
the facility discharges, reuse water, and biosolids, as well as the personnel and infrastructure at 
the facilities and the collection system. Local limits were developed and are regularly updated 
to expand upon the minimum requirements for EPA’s source control program. CWS regularly 
conducts inspections, collects samples, and manages the permits for each IU, and requires 
permitting evaluations for new IUs. Some IUs are also required to collect samples regularly or 
have continuous monitoring and report these to CWS. CWS also has a local cost-recovery 
program that surcharges IUs with COD greater than 800 mg/L and/or TSS greater than 
400 mg/L. Inspections are regularly conducted to assess industrial and commercial users with 
excess FOG in their discharges, and requirements are in place for management practices to 
reduce FOG in the discharges. 

The source control program is also in charge of responding to pollution events at the treatment 
plants. These occur somewhat sporadically, and the sources have been difficult to detect. The 
facilities notify the source control personnel of an event once it is detected, and source control 
personnel immediately collect samples from the headworks and key manholes in the collection 
system which are analyzed by the laboratory. However, in most cases, whatever caused the 
negative effects to the facility is not evident in the collected samples either because the ‘slug’ 
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of pollutants has already passed or because the compound(s) responsible are not identified. To 
overcome these deficiencies in the responses to pollution events, in recent years CWS has been 
developing a continuous sensor network in the collection system to detect sources of the 
events and provide advanced warning to the facilities. Currently, four telemetered pH sensors 
are permanently installed at key manholes in the collection system of the Forest Grove facility 
which has been most frequently impacted by pollution events. However, use of continuous 
sensors has already been used to track down and mitigate two consistent sources of pollution 
events that affected the facility. These include frequent very high pH events caused by a beef 
jerky manufacturer, and frequent high nitrate events caused by a circuit board manufacturer. 

Source control personnel regularly work with IUs to address other pollutants of concern. The 
pollutants of most concern for CWS have been metals, nitrates, azoles, peroxide, high-strength 
COD, pH, temperature, and several currently unregulated pollutants (e.g., PFAS). As part of the 
expansion of the non-potable reuse program to 5 mgd by 2025, additional pollutants have 
become pollutants of concern including fluoride and TDS. CWS is working with a large 
semiconductor IU with high fluoride in their discharge to ensure their future growth does not 
threaten the planned expansion of our non-potable reuse program. CWS is requiring the IU to 
decrease their fluoride loading and working with them to help them do so. 

CWS has not yet developed a formal ESCP because our potable reuse program is still only in the 
pilot-phase. While two of our facilities are advanced treatment facilities and a third includes 
polishing from a constructed treatment wetland, no advanced treatment to potable standards 
is currently done outside of the pilot facility. The water quality necessary for our non-potable 
reuse programs is supplied by our existing water reclamation facilities. However, as our 
non-potable reuse and nutrient recovery programs continue to grow, online monitoring is 
becoming an increasingly important element of the source control program. CWS is working on 
expanding the network to many other locations in the collection system and adding additional 
sensor types to the locations. To help decrease the costs of installing and maintaining such a 
network, CWS has been developing and testing different technologies including a customized 
sensor holder to reduce maintenance frequencies and open source dataloggers and sensors to 
decrease equipment costs. 

7.2.2 Future Use of Online Monitoring Systems to Detect Pollution Events 
• Goals of online monitoring: 

o The goals of online monitoring should be reliable data, cost-effectiveness, moderate 
O&M, and actionable data. 

o Specifically for CWS, goals included customizability, integration into the existing SCADA 
system, mobility, and feasibility for manhole installations.  

• Preferred locations of online monitoring: 
o CWS’s preferred location was within the collection system, followed by headworks then 

primary effluent. The degree of advance notice drove this preference. 
• Operations and maintenance: 

o In order, the biggest O&M challenges were ragging/FOG, equipment malfunctions, loss 
of signal, and vandalism.  
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o Despite being CWS’s preferred location, the collection system resulted in the biggest 
maintenance challenges.  

• Sampling, Permitting, and Enforcement: 
o Integrating traditional sampling and online sensors allows for faster understanding of 

water quality. 
o Real-time monitoring could be implemented to support Local Limits.  
 Rather than on the effluent of specific known industries, it could be more useful as a 

network throughout the collection system, leading to targeted sampling within 
identified problem areas.  

 Real-time monitoring could determine where compliance sampling should be done, 
leading to site-specific limits being installed.  

 However, the accuracy of online sensors might not be enough for enforcements, so 
the local limits might then be based on traditional sampling. 

 Real-time monitoring data can be used in discussions with industries to help explain 
how it was determined that the industry was responsible. 

o For example, CWS was experiencing pH spikes. The s::can at CWS’s influent detected 
nitrate spikes. Composite sampling and benchtop analyses confirmed the nitrate spikes. 
The responsible industry was traced, and turned out to be discharging nitric acid, 
causing both the pH and nitrate spikes.  

• Integration: 
o Real-time monitoring involves large data transfers. Dashboards may need to be complex 

to convey all of this information. Ideally, the data would be brought into one system, so 
the data loggers and other tools need to be uniform, or ideally open source.  

• Cybersecurity: 
o CWS’s sensor network would have three vectors of concern: Device, Transmission, and 

Endpoint 
o CWS is considering leveraging their Microsoft managed key for data encryption, then 

adding a second layer of encryption with Azure Key Vault over their data at 
Representational State Transfer. 

o This approach would enforce a managed identity with CWS’s portal that could quickly 
create, rotate, disable, and revoke access should an issue arise. 

o To add security within the Cloud, CWS’s queue will be wrapped in a virtual network, 
network security group, and Firewall to mitigate who can access their resources and 
what resources this portion of their infrastructure can touch.  

o Transmission is beyond control to a degree. The traffic should be encrypted before 
entering the utility’s vendor network, then encrypted again once on the sensor 
company’s network. 

• Benefits: 
o CWS has already seen better plant performance, less downtime, better source tracking, 

and better local limit enforcement.  
o The research conducted as part of this WRF project has already helped CWS determine 

the value and challenges of different probe systems. CWS will continue to use the 
constructed test flume (Section 3.1, Appendix A).  

o Operators see the value of some the analyzers, e.g., nitrate.  
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• Areas for Improvement: 
o Ongoing challenges include standardizing or automating maintenance and overcoming 

operator skepticism about analyzer accuracy. Long-term performance reliability 
demonstration is needed. 

7.3 Los Angeles County Sanitation Districts 
As part of Nading et al. 2022, Review of Industrial Contaminants Associated with Water Quality 
or Adverse Performance Impacts for Potable Reuse Treatment, a detailed case study of LACSD’s 
long-running ESCP was completed. Excerpts from that case study relevant to the use of online 
monitoring systems are summarized below. 

7.3.1 Existing ESCP Overview 
LACSD collect waste from 80 square miles within Los Angeles County, serving 5.7 million 
people. As of 2019, LACSD oversee 378 CIUs, 945 SIUs, and 1552 other industrial dischargers. 
Average annual wastewater flows of 390 mgd are treated at 11 wastewater 
treatment/reclamation facilities. 

LACSD support a broad range of water reuse projects, including potable water reuse projects – 
the Montebello Forebay Groundwater Recharge Project and the Metropolitan Water District of 
Southern California Advanced Purification Center Demonstration Project. As such, LACSD have 
an extensive and successful ESCP.  

Historically, LACSD have seen upsets at several of their plants, including Pomona and Whittier 
Narrows WRPs. The aggressive pretreatment program now in place has minimized plant upsets. 
As one recent example, Sanitation Districts staff were able to detect a water quality problem at 
the influent to one of their WRPs and track the pollution back to its source and stop the 
violation within 24 hours.  

With such a large and geographically distant sewer collection system, implementation and 
integration of a sensor network is anticipated to be a large challenge, one that at least early on 
would add instead of reduce cost and effort. As such, Sanitation Districts staff is examining how 
online sensor systems could provide an early warning system ahead of biological treatment and 
potable water reuse, placing sensor systems into the primary effluent.  

7.3.2 Future Use of Online Monitoring Systems to Detect Pollution Events 
Key points from the interview with LACSD are shown below. 

• Location of Probes: 
o Inside the WWTP - Due to challenges with maintenance and installation of probes within 

the collection system, the first location for further testing should be within the WWTP, 
either in screened raw wastewater or in primary effluent. Having the probes in this 
location provides an early warning system to the biological process and would allow for 
the rapid collection of samples to characterize the water quality. 

o At Major Industries – Placement of sensor systems immediately downstream of major 
industries provide direct benefit in terms of industrial compliance and potentially 
enforcement (if sensors are sufficiently accurate). Placement of probes directly 
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downstream of industry also provides a deterrence effect, leading to better industrial 
effluent because the industry is aware that it is being monitored.  

o Within the Collection System – Based upon the current performance of tested sensor 
systems, LACSD believe that distributed sensor systems in their large collection systems 
is not viable from an O&M and cost standpoint.  

• Probe Accuracy: 
o The ideal sensor system measures chemicals of direct relevance either to water quality, 

to biological performance, or to industrial compliance. Precision and accuracy of the 
probes is relevant to all three listed values but is of most importance pertaining to 
industrial compliance.  

o The secondary value of the probes, which remains significant, is the ability to document 
changes in water quality, even if the probes are not fully precise or accurate.  

• Automated Sampling: 
o Having an automated sampling system, based upon real time data excursions (called 

pollution events by Kando), provides significant benefit toward capturing and 
understanding water quality variations. This could only be realized if the sensors 
remained responsive for adequate periods of time. 

• Mobility: 
o A probe system that can be readily collected and moved to different locations allows for 

rapid deployment to track pollution at the WWTP or in the collection system back to the 
source.  
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CHAPTER 8 

Real-Time Monitoring Framework 
This chapter presents recommendations for how utilities could implement real-time monitoring 
to support enhanced source control efforts for potable reuse programs summarized within a 
twelve-step framework. This framework incorporates the results of the preceding chapters and 
integrates recommendations from other guidance documents (e.g., Steinle-Darling et al. 2020, 
Liggett et al. 2018, Nading et al. 2022) and the project team’s experience. 

The objectives of the real-time monitoring framework are to: 

• Help utilities understand how to incorporate real-time monitoring into existing 
pretreatment program or ESCP activities. 

• Incorporate best practices from this research and other research projects into their 
programs. 

The proposed framework steps are separated into three phases that represent planning, 
design, and operations. While it can be beneficial to implement real-time monitoring prior to 
implementing potable reuse, this framework is intended to be implemented at any stage of a 
project or to improve ongoing operations. Figure 8-1 presents the three phases and an 
overview of the framework. The following subsections present each of the three primary 
phases and the steps recommended during each phase.  

  

Figure 8-1. Phases of the Industrial Enhanced Source Control Program Framework. 

Phase 1: Vision and Planning
Identify program goals and parameters 
to be monitored and if pilot testing is 

needed.

Phase 2: Instrument Selection, Design, and 
Support

Select and design the pilot or full-scale 
sensors & sample collection points. 

Allocate resources to support the plan.

Phase 3: 
Implementation and Optimization

Install pilot or full-scale sensors, 
develop data analytics platform, 

integrate into existing operations and 
enforcement.
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8.1 Phase 1: Vision and Planning 
Figure 8-2 presents an overview of Phase 1, which includes four steps and is intended to 
establish the goals, monitoring parameters, and overall approach for implementing a real-time 
monitoring program for ESCPs. These are all high-level steps that should occur prior to design 
and implementation and should align and support the goals of a utility’s potable reuse ESCP. 
The following sub-sections provide a more detailed explanation of each step.  

Figure 8-2. Phase 1 Framework Steps. 

8.1.1 Step 1 – Identify Clear Goals and Targets of Online Monitoring Program 
The successful implementation of a sustainable online monitoring program is more than a 
technology implementation solution. The program also needs to consider the workforce 
(end-users), how the program will fit into the organization’s culture, and the level of training 
required for staff (operators, maintenance, water quality, engineering, etc.) to use the new 
technology to enhance their jobs and improve operations. Once the program is operational, an 
appropriate amount of governance is needed support the program. Developing a program that 
integrates the workforce, governance, and technology into a common framework will lead to a 
highly successful program. 

This step is intended to distill the vision of the online monitoring program into realistic and 
attainable goals. Online monitoring can appear to be a “silver bullet” solution for source 
control, but past studies and the results of Chapters 3 through 7 have indicated that if the 
monitoring program does not have clear goals and responsibilities outlined, the sensors (a.k.a, 
analyzer or probe) will quickly become expensive maintenance items that do not provide value 
to the utility and will not be supported by operations. The utility should consider forming an 
inter-departmental team for the development of the vision. This will help to develop cultural 
buy-in to the program that is critical for long term 
success. 

Prior to purchasing sensors, it is very important to 
determine the reasons why the data is needed and how 
the data will be actionable or informative. Potential 

PHASE 1: VISION AND PLANNING  
1. Identify clear goals and targets of online monitoring program 
2. Select the water quality parameters to be monitored and identify criteria for sensors and 

monitoring locations 
3. Consider a pilot test (highly recommended, especially for larger/more expensive 

programs) 
4. Identify online monitoring locations and approach 

• Selecting sensor locations 
• Static vs. flexible approach 

The real-time monitoring program 
requires clear goals and direct 
action associated with the 
sensors. If this is lacking, the 
program will consume resources 
without providing value. 



 

Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse 95 

value in providing real-time monitoring to support ESCPs include:  

• Implementing critical control points (CCPs) at the WWTP or AWTP so that immediate action 
can be taken if the measured values are outside of the allowable range. 

• Advance notice of influent WWTP slugs that will allow the operational staff to take early 
action. 

• Determining potential sources within the collection system of WWTP influent contaminant 
slugs. 

• Confirmation that treated water regulatory requirements are being achieved. 
• Enforcement of limits or development of local limits, either at strategic locations in the 

collection systems or at the discharge of industrial dischargers. 
• Data collection, research, and creation of actionable information for future projects. 

The stakeholders of the ESCP should discuss the goals of each online sensor and ensure that it 
will provide value to the program and is worth the resources needed to make its installation 
successful. It is okay to have some sensors that are research focused and do not have assigned 
direct actions, but the utility is advised to limit the number of non-actionable sensors. If the 
utility already has some installed sensors and is considering adding more, it is still 
recommended to review the goals of the new sensors with the rest of the ESCP stakeholders. 
The installation of additional online sensors can in some cases provide diminishing returns (e.g., 
when new sensors increase the O&M costs without providing significant value). This research 
project has documented that the time and resources needed to maintain these sensors can be 
substantial in some cases, so it is vital that clear goals are defined for each individual sensor.  

This is the first step of the framework as it is the most important. The O&M requirements for 
these sensors can be extensive; Chapter 3 of this report documented that many sensors require 
weekly (or even more frequent) cleaning to be reliable. The utility is cautioned to go into this 
decision with a full understanding of the costs and resources needed and impact on the 
operations and maintenance staff to be successful.  

8.1.2 Step 2 – Select the Water Quality Criteria to be Monitored 
Once the goals and data uses have been identified, the next step is to select the water quality 
criteria that can achieve those goals and uses within the ESCP. This step may seem obvious and 
in many cases it will be. If the utility has decided that conductivity must be monitored for a CCP, 
an online conductivity sensor should be installed. But there will be cases where direct 
measurement of the targeted contaminant is not possible. In these cases, the utility should 
consider if a surrogate measurement can be informative. Chapter 2 provides a review of 
available online sensors. Two examples of where this may be relevant are as follows:  

• The utility has identified that infrequent WWTP influent slugs of metals results in WWTP 
effluent violations. While direct measurements of the metals are not possible, the utility has 
identified via grab sampling that the slugs correspond with high conductivity events and a 
conductivity sensor can be reliably installed as a surrogate. 

• Influent TOC slugs into an AWTP exceed the CCP target and require the AWTP to divert and 
go offline. Grab sampling during these events has identified that influent total phosphorous 
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(TP) slugs precede the high TOC events and cause poor WWTP performance. An online TP 
sensor can help notify and prepare for subsequent events. 

Each water quality parameter that is measured should be directly linked to one of the goals of 
the real-time monitoring program (Step 1). If there is not a reliable sensor that can achieve the 
stated goal (Step 5), it is not recommended to install a different sensor; in this case the utility 
should consider different ways to gather information for that specific goal (e.g., grab sampling, 
composite sampler, etc.). 

8.1.3 Step 3 – Plan A Pilot Test for Select Sensors 
In this step, the utility is evaluating the value of a pilot test. Given the challenges associated 
with implementing online monitoring in wastewater, pilot testing is strongly recommended to 
gain confidence in the ability of the specific types of sensors to meet the goals and 
requirements identified in Steps 1 and 2. Pilot testing should always be performed for sensors 
that utility staff are unfamiliar with, where multiple sensors for a single parameter are being 
evaluated, and for large programs where the utility intends to purchase and install many 
sensors. Note that it may be possible to request a trial, rental, product demonstration, or other 
options from the vendor prior to purchasing some instruments.  

The costs of a pilot test are easier to justify for larger, more expensive programs; however, the 
case study interviews from Chapter 4 of this report recommended that pilot testing for smaller 
programs is also beneficial in reducing the risk that the real-time monitoring program is 
unsuccessful. The value of pilot testing online sensors include: 

• Troubleshooting and improving the installation in a challenging location (e.g., manhole, 
sewer, force main, etc.) prior to purchasing several sensors for installation in similar 
locations. 

• Testing a specific sensor prior to purchasing multiple of the same sensors. 
• Verifying that power, communication, and integration into the utility’s system is achievable. 
• Identifying the resources needed for sensor maintenance, data collection, data verification, 

and data analytics to estimate the total resources needed for the full real-time monitoring 
program. 

• Identifying if a certain site or sensor is infeasible and needs to be reevaluated. 
• Verifying that the sensor can actually detect the events that it is intended to detect. 

If the utility selects to pilot test specific sensors, phase 2 of this framework is still relevant. The 
utility should follow Framework steps 5 through 12 (Phases 2 and 3) for the pilot sensor and 
then return to Framework Step 4 (Phase 1) when implementing the remaining sensors and 
proceed through the remainder of the framework. Establishing the value of the pilot sensors is 
essential to appropriately selecting the rest of the sensors so it is important that dedicated 
resources are committed to the success of the pilot. 

8.1.4 Step 4 – Identify Online Monitoring Locations and Approach 
The intent of this step is two-fold: (1) to identify the locations within the collection and/or 
treatment systems to implement monitoring, and (2) to identify whether the instruments will 
be installed in a fixed location (static approach) or will be mobile for use in multiple locations 
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(flexible approach). These two decisions are important because they will impact the design and 
cost of the RTM program.  

8.1.4.1 Selecting Sensor Locations 
This evaluation is often driven by the outcomes of Framework steps 1, and 2. Now that the 
goals have been set and the key water quality parameters have been identified, the exact 
locations for monitoring can be determined to achieve those goals for both pilot and full-scale 
implementation.  

This requires a solid understanding of the key dischargers, the collection system, 
sub-sewersheds, and the flow paths to the treatment facility during wet and dry weather. 
Ideally, the fewest number of locations can be determined to achieve the utility’s goals and 
then additional locations can be selected for redundancy, to target problem areas, or wherever 
additional data is desired. Table 8-1 provides a list of advantages and disadvantages of different 
locations for real-time monitoring. 

Table 8-1. Advantages and Disadvantages of Different Sensor Locations. 
Location Advantages Disadvantages 

WWTP Secondary 
Effluent 

• Steadier values than WWTP influent 
make it easier to see long-term trends 

• Less fouling potential from FOG and 
rags compared to WWTP influent 

• Typical sampling location for future 
AWTP influent which may serve 
multiple purposes for the potable reuse 
program 

• Identifies if a water quality parameter 
is a challenge for AWTP 

• Typically can find accessible installation 
locations 

• Onsite locations are easier to maintain 
than remote locations 

• Secondary effluent, like all locations in 
this table, still contains substances that 
can cause sensor fouling 

• Does not provide an indication of the 
source of challenging contaminants 

• No advance notice of potential threat to 
WWTP processes or ability to divert 
influent to avoid them. 

• Difficult to divert contaminated flow 
away from AWTP 

• Diurnal patterns and discharge events 
visible at influent are often muted or not 
visible in effluent 

WWTP Influent • Provides more time to react to influent 
events compared to secondary effluent 

• In combination with secondary 
effluent, provides data on the removal 
of a parameter or contaminant within 
the WWTP  

• Onsite locations are easier to maintain 
than remote locations 

• Easier to divert contaminated flow into 
a holding basin or away from WWTP 

• Easer to observe diurnal patterns and 
detect discharge events 

• Can be more challenging to find 
installation locations than secondary 
effluent 

• Often significant fouling due to more 
rags and grease which can make 
maintenance challenging 

• Greater variability in incoming water 
quality can make long-term trends 
harder to see 

• Does not provide an indication of the 
source of challenging contaminants 
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Table 8-1. Advantages and Disadvantages of Different Sensor Locations. (Continued) 
Location Advantages Disadvantages 

Strategic Locations 
in Collection System 

• Provides an indication of where the 
sources are coming from and helps 
with source tracking 

• Provides an early indication of an upset 
event allowing plant operations to take 
proactive action 

• Can be located directly downstream of 
a specific, challenging industry to 
confirm compliance 

• May be more suitable for a flexible 
installation during source tracking; a 
permanent installation may not provide 
ongoing value 

• More FOG and rags can lead to more 
rapid fouling and greater maintenance 
burden 

• Maintenance is more of a burden 
because of the remote location away 
from the WWTP 

• Requires remote power and 
communication 

• Can have access issues (e.g. traffic, high 
water, safety, etc) 

• Can be more prone to theft/vandalism 
Industry Discharge • Can potentially be used for regulatory 

enforcement at specific dischargers or 
guide sampling effort for regulatory 
enforcement 

• Cleaning and calibration can be written 
into the permit and performed by the 
industry 

• Remote power and communication 
may not be needed (though it is still 
recommended for the utility to have 
direct access to the data) 

• Onsite locations are easier to maintain 
than remote locations 

• Only provides data from one discharger 
and would be expensive to install at all 
dischargers 

• Industry could still be out of compliance 
for a different parameter than what is 
installed 

• Industry can find a way to by-pass 
sensor  

 

8.1.4.2 Static vs. Flexible Approach 
Once the locations have been selected to achieve the program goals, it is easier to compare the 
complexity and cost of static installations at these selected locations vs. mobile installations 
that can be used at multiple locations.  

Information from the preceding chapters indicate that there are pros and cons to each 
approach. In general, fixed locations are recommended when there is a long term need to 
characterize the water quality. This is often relevant for sensors installed at the WWTP or at 
industrial discharges. As shown in Table 8-1, these locations provide value for long-term 
installations as they are easier to maintain than remote, offsite locations. Key manholes may 
also be useful static installation locations if the utility wants earlier detection of an event and 
has identified a suitable location. 
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Mobile sampling systems are recommended when they are used for temporary source tracking. 
This typically occurs at locations within the collection system. Once the utility has identified 
that there is an upset or a water quality event at the WWTP or at key manholes, operations 

staff can use mobile sensors connected to a data logger (or 
telemetered) and a battery pack. These can be moved 
sequentially upstream towards higher concentrations until 
a point source is identified or narrowed down. This does 
not require remote power or communication and is 
calibrated before the event. Fixed installations are not able 
to track events to individual point sources during 
temporary source tracking events as it would be cost 
prohibitive to have online sensors everywhere that is 
needed to fully characterize the system. There may be 

instances where fixed installations are the best option for monitoring within the collection 
system, but the utility should make sure that long term data is really needed for those sensors. 

8.2 Phase 2: Instrument Selection, Design, and Support 

 

Figure 8-3. Phase 2 Framework Steps. 

Figure 8-3 presents an overview of Phase 2, which includes steps 5 through 8 of the framework 
and is intended to include selection and procurement of sensors, station or installation design, 
sensor integration, development of an operations and maintenance plan, response plan, and 
additional resource planning. Phase 2 activities will typically come after Phase 1 activities have 
been completed; however, there is often some iterative decision making that occurs once you 
get into the details of the station selection and design). So, it may be necessary to revisit the 
goals and parameters initially selected in Phase 1. The following sub-sections provide a more 
detailed explanation of each step.  

PHASE 2: INSTRUMENT SELECTION, DESIGN, AND SUPPORT 
5. Select and procure the sensors and instrumentation to implement goals  
6. Develop station design and ancillary equipment  

• Physical/mechanical design 
• Integration, communication, and security 

7. Develop O&M plan for sensors 
• Cleaning, calibration, and verification protocol 
• Troubleshooting guidelines and resources 

8. Consider cost and resources needed for successful system operation 
• Identify maintenance resources and responsibilities 
• Identify how online monitoring will impact existing sampling program 
• Identify data management and reporting responsibilities 

Best Practice: in general, fixed 
installations are recommended 
at the WWTP, at key points in 
the collection system, and at 
industrial dischargers; mobile 
sampling is recommended 
within the collection system 
during source tracking events. 
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8.2.1 Step 5 – Select and Procure the Sensors and Instrumentation 
Now it’s time to select and procure the specific sensors 
best suited to achieve the program goals. This is a good 
time to review Chapter 2, particularly the master 
sensor list (Table 2-1). It may also be helpful to review 
the new sensors listed in Chapter 2 and the experience 
of other utilities using real-time monitoring for ESCP in 
Chapters 5 and 7. There may be other sensors available 
that are not listed in this report. If that is the case, ask 
for references and call the operations teams that use 
the sensor to make sure it will be a good fit for your 
application. Asking around for recommendations prior 
to purchasing is always a good idea. However, 
references may not be sufficient in all cases as matrix-specific interferences may make certain 
sensors non-suitable for your application.  

When selecting the sensor, make sure to pay attention to the design details and coordinate 
with mechanical and instrument technicians so that the correct options are selected. This is 
particularly important for installations in remote locations. Before purchasing, make sure you 
know how it will be powered, how it will communicate (e.g., telemetry and integration into 
SCADA or data management platform), and how the sensor will receive and discharge flow (if it 
is not a submerged sensor).  

The installation location will help identify what sensor is selected. Can reagents be avoided for 
remote installations? Are the sensor and any reagents suitable for the environment? Are there 
any physical restrictions to installing the sensor at the identified site? Additional criteria to 
evaluate are the detection limits, accuracy, and precision. Will the recorded data meet the 
goals of the monitoring? Lastly, it is always recommended to include commissioning and 
startup support from the supplier to help get started up correctly as the suppliers often have 
best practices to share. 

8.2.2 Step 6 – Develop Station Design and Ancillary Equipment 
The most important part of this framework is designing a station for the sensor to collect and 
transfer reliable data. This is critical whether the utility is installing a pilot or a full-scale sensor. 
Much of this report, and previous reports, have focused on installation best practices, 
demonstrating the importance of this step. The design should typically not begin until Steps 1-5 
are complete as it is specific to the selected sensor and location. However, it is sometimes 
helpful to perform steps 5 and 6 in parallel since design details can impact sensor selection.  

8.2.2.1 Mechanical Design 
It is impossible for this framework to provide best practices for every possible installation since 
the details related to station design will be site and sensor specific. The reader is referred to 
Section 3.1 of this report, Steinle-Darling et al. 2020), and Liggett et al. 2018 for compilations of 
best practices and lessons learned from utilities. This section can provide some high-level 

Best Practice: It’s easy to focus on 
the “shiny new technology” and 
end up spending time and money 
on stranded assets. It is important 
to stay focused on the goals 
established in Phase 1 before 
procuring the sensors. This will 
improve the likelihood of getting 
value out of the investment. 
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recommendations that should be considered for every design. The designer should always 
consider: 

If the sensor will be installed in a manhole, sewer, or other gravity location: 

• Where does the sensor need be installed so that it is always submerged? 
• Are the equipment installed in a manhole C1D1 certified for explosive environments? 
• Is there any part of the sensor or associated equipment that cannot be submerged or 

exposed to high humidity conditions? 
• If the sensor and its appurtenances are installed in a corrosive environment (i.e. manhole), 

are all connections corrosion-proof? 
• Is the sensor installed in a location that is representative of the intended flow? 
• How will the sensor be supported and protected? Is the support sufficient for all flow 

conditions? Is the sensor secured in a way that it cannot be lost into the system? 
• How will the sensor and the support be installed? 
• How will the sensor avoid ragging and FOG accumulation? 
• Does the sensor need to be protected against large items that may flow through the sewer? 
• Can the sensor be easily removed for cleaning and calibration and then put back into service 

without the need for a confined space entry? Is it lightweight enough to be removed by a 
single person? Will specialty tools be required to remove the sensor? 

• Will the sensor be completely hidden from the public or is a cabinet or other security 
needed? 

• Will access be provided so that samples can be collected for sensor calibration and 
verification? 

When a pump or pressurized pipe is used to feed the sensor: 

• Will the pump be submerged and is it C1D1 certified for hazardous environments? 
• Is there risk of clogging the inlet tubing to the pump or to the sensor? 
• When maintenance of the sensor is needed, can it be taken offline easily or isolated from 

flow? Will the shutoff/isolation valve controls be near the sensor? 
• How will the sensor discharge flow be collected? Will it be pumped back into the system? 
• Does the system have a sensor and alarm to notify when the flow to the sensor(s) is 

restricted? 
• How will the connection to the pressurized pipe be made without creating a clogging 

situation and/or impacting the flow? 
• Will access be provided so that samples can be collected for sensor calibration and 

verification? 
• Will the sensor be located in an exposed, outdoor environment? If so, what security and 

weatherproofing is needed? 
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Lessons learned from WRF 4908 (Chapter 5): While the results demonstrated the value of 
real-time monitoring, there were also significant challenges, as summarized here: 

• Sensor Locations – sensors are often placed within manholes or adjacent to manholes, 
which can create safety issues. Minimizing the frequency of access is crucial to minimize 
impacts to the public and staff. 

• Fouling – required weekly or more frequent site visits to many sensor locations. (e.g., FOG, 
rags, hair, debris, metals, precipitates, and other solids that can buildup on sensors and 
affect their performance).  

• Power – most sewer access points do not have access to power, so battery life and 
reliability are important factors, especially for remote installations. Note: some features, 
including automated cleaning, cannot typically be sustained on the battery power provided 
by the manufacturer. Solar power has often been used in these types of deployments. 

• Security – Sensors and sampling stations are costly, and above ground installations are 
often not secure, so locating it within manholes reduces physical security risk.  

• Depth – depth limitations impact sensors that require a sample brought to the surface via 
suction unless a submerged pump is deployed. 

• Intermittent Flow - Some parts of the collection system have intermittent flow which can 
create O&M and data quality issues. Some of these locations can be dominated by periodic 
industrial discharges. Also, most sensors not consistently immersed in liquid appear to lose 
calibration or can be damaged.  

• Sensor Accuracy and Precision – accuracy varies so some sensors are sufficient to monitor 
for upset events, while more accurate sensors may be needed to monitor for compliance.  

• Communication – remote locations often have poor signal availability for telemetry and 
there are hardware challenges related to battery life, humidity, and corrosion of the 
communications portion of the equipment. 

8.2.2.2 Integration, Communication, and Security 
Two key elements to a successful sensor installation are how it will be powered and how it will 
communicate data. There are many decisions that will likely be made in coordination with 
several groups including operations, water quality, controls and SCADA integration (OT), 
Engineering, IT, and security. Input from these groups will drive the design decisions for the 
selected sensors, communications protocols, cyber security protections, and data.  

• Powering the sensor is a relatively simple decision. During sensor selection, the design team 
should review what options are available for the installation location. Mains Power: If the 
sensor is located where there is already power or wiring can easily be pulled, a wired 
connection can be considered. It is recommended that the monitoring station have its own 
circuit breaker if possible. If this is an option, the team then needs to confirm how the 
wiring is connected to the sensor and whether or not the design location is suitable for a 
hard-wired power connection.  

• Remote Power: Sensors installed in the collection system, particularly in manholes, usually 
do not have mains power available. Battery or solar power is typically used for remote 
locations. Battery power is the lowest capital cost solution and is easier and safer to install. 
In situations where the use of batteries is not practical due to power requirements, solar 
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becomes the preferred option. However, many locations will not be suitable for solar panel 
installation (e.g. some roads, sidewalks, dense vegetation, snow, etc). 

Identifying how to transmit the sensor data to the central system architecture (Cloud or 
on-premises) can be a more complex challenge. Large monitoring programs will often use a 
hybrid communication architecture as the best options for the individual sites. The following 
criteria should be considered for all offsite locations: 

• How will the sensor transmit data (Cellular, Fiber, T-1, LoraWan, radio, other proprietary 
wire mesh systems)? 
o Has a communication architecture been developed for the program? 
o What types of communications are available for each station? 
o Can the sampling stations be integrated into another communications system, such as 

street lighting or advanced metering infrastructure (AMI)?  
• Can a data logger be used to avoid data integration?  

o Is real-time information required for operations? 
o How often will the data need to be manually collected and uploaded into the central 

system? 
o How will the goals of the monitoring program be impacted if data is only available after 

retrieving data from the data logger? 
• What cybersecurity is needed to meet the utility’s standards for remote data? 

o Will the data be transmitted and hosted in the SCADA system, Business network, or in 
an external cloud? 

o What level of cyber security protection does the cloud provide? 
• Is programming or proprietary software needed to interpret, analyze, or store the data?  

o Front-end: JSON. 
o Back-end: Python (Most prominent), R, C#. 

• How will data be stored? Will it be stored in the cloud or on-premises? 
o What frequency should data be transmitted and stored? 
o Does the data need to be cleaned and validated?  
o Does the system need to incorporate event detection and alarms? 
o Is a database needed to receive and/or store the data?  
 Example 1: NoSQL like Mongo for on premise. 
 Example 2: Cosmos in Azure for time series. 

• Are analytics (machine learning or user optimized) needed to clean and/or analyze the 
data? 

• Can the monitoring platform be programmed to identify sensor problems and send out 
alerts? 

• Is the sensor connected to a data processor locally that can store, display, and download 
the data?  

• How will the industry dischargers be able to access the data (where sensors are installed 
onsite)? 

Developing a monitoring program that provide real-time actionable information is not a trivial 
exercise. The number and location of stations, type of data communications, Business 
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Intelligence Architecture, workforce training, and governance need to be evaluated and 
consistent with the mission and vision of the utility.  

8.2.3 Step 7 – Develop O&M Plan for Sensors 
Step 7 focuses on developing an O&M plan that sets up the real-time monitoring program for 
long-term value. While it is acknowledged that O&M plans are important for all equipment in 
treatment plants and collection systems, it is particularly important for sensors installed to 
support ESCPs. As discussed throughout this report, there are significant challenges to getting 
reliable and accurate data from these sensors and a robust O&M program is needed. This step 
focuses on the different items that should be included in the O&M plan while the next step 
discusses the resources needed for the plan to be successful. While the recommendations in 
this section are high-level, Chapter 4 provides specific details and best practices for sensor 
maintenance in the lab and in the field. The approach for implementing a sustainable O&M plan 
can be internally implemented, a Data as a Service contract, or a hybrid.  

8.2.3.1 Cleaning, Calibration, and Verification Protocol 
The requirements for cleaning, calibration, and verification will vary for different sensors, so the 
sensor manufacturer’s documentation and representatives should be consulted as necessary to 
develop O&M plans. O&M requirements also differ based on the site, the installation 
configuration, and the automatic cleaning devices installed. While each plan will be different, it 
is important that a clear protocol and schedule is established for each sensor. Weekly cleaning 
and monthly calibration can be used for general best practices for most sensors, but pilot 
testing is the only way to understand the true requirements to produce reliable data.  

Prior to installing the sensor, make sure that the chemicals and solutions needed to perform 
the cleaning and calibration are available and that staff have been fully trained on how to 
properly clean and calibrate the sensors. Some sensor types (e.g. permeable membrane bulbs 
on a pH sensor) can be damaged by touching, scrubbing, or even by contact with soap, so an 
understanding of the proper maintenance and calibration protocols is needed and should be 
provided by the manufacturer or representative. 

Sensor maintenance and calibration should be assigned to a limited number of staff (2 to 3) to 
ensure consistent technique. The approach often attempted by utilities, often referred to as 
‘maintenance by committee’, where the utility just finds someone available to do the work, 
often leads to more overall data variability.  

Recordkeeping is also very important since these types of sensors can lose calibration or report 
inaccurate data at unplanned times. It is very important to retain historical data, keep accurate 
calibrations and service logs, and record past issues that required troubleshooting and the fixes 
that solved the issues. Note that if an event does occur that could have an impact on public 
health (even though this is unlikely based on all the permit provisions put in place for potable 
reuse), records such as these will be likely be reviewed for proper recordkeeping.  

It is also frequently useful to have a source of the ‘correct’ value that the sensor should be 
reading to evaluate performance. This verification should be done on a regular basis in addition 
to calibration. For example, taking a handheld pH sensor measurement during a maintenance 
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visit helps to determine if the sensor had drifted away from the ‘true’ value, and if cleaning or 
calibration restored it. Other sensor types may require a grab sample for laboratory analysis. 
Verification measurements help to determine if events seen by sensors are real or an artifact of 
the sensors and if long-term trends are real or due to sensor drift. 

8.2.3.2 Troubleshooting Guidelines and Resources 
As you can infer from the preceding chapters, troubleshooting is synonymous with 
implementing long-term, real-time monitoring within wastewater collection and treatment 
systems. Therefore, it is helpful to develop simple guidelines so that staff know when and who 
to contact to perform troubleshooting when needed. It is recommended to develop standard 
operating procedures (SOPs) that staff can perform if the calibration is poor, if the sensor loses 
power, if the sensor stops transmitting data, or other common challenges. It is also 
recommended to maintain contact with the sensor representative for situations that cannot be 
solved by internal staff.  

Sensor suppliers and representatives have a vested interest in the sensors performing well and 
they can be a valued resource in the success of real-time monitoring systems. Each utility 
should diagnose its in-house capabilities for sensor maintenance and troubleshooting. If they 
do not have either the resources available or the technical expertise, it is recommended to 
maintain an ongoing contract with the supplier. This allows the supplier access to the data and 
provides a mechanism for them to regularly monitor the performance of the sensor. While the 
utility may think this is a cost that can be avoided, it has been demonstrated to be very valuable 
for producing reliable data. 

Step 7 is also a good time to consider investing in a mobile monitoring skid or back-up sensors 
that can provide redundancy if O&M activities, troubleshooting, or replacement of sensors or 
ancillary equipment is taking longer than expected and accurate data is not being collected as 
needed. There will definitely be times when the sensor is offline so redundant sensors or a 
mobile system should be considered if the data is needed for continual operation. Such 
redundant sensors may also be used for verification. 

8.2.4 Step 8 – Consider Cost and Resources Needed for Successful System 
Operation 
Step 8 is the final step of Phase 2 and the final step before the sensors are installed. The goal of 
this step is to estimate and identify the budget and resources that are needed for the sensors 
that will be installed and to reconvene the stakeholder team to make sure that the installation 
and O&M plan will achieve the overarching goals of the monitoring program. Typically, the 
purchase price of a sensor is much lower than the total cost to install, integrate, and maintain 
the stations. This provides an opportunity once the utility has a more accurate total cost to 
confirm that the information provided will be worth the budget and resources required. 
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The sensor design was completed in Step 6 and should have produced cost estimates for 
mechanical, electrical, and integration efforts. These costs should be documented to inform 
decisions when additional sensors are considered in 
the future. 

Resources for ongoing sensor maintenance is the most 
important part of this step. Many of the sensors tested 
in this study required weekly, or more frequent, 
cleaning. Prior to installing the sensor, there was no 
way for a utility to know exactly how often it will need 
to be cleaned or calibrated, unless the sensor was pilot 
tested. Still, it is important to set reasonable 
expectations so that resources are planned and 
available. For any sensor installed in the collection 
system or the WWTP influent, it is recommended that 
the utility assume a minimum of weekly cleaning and 
monthly calibration will be required. The cost for this 
maintenance program, with contingency for 
unanticipated challenges, should be estimated before 
the sensor is installed. This should include time for troubleshooting and repairing the 
installation, particularly for sensors in manholes or sewers. This cost should also include the 
annual service contract with the sensor supplier, if the utility decides this is valuable.  

In addition to costs associated directly with keeping the sensor running properly, the impact to 
the existing sampling program should be considered. Although real-time monitoring provides 
continuous data, it likely will also increase the amount of analytical sampling needed to verify 
sensor accuracy, especially if the sensor is used for regulatory compliance. Additionally, if the 
online sensor identifies an upset event, it might trigger additional sampling to capture periodic 
variations or for operational, enforcement, compliance, or other reasons. While this hopefully 
provides improved operation, it is important to note the increased burden on resources, 
including the staff performing the sampling and the analytical cost. These additional 
requirements highlight why the cultural buy-in of the program is so critical. 

Lastly, a perfectly operating and calibrated sensor will produce a tremendous amount of data 
but likely will have limited value unless someone has been identified to review, interpret, and 
report the data appropriately. Chapter 4 discusses applied machine learning techniques that 
can be used to detect upsets and establish a baseline for performance. But even if this is not 
needed, a resource should be identified that routinely evaluates the data. Decisions on data 
storage frequency are important so that efficient data storage, access, and management is 
provided for the team, and it does not become too expensive to store the data. The problem 
with the manual approach with data cleaning and analysis is that the data velocity and quantity 
quickly become overwhelming for traditional tools. The result is the utility having a voluminous 
amount of unprocessed data that quickly loses its value over time and the monitoring program 
failing to achieve the goals. The approach of automating these processes inside the Business 

The Hidden Costs of Real-Time 
Monitoring. Make sure your cost 
estimate includes costs for: 

• Design installation and 
integration. 

• Installation: mechanical, 
electrical, and integration. 

• Ongoing maintenance. 
• Increased sampling for data 

verification. 
• Ongoing service contracts. 
• Communications. 
• Data analysis, storage, and 

visualization platform. 
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Intelligent Architecture (BIA) is being used globally to alleviate this problem and maximize the 
value of the utility investment.  

This step creates an “all-in” estimate for capital and operating costs. After the sensors and 
system have been installed, it is best practice to update these costs, so they reflect the actual 
costs incurred. This enables to the utility to make informed decisions on expanding the real-
time monitoring program. If the total cost of the sensor installation exceeds the available 
budget, innovative cost strategies can be pursued. For example, using a DaaS approach places 
the burden on the third-party contractor (often the vendor). DaaS contracts have been 
developed so the utility only pays when quality data has been delivered.  

8.3 Phase 3: Implementation and Optimization 
Figure 8-4 presents an overview of Phase 3, which includes Steps 9 through 12 and focus on 
implementing the real-time monitoring program and continuous improvement. This phase is 
relevant for implementing a pilot test or an entire program.  

 

Figure 8-4. Phase 3 Framework Steps. 

8.3.1 Step 9 – Install Sensors and Conduct Training 
Now that the planning and design phases have been prepared, it’s time to execute the 
installation as planned. If your utility has determined to conduct a pilot test, this may include 
installing the pilot equipment to inform previous steps that were not finalized. If your utility has 
already performed a pilot test or elected to skip a pilot test, then this step is installing all the 
stations as part of the full-scale program.  

Similar steps are recommended for starting up sensors as would be performed for other 
equipment. Personnel is needed to make sure it is installed correctly with a reliable water 
source. And personnel is needed to make sure that it is communicating the data effectively. It is 
recommended that an increased sampling program is established for the first week or month 
after installation and then can be decreased after reliable results are proven. 

PHASE 3: IMPLEMENTATION AND OPTIMIZATION 
9. Install sensors and conduct training 
10. Integrate sensor data into existing operations and reporting procedures 

a. Data storage frequency 
b. Data display and interpretation: SCADA/DCS, alarms and CCPs  
c. Data evaluation and verification 
d. Communication and reporting 

11. Define source tracking strategy and compliance monitoring 
a. Integrate into industrial permits 
b. Use for enforcement of permit violations 

12. Continuous improvement 
a. Implement lessons learned and new best practices 
b. Follow advancements in sensor or other technology to improve data accuracy 
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Chapters 5 and 7 has more detailed information and case studies of utilities’ experiences 
installing and utilizing real-time monitoring equipment for ESCPs. Note that it is common for 
field conditions to require tweaks to designs and plans since all parts of a collection and 
treatment system will be different than others, so be prepared to communicate with the 
equipment representative, designer, IT, and other support staff as needed once the work is 
under way.  

Once the sensor has been installed, staff must be trained on its maintenance and calibration 
requirements. Initial trainings are often conducted by the equipment supplier; however, it’s 
likely that additional staff-led trainings will be required to get other key staff familiar with the 
technology and how it is integrated and monitored within a system. It is also recommended 
that staff be informed of the importance of the sensors for the overall program. O&M staff 
buy-in is key to a successful real-time monitoring program. If staff do not understand the value 
of the data, they will be less likely to perform all the tasks needed to get reliable data.  

8.3.2 Step 10 – Integrate Sensor Data into Existing Procedures 
Once the stations are operating and producing quality data, the operations staff need to be 
trained on how to evaluate the information produced from the data. This is a very important 
step for the staff to understand how the data can be integrated with their intuitive knowledge 
of the system. The staff can use this process to rapidly assess the situation and respond 
accordingly.  

The sensor data likely will not initially be displayed in the perfect way for interpreting the data 
and additional steps will be needed to streamline the data analysis process. Some of these tasks 
may have been completed as part of the sensor installation but many of them cannot be 
completed until data is being transmitted from the sensor.  

• Data storage, access, and 
organization: data storage frequency 
may need to be reevaluated and 
optimized as the full program is 
implemented to keep it both useful 
and manageable. Data storage should 
be integrated into the rest of the 
facility’s data storage or in a cloud 
environment that offsets the cost of 
purchasing and maintaining 
additional servers on-premises.  

• Data evaluation and verification: this 
refers to confirming the quality of the 
data, which inherently includes 
sensor calibration, and to 
establishing a baseline for the data. 
Once a baseline is developed, upset 
events or spikes are easier to detect 

Chapter 6 Machine Learning Assessment 
Conclusions: 

• ML models using online sensor data from 
influent or treated wastewater could be 
applied for useful, practical alert systems. 

• Multiple ML models performed adequately 
in terms of accuracy, sensitivity, false 
positive rate, etc.; but ongoing research will 
refine which models are best for which 
applications.  

• Next steps could include demonstrating 
trained ML models with live, real-time 
sensor data and training regression ML 
models to predict quantitative values such as 
ozone demand, recommended operational 
settings, etc.  
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and alarms can be set accordingly. Chapter 4 provides a detailed review of different 
machine learning techniques that can be implemented to achieve this. 

• Advance data analytics, trending, machine learning, and artificial intelligence: transforming 
the validated data into actionable information is an important step to maximize the value of 
the investment and enhance the operations of the utility. Some of the elements include: 
o Creating trends to evaluate long-term sensor performance (leveraging the plant 

historian or other data storage and trending capabilities). 
o Creating trends that link the sensor data with other WWTP data to evaluate the impact 

of an event on other parameters. 
• Data visualization and interpretation: the data is only useful if it is correctly interpreted and 

presented, so these activities include:  
o Displaying the current sensor value at SCADA, plant DCS screen, or a separate platform. 

An independent platform allows the information to be shared across the organization 
and maintain the security of the SCADA system. 

o Establishing alert and alarm values to notify the operator of upset events. 
o Establishing CCPs so that direct action can be taken if needed. 

• Communication and reporting: once the data is verified and analyzed, it is important to set 
up the communication pathways to get the data trends, reports, and key conclusions to the 
right people in the right timeframe. This may include:  
o Expanded user access to the data analytics platform to allow users throughout the 

organization to evaluate the monitoring system that relates to their areas of 
responsibilities. 

o Protocols that trigger immediate communication, data accuracy verification, and/or 
event confirmation (e.g., exceedance of a threshold or an event that triggers an action, 
sampling to confirm the results, and notification of operations staff).  

o Updates to keep stakeholders aware of observed trends and the value of the data. Note 
that it might be useful to implement these updates to a wider audience only after there 
is confidence in maintaining data accuracy to reduce negative impacts of false alarms. 

 

What to do if your real-time monitoring detects an excursion? 

• If possible, verify that the detection is a real excursion and further investigate the cause 
with a grab sample. 

• Identify what treatment decisions need to be made: 
o Is this a critical control point and does water need to be diverted? 
o Should treatment decisions or chemical dosing change to address the 

contaminant(s)? 
• Determine if stakeholders or regulators need to be informed. Do so promptly if needed. 
• Initiate a source tracking investigation, such as with a mobile real-time monitoring unit. 
• Document the event. 
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8.3.3 Step 11 – Define Source Tracking Strategy and Compliance Monitoring 
Once accurate data is being reported and integrated into utility operations, it is time to identify 
how this data can potentially be used to support and bolster compliance monitoring, if this was 
a goal set in Phase 1. There has been significant effort and resources to get to this point and 
this is where value can be demonstrated for the real-time monitoring program. If steps 1-10 
were the “how to”, Step 11 is the “so what.” 

The goal of most real-time monitoring 
programs for ESCPs is for early detection 
and notification of upset events. These 
may trigger direct action at the WWTP or 
AWTP (via alarms or CCPs), sampling to 
verify the data, and source tracking 
events. It is unlikely that a utility will install 
a real-time monitoring program so 
comprehensive that they will immediately 
know the source of an event. As each 
event or challenge will be unique 
(although some may be repetitive), it is 
important to have a defined strategy for 
locating the source. Best practices are 
summarized in the text box to the left for 
developing a source tracking strategy and 
program. 

If the source tracking results identify a 
single source that is responsible for the 
event, the data should be documented 
and discussed with the source or 
discharger. This can result in a violation if 
it was already in the permit or can result in 
a modification to a permit. The goal is to 
systematically identify and eliminate the 

sources of upset events. If the source is an industrial discharger, the utility should consider 
having the industry install an online sensor and using it for compliance or installing a station 
immediately downstream of the discharger. If sensors are installed at a permitted industry’s 
facility, the utility should still receive the data and require the industry to perform and 
document cleaning and calibration. See Chapter 4 for examples on how the cities of Ventura 
and Oxnard have utilized real-time monitoring in their compliance permitting. 

If the identified source is not a permitted discharger, compliance monitoring and enforcement 
can be more challenging. There are many anecdotes from utilities of infrequent discharges from 
residents or commercial businesses that were not permitted where the utility identified the 
source and discussed directly with the person or business and avoided enforcement. This is 

Best practices for source tracking: 

• Be prepared for events by having sensors 
available and resources trained. 

• Confirm the data with an immediate grab 
sample, if possible, before mobilizing 
resources. 

• Identify how to track the contaminant 
upstream through the collection system, 
which may require high sample size or 
composite sampling if it is not a continuous 
discharge. 

• Proceed upstream through the collection 
system until the source is identified or the 
event ends. 

• Identify if it is a one-time event or a repeat 
event; if a repeat event, document 
progress so that you can continue during 
the next event. 

• Document the results so that they can be 
used for compliance purposes. 

• Identify the type or class of contaminant 
and evaluate upstream dischargers for 
possible violators. 
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often enough to educate the offender and stop the discharge, though it does not provide 
ongoing enforcement. Some examples from utilities of these situations include: 

• A resident performing household oil changes and dumping the waste at the end of the 
month, resulting in high TP and poor nitrification at the WWTP. 

• Weekly regeneration of in-house water softeners that resulted in high conductivity at the 
WWTP. 

• Infrequent discharges of hauled waste at an RV park that resulted in upsets at the WWTP. 
• A septic hauler dumping into manholes to avoid fees. 
• Gas station washing down an oil or gas spill into the sewer. 

It should be noted that identifying the actual source of the upset is the best-case scenario and 
should be considered a major success. Utilities often refer to “chasing ghosts” in the collection 
system where it can take years to track down the cause of a monthly upset event, and many 
times there is no identified cause. It is important to quantify the challenges that are caused by 
the upset and make sure that the resources spent investigating the cause do not exceed the 
consequence of the upset.  

8.3.4 Step 12 – Continuous Improvement 
Steps 1-11 have identified the key items needed to establish a successful real-time monitoring 
program. Now it’s time to begin reviewing and learning from both the positives and negatives 
and using this information to refine and improve the program. This research led to three 
recommendations for continuous improvement which are to:  

1. Implement lessons learned and best practices from O&M, IT, OT, water quality, engineering, 
and equipment vendors.  

2. Follow advancements in sensor technology to improve reliability and data accuracy and to 
be able to monitor new contaminants.  

3. Follow industry trends for specific suppliers or 
products (e.g., discontinued products, vendors 
entering or existing the market, new offerings that 
reduce costs or O&M requirements, etc.).  

4. Follow advancements in data cleaning and machine 
learning to identify upset events. 

5. Track the “true cost” of sensor installation, not just 
the purchase price of the sensor, so that future 
sensors can be evaluated appropriately. 

6. Document success stories in the annual ESCP report 
to justify the cost of the program. 

7. Evaluate on an annual basis if the real-time 
monitoring program is achieving its goals or if it has become too costly. 

8. Confirm that the program has the trained staff and resources available to be successful. 

Best practice: Schedule a time 
each year (or more frequent if 
needed) to revisit Steps 1-11 and: 

• Confirm the program is 
meeting the stated objectives. 

• Document success stories. 
• Review the cost of the 

program against the goals. 
• Identify if the appropriate 

resources are trained and 
available. 
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Many of the utilities that contributed to this project noted that for these systems to achieve 
their benefits, three “pillars” need to be followed. Pillar 1 is referred to as Workforce, which 
requires both trainings for and a culture of acceptance from the staff that will implement the 
program. Pillar 2 is referred to as Governance, which requires clear policies and procedures to 
implement the necessary tasks. Pillar 3 is Technology, which requires selection, design and 
implementation of a technology that works to achieve the intended goals. This type of 
organizational commitment is recommended for establishing real-time monitoring programs 
and for focusing on continuous improvement. 
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CHAPTER 9 

Conclusions 
9.1 Summary 
Many online water quality sensors are now commercially available, including optical sensing 
(e.g., absorbance, fluorescence) that correlate with other water quality measures (e.g., TOC, 
COD) or specific compounds (e.g., nitrate, optical brighteners). Many utilities planning or 
practicing potable water reuse already have comprehensive ESCPs in place, but real-time 
sewershed monitoring would further strengthen detection, identification, and mitigation of 
industrial or illicit discharges. Several utilities have experimented with real-time sewershed 
monitoring as part of this and prior research projects as well as established monitoring 
programs. Several have successfully detected or tracked down industrial or illicit discharges. All 
have found high maintenance frequencies are necessary (i.e., every other day to weekly).  

Not all sensors proved sufficiently resilient in the sewer environment, so thorough pilot testing 
in real wastewater are recommended prior to purchase. Piloting in the intended installation 
environment (e.g., sewer) may be necessary to test not only the sensor, but also the auxiliary 
equipment and power supply and data transfer plan. Constructed flumes allow for analyzing 
the effects of different variables on and comparisons between sensors in a controlled 
experiment in a relatively accessible location, while still subjecting sensors to real wastewater 
or even intentional pollutant spikes or fouling.  

Placing sensors further down the treatment train (e.g., primary effluent as opposed to raw 
wastewater) allows greater data reliability, but later warning in the event of a spike. 
Installations at the head of, or within, a WWTP allows for easier access, better maintenance, 
and better security, but less early warning compared to installations within the collection 
system. Mobile systems allow for tracking sources in the collection system. Sensor holders 
designed to prevent clogging or fouling in the sewer improve the sensor’s precision and 
resilience. Placement of optical sensors downstream of water treatment chemical additions 
(e.g., ferric coagulants) at WWTPs often increases the rate and fouling and data drift. This 
should be avoided to the maximum extent possible. 

Machine learning can detect events in wastewater influent or treated water with greater 
accuracy and specificity than conventional threshold-based alerts. However, machine learning 
requires several, diverse sensors and multiple recorded instances of the type of event(s) to be 
detected. So, machine learning should be used in tandem with, not instead of, threshold-based 
alerts and alarms.  

Real-time sewershed monitoring is expensive, with unforeseen costs such as time for travel to 
and from remote sewer locations and data analysis costing more than the sensors themselves. 
Even the early step of determining if a probe is accurate and its needed cleaning and calibration 
frequency requires much effort. Without a clear and actionable data management strategy, the 
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utility will struggle to realize any benefit from its investment in real-time sewershed 
monitoring. 

9.2 Recommendations for Integrating Real-Time Monitoring into 
ESCPs 
• Real-time monitoring requires clear goals and direct action(s) that would be associated with 

the sensors (e.g., alerts and responses that improve water quality and reduce risk). If this is 
lacking, the program will consume resources without providing value. 

• Select the water quality parameters to be monitored and identify criteria for sensors and 
monitoring locations that directly allow for enforcement action, troubleshooting, and water 
quality improvement. 

• Select online monitoring locations and a monitoring approach (i.e., sensor locations and 
permanent vs mobile installations) based on clear goals and before procuring sensors. 

• Sensors without consumables or moving parts are generally lower maintenance and more 
resilient in challenging environments like sewers.  

• Perform a pilot test, especially for larger or more expensive programs. Sensor vendors often 
allow free trial periods or rentals. 

• The utility should have full control over the sensor calibration for ongoing programmatic 
sustainability, but with vendor support.  

• Develop an operations & maintenance plan and a data quality assurance and governance 
plan before proceeding with installation and update as needed.  

• Consider cost and resources needed for successful implementation, including less obvious 
costs like travel time to and from the sensors for maintenance, and data storage and 
analysis. 

• Having a specific operator in charge of each sensor or a maintenance apprenticeship 
program—as well as an SOP—results in more consistent maintenance and thus more 
consistent data. Maintenance by committee leads to inconsistent sensor upkeep, reduced 
performance, and compromises data quality. 

• Have a mindset and culture of continuous improvement. Implement lessons learned and 
new best practices. Follow advancement in sensor technology, data infrastructure, and data 
analysis.  

• Data cleansing and validation should be the first step before attempting to process data 
through machine learning or artificial intelligent algorithms.  

9.3 Recommendations for Future Research 
Further research and innovation remain necessary to improve wastewater monitoring systems, 
including reducing maintenance frequency, improving sensor accuracy and precision, expanding 
measured parameters, and addressing concerns like power sources, data connectivity, physical 
and cybersecurity for remote sensors in sewersheds. Further, the needs go beyond sensor 
systems, as the industry must continue to examine how to best make use of the data from real-
time sewershed monitoring. Three potential further research areas related to real-time 
sewershed monitoring are outlined below. 
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9.3.1 Real-Time Sewershed Monitoring Cost-Benefit Analysis 
• Problem Statement. This project demonstrated that it is possible for a utility to conduct 

real-time sewershed monitoring given sufficient resources, creativity, and institutional will. 
Furthermore, research has shown that real-time sewershed monitoring can detect real 
water quality events caused by industrial activity. Nevertheless, it was beyond the scope of 
this project to conduct an in-depth cost-benefit analysis (CBA) comparing the cost of 
real-time sewershed monitoring against the cost of alternative, equally protective 
approaches (e.g., surveillance in advanced treated water and a larger engineered storage 
buffer).  

• Research Question. What is the total financial cost of real-time sewershed monitoring? 
How does this compare to influent water quality excursions? 

• Desired Outcome. Such a CBA would require a long term (minimum 1 year) trial of real-time 
monitoring to determine what level of monitoring was institutionally sustainable and refine 
their maintenance frequencies. Through that process, the utility would determine the initial 
costs of the sensors as well as (1) accessories, appurtenances, and apparatuses; (2) operator 
labor for maintenance including travel time; consumables and sensor or component 
replacement; (3) vehicle wear and tear for travel for maintenance; (4) staff time for 
troubleshooting, data analysis, communication, etc.; (5) subscription fees for any software 
or data platforms; etc. Furthermore, for the cost information to be representative, the 
study ought to include water reclamation and reuse systems of various sizes and levels of 
industry within the sewershed, thus requiring multiple (at least 3) different size collection 
systems. Studies could include sensor systems within the collection system or within the 
WWTP. The study would conclude on how the costs and benefits of the real-time 
monitoring system can reduce the burden of conventional source control programs while 
providing equal or greater water quality protection. Alternative approaches for comparison 
could include (1) real-time monitoring after the WWTP, within the advanced treatment, or 
in the purified water, with corresponding larger engineered storage buffers or (2) additional 
treatment barriers or greater safety factors within existing treatment barriers such that the 
advanced treatment could successfully purify even the worst-case real water quality 
excursion observed over many years of monitoring. This CBA would better inform 
government agencies on the most effective ways to ensure that reuse systems are 
protecting the public from any risk from intermittent industrial discharges to the 
sewershed.  
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9.3.2 Novel Sensors and their Application to Real-Time Sewershed Monitoring 
• Problem Statement. As shown in Chapter 2, few real-time sensors are currently 

commercially available for specific chemicals, especially organics. Nevertheless, it is 
plausible that more sensors will become available for real-time monitoring of specific 
chemicals or chemical classes within the next 5-10 years. Examples include bromide 
(Westerhoff et al. 2022), total PFAS (Law et al. 2021; Wang et al. 2021; Faiz et al. 2020) or N-
nitrosodimethylamine (NDMA) (Roback et al. 2020; Fujioka et al. 2017; Kodamatani et al. 
2018). Initial studies about such sensors often measure spiked contaminants in deionized 
water or relatively high-quality finished drinking water. Before field implementation for 
sewershed monitoring, sensors should have their precision, accuracy, and maintenance 
requirements quantified in raw wastewater.  

• Research Question. Can a sensor be developed to detect specific chemical(s) not previously 
detectable with commercially available sensors? Can it do so at concentrations that would 
be representative of real water quality events in raw wastewater with a reasonable 
maintenance and calibration frequency?  

• Desired Outcome. If developed, such sensors could detect types and levels of industrial 
discharges not previously possible. Such sensors could measure water quality parameters 
more directly relevant to human health or treatment settings than the bulk surrogates 
currently monitored. Industrial chemicals prioritized for ESCP monitoring in Nading et al. 
2022 could also be prioritized for sensor development (e.g., NDMA, NMOR, PFAS, heavy 
metals, 1,4-dioxane) (Nading et al. 2022). Some chemicals might never be measurable with 
useful precision in true real-time. However, measurement a larger time period (e.g., hourly) 
might be achieved with relatively rapid automated chromatography. Such frequencies could 
still be useful for detecting water quality events. So, for the purposes of a request for 
proposals on this topic, hourly measurement frequencies could be considered adequately 
near to real-time.  

9.3.3 Machine Learning with Real-Time Sewershed Monitoring Data 
• Problem Statement. Real-time sewershed monitoring is only as effective and useful as the 

approach applied to informing decisions with the resulting data. Even when best practices 
are followed, real-time sewershed data is inherently noisy compared to water quality data 
from locations with more treatment and equalization. This data noise presents an 
inescapable limitation on traditional, univariate methods for alerts and alarms. There is 
inevitably a tradeoff between detecting events at lower levels vs more false alarms. ML—
thanks to being multivariate and nonlinear—can “overlook” outliers on a single variable if 
other variables are behaving as usual. The adage “garbage in, garbage out” is true to an 
extent for any modeling approach, but the noisiness of sewershed data may actually play to 
ML’s strengths relative to simpler alternatives. 
This study included two ML for alert systems proof-of-concept case studies. However, much 
work remains to be done in this area. Greater sample size (number of variables, number of 
timepoints, and number of events) would improve both the accuracy of ML models and the 
confidence in their relative accuracy. Many more preprocessing methods such as 
quantile-based or standard-deviation-based outlier screening and omission could be paired 
with ML models. Cross-validation methods—including ones specifically designed for 
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timeseries data—could be compared for how well they point to the best tuning parameters 
settings for the testing sets using the training sets.  

• Research Question. What are the best ML methods (preprocessing, cross-validation, and 
model types) for event detection in real-time sewershed monitoring? What is the most 
cybersecure and institutionally sustainable way to implement these algorithms in the field? 
Would utilities giving different weights to the adverse impacts of false alarms vs false 
negatives change the final ML model selection?  

• Desired Outcome. More research on ML for event detection with real-time sewershed data 
would lead to greater accuracy and fewer false positives and potentially pave the way for 
more widespread adoption. Applied research could also explore the best means for field 
implementation, e.g., cloud vs. on-premises computing. This research could work in tandem 
with the other future research topics above. E.g., the CBA could include the costs of ML 
implementation or compare the cost-effectiveness of ML using data from the sewershed or 
later in the treatment system. Data from novel sensors could improve ML accuracy or 
enable the detection of new types of events.  
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APPENDIX A  

Bench and Field Experiments Examining the Factors 
Affecting the Performance of Water Quality Probes in 
the Sanitary Sewer Collection System  
A.1 Introduction 
Wastewater utilities are in need of high-quality continuous water quality data from their 
conveyance systems. These data are required for successful source control program that 
protects treatment plants and the receiving water from harmful discharges, to facilitate the 
effectiveness of advanced treatment processes for reuse applications and ensure the safety of 
land application of biosolids. Very few utilities have deployed long-term continuous water 
quality sensors in in the sanitary collection system, however, because the sewer system 
environment is a difficult environment for water quality probes and supporting equipment. 
Some of the factors contributing to such difficulties include: 

• Sewers are confined entry locations that limit access and space for location of equipment. 
• Wastewaters contains fats, oils, and greases (FOG), rags, hair, debris, metals, precipitates, 

and other materials that can buildup on sensors and affect their performance. 
• Flows vary diurnally and seasonally, sometimes with very low flows at night and/or very 

high flows during storm events.  
• Manhole headspace is typically humid which limits the types of electronics that can be 

utilized. 
• Manholes typically have poor signal availability for telemetry and lack ready availability to a 

continuous power source. 
• Manholes are often in locations difficult to access safely on a regular basis (e.g. roads), and 

frequently not secure from vandalism and theft of expensive instruments.  

Many utilities lack experience in using continuous monitors. Sensors, dataloggers, and other 
equipment vary greatly in capability and cost between different manufacturers, and often 
utilities struggle with decisions related to levels of investment due to a lack of previous 
applications and experiences. 

Water Research Foundation (WRF) Project 5048 (Integrating Real-Time Collection System 
Monitoring Approaches into Enhanced Source Control Programs for Potable Reuse) was 
initiated to provide better understanding of how real-time continuous water quality data can 
be collected successfully and used in source control programs. Task 2a of WRF 5048 included 
bench and field scale experiments to study the factors affecting the performance of water 
quality sensors and compare these effects on various brands and types of water quality sensors 
in the sanitary sewer environment. Task 2a also included the testing of a rag guard developed 
by Clean Water Services (CWS) in side-by-side comparisons with more generic sensor holders. 
The study was completed by CWS personnel in Hillsboro, Oregon. This report describes the 
experiments conducted and summarizes the results, analysis, and major findings.  
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A.2 Methods 
Task 2a of WRF 5048 consisted of two subtasks: 

1. Conduct an evaluation of continuous sensors in a continuous-flow flume environment. 
2. Develop a sensor containment device to minimize ragging and test the device in the 

collection system environments to determine its effectiveness. 

This section describes the methods and equipment used to perform both of these subtasks. 

A.2.1 Subtask 1: Conduct Evaluation of Continuous Sensors 
Subtask 1 consisted of construction of a flume at the influent of the Forest Grove Wastewater 
Recovery Facility (WWRF), installation of sensors of various types and manufacturers in the 
flume, and experimental testing of the impact of selected variables on the performance of the 
sensors. Each of these experiments is described in the subsection below. 

A.2.1.1 Construction of the Flume 
A custom, Plexiglass flume was constructed near the headworks of the Forest Grove WWRF to 
perform controlled experiments on the sensors. The flume is shown in Figures A-1 through A-4. 
The influent flow was diverted to the flume immediately after passing through the bar screens, 
grit removal, and a wet well (Figure A-1). The oil and grease concentrations were measured in 
both the influent upstream of the grit screen and in the flume and were found to be 
comparable. While the grit screens did remove large debris and some rags, fibrous solids, hair, 
and FOG still remained and were present in the flume. These materials attached themselves to 
the sensors forming rag and grease balls that simulated often observed conditions in the 
collection system. The flume was contained inside of a tent to provide shelter from the 
elements; a space heater was used, as needed, to prevent freezing conditions. 



 

Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse 121 

 
Figure A-1. Flume located at the Forest Grove WWRF. 

Showing the 2-inch intake line from the influent after the bar screens and the tent protecting the flume from the 
elements. 

The flume was built to provide maximum flexibility for deployment of sensors for this and 
potential future studies. The overall dimensions were 12 inches high, 36 inches wide, and 
72 inches long, with an adjustable working width of 12 inches, 24 inches or 36 inches and water 
depth between 1-inch and 11 inches (Figure A-2). The flume was constructed on a jack on one 
end to vary the slope. A 2”-diameter flexible tube was tapped into the influent that provided 
influent flows up to 150 gallons per minute. The inlet of the flume consisted of three 2-inch 
diameter ball valves to adjust the flow rate. Flow from the ball valve inlets then was passed 
through a stilling well to reduce turbulence and to aid in the transition of the pipe flow to a 
more uniform open channel flow similar to that observed in sanitary sewers. The stilling well 
was constructed by combining a volumetric bucket to redirect flow from the inlet and dissipate 
energy, and a sluice weir to maintain steady flow across the channel and reduce turbulence 
(Figure A-3). The active channel in the flume, where the sensors were located, was 
approximately 48 inches long. A weir, constructed of one to three 2-inch diameter pipes, was 
placed sideways across the cross section at the end of the active channel to regulate the flow 
depth (Figure A-4). A 3-inch diameter drain was placed on the bottom at the end of the flume 
to direct the flow for return to the treatment works.  
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Figure A-2. Experimental Flume in the Initial Construction Phases. 

 

For the experiments, only the 12-inch wide channel was used to simulate the most common 
pipe size in the Forest Grove collection system and to provide the highest range of depths and 
velocities. The slope and flow rate were held constant over all experiments. The maximum flow 
rate of 150 gpm was used, and the slope was increased as much as possible, while still 
maintaining subcritical flow in the flume. The probes were all mounted on cross bars over the 
flume and held in the flow at an approximately 45 degree angle pointed downstream to 
decrease ragging (Figure A-4). All sensors were installed within 1 foot of each other in the 
channel and were installed so that the tips or sampling location of the sensors were all at a 
similar depth below the water (typically approximately 2 inches). A utility box next to the flume 
housed the dataloggers and supporting equipment, and AC power was available from the 
nearby building. A 5-gallon drum with an adjustable outlet valve was used for dosing during 
spiking experiments. This was placed on the upstream side and the spiking solution was 
introduced into the stilling well portion of the flume (Figure A-3).  
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Figure A-3. Stilling Well on Front End of the Flume with Elevated Humic Acid Spiking Solution Dosing In Progress. 

 
Figure A-4: Flume In Operation During Experiments with Two Pipes as Outlet Weir. 
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A.2.1.2 Sensors Installed in the Flume 
The sensors installed in the flume for all experiments were: 

• Electro-chemical Devices (ECD) brand Extended Life pH Electrode RADEL body: CWS has 
extensive experience with this ECD pH probe in the collection system. The head was 
recently replaced to restore peak performance. The sensor used a slightly different 
technology than most pH sensors with a flat glass membrane instead of a bulb and is built 
to be more resistant to chemical fouling. The sensor records pH and temperature every 
10 minutes and is connected to a Telog RU-35 datalogger using battery power. Cellular 
telemetry was used to automatically send the data to CWS’s Enterprise system, and the 
data were automatically brought into the Aquarius Time Series program for analysis, quality 
assurance, and comparison with other data. 

• ECD brand ORP Pt Cap peek, two-tang probe: CWS had used this ECD oxidation reduction 
potential (ORP) probe in the collection system for experiments over the past year. The head 
was recently replaced to restore peak performance. The reading frequency, power source, 
and telemetry were identical to the ECD pH sensor. 

• s::can Spectro::lyser: s::can provided a spectro::lyser instrument with supporting equipment 
for this study. The spectro::lyser is essentially a spectrophotometer placed in the water that 
emits light across the visual and ultra-violet (UV) ranges of wavelengths and measures the 
absorption at different wavelengths. The instrument uses these absorption values across 
the spectrum of wavelengths to quantify an equivalent of biochemical oxygen 
demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), nitrate, 
UV254 absorption, and temperature. The distance between the light source and the sensor 
is approximately 2 mm, and an air blast is sent through the slot between the light source 
and the lens every 2 minutes to reduce fouling and buildup on the lens. A reading is 
collected every 2 minutes immediately following the air-blast. The data are stored locally on 
a con::cube that provides the data storage and software for operation of the device and 
analyzing results. This con::cube is accessible remotely through a web page, so the data 
were available remotely. In addition, the device could also be controlled remotely. An 
RU-35 datalogger was also connected to the con::cube to bring the data into the Enterprise 
system and the Aquarius Time Series program for analysis and comparison with other data. 

• s::can pH::lyser: s::can provided a pH::lyser pH sensor for this study. This pH sensor used a 
different technology than typical pH sensors with a non-porous/non-leaking combined 
reference electrode. This provides the benefit of being much less affected by fouling from 
FOG and rags; the sensor is described by s::can as maintenance-free. The pH sensor also 
collected temperature data and had the same compressed air blasts, reading frequency, 
power source, and data storage as the spectro::lyser. 

• s::can condu::lyser: s::can provided the condu::lyser electroconductivity sensor for this 
study. This electroconductivity sensor also collected temperature data and had the same 
compressed air blasts, reading frequency, power source, and data storage as the 
spectro::lyser and pH::lyser. It was also designed to be maintenance-free and resistant to 
effects from FOG and rags. 
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• YosemiTech Y532-A: CWS had been using this pH sensor in surface waters in the watershed 
for the past year. The head was recently replaced to restore peak performance. This is a 
very inexpensive sensor used by CWS in its open source, EnviroDIY monitoring of surface 
waters. This sensor had not been previously tested in a wastewater environment. It uses a 
traditional sensing method of determining a potential on a porous glass bulb. Readings of 
pH and temperature are taken every 10 minutes and sent to a Mayfly unit that stores the 
data. The Mayfly is powered by a battery that is recharged using a solar panel. Cellular 
telemetry is used to send the data to MonitorMyWatershed, an open source cloud for 
environmental data, where it is accessible remotely by CWS and read automatically into 
Aquarius Time Series with the rest of the data from the other sensors. 

The sensors were calibrated using methods specific to the sensor as instructed by the 
manufacturer. The ECD and Yosemitech pH sensors used multi-point calibration using standard 
pH buffer solutions of 4, 7, and 10. The ORP sensor was likewise calibrated using a standard 
solution provided by the manufacturer. The s::can sensors were calibrated by collecting 
laboratory samples of the different analytes (usually 9 grab samples) at different parts of the 
day over several days. The samples were analyzed for BOD5, COD, TSS, nitrate, and oil and 
grease using Standard Methods. The results from these samples were used by s::can personnel 
to calibrate the spectro::lyser remotely. The pH::lyser and the condu::lyser were pre-calibrated 
and were not calibrated by CWS. However, the readings were frequently compared to a Hach 
HQ40D portable multimeter that measured pH, temperature, and conductivity. This multimeter 
was calibrated to standard solutions. 

All of the sensors were cleaned between experiments by soaking the bulb, disc, or lens with a 
Kimwipe soaked in 3 percent HCl solution in DI water for approximately 5 minutes. The lens was 
also gently wiped using this Kimwipe. The bulb and discs were only wiped as needed very 
delicately to remove visible buildup not removed by soaking in the 3 percent HCl solution. The 
flume and the non-sensing parts of the sensors were cleaned thoroughly between each 
experiment using tap water and a brush to avoid buildup between experiments that could 
affect flow or sensor readings. 

A.2.1.3 Experiments  
Ten experiments were conducted to analyze the effect of different variables. It was anticipated 
that sensor performance and needs for maintenance would be affected by flow velocity. The 
velocity was controlled in each experiment by maintaining a constant flow rate and width but 
changing the depth using the outlet weir. Three depths were analyzed (3, 5, and 7 inches), 
which led to three velocities of approximately 0.6, 0.8, and 1.3 ft/s. These velocities were 
estimated from the dimensions of the flume and the measured flow rate and verified using a 
handheld velocity meter. A depth of 3 inches was the smallest possible to keep the sensors 
consistently submerged. 

Each experiment consisted of the following procedures: 

1. Clean the sensors and flume and check the calibration. 
2. Set all parameters to the desired variable for the experiment (e.g. velocity, FOG, etc.). 
3. Conduct an initial spike test as described below. 
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4. Allow the sensors to operate for a prescribed length of time (usually 1 week) with daily 
handheld measurements and grab samples every other day to compare to the sensor 
readings. 

5. Conduct a final spike test (with some experiments also having an intermediate spike test). 

The conditions of each experiment are summarized in the table below. The timing of the 
experiments is shown in Figure A-5. Three velocities/depths were tested with two replicates 
each in Experiments 1-6. For Experiments 7a-7c, additional FOG and/or rags were added to the 
probes using different methods (see below). For Experiment 8, the intention was to test 
conditions where the probes were not cleaned or adjusted for 24 days. However, an event 
occurred at the plant on June 3rd that affected the lens on the s::can as well as the other 
sensors. They were, therefore, cleaned after 7 and 14 days during this experiment with a new 
spike test following each cleaning. The spectro::lyser and pH::lyser sensors continued to drift 
soon after cleaning, so this experiment was abandoned after 24 days without conducting final 
spikes while the team did troubleshooting to figure out how to restore the probes. 

Table A-1. Summary of Experiments Conducted Using the Flume and Sensors. 
Experiment 

Number Velocity (ft/s) 
Depth 

(inches) Spikes 
Duration 

(days) 
FOG/rag 

introduction 
1 1.3 3 2 (start/end) 7 Normal 
2 0.8 5 2 (start/end) 7 Normal 
3 0.6 7 2 (start/end) 7 Normal 
4 1.3 3 2 (start/end) 7 Normal 
5 0.8 5 2 (start/end) 7 Normal 
6 0.6 7 2 (start/end) 7 Normal 

7a 0.6 7 3 (start/mid/end) 2 Grease dipped 
7b 0.6 7 3 (start/mid/end) 2 Rag wrapped 
7c 0.6 7 3 (start/mid/end) 2 Increased FOG 
8 0.6 7 3 (start/7-day/14-day) 24 Normal 

A.2.1.4 FOG introduction methods for Experiments 7a-7c 
Three methods were used to introduce additional FOG and rags to the probes for Experiments 
7a-7c. In all three experiments, a spike test was performed immediately after introduction of 
the sensors to the rags/FOG, and after 24 and 48 hours. The specific methods of introducing the 
rags and/or FOG were: 

• Grease dipped: Hardened grease was collected off of the influent stilling basin of the WWRF 
and warmed in a small bucket to a softer consistency. The probes were then dipped into 
this grease and then dipped into a bucket of ice water to allow the grease to harden on the 
probe. While being dipped in the grease, the air blast cleaning process was turned off on 
the s::can sensors. The probes were then inserted in the flume and the air blasts were 
allowed to resume. 

• Rag wrapped: Baby wipes were soaked in influent water for 10 minutes, then dipped in 
grease from the influent stilling basins and wrapped around each of the cleaned probes. 
Rubber bands were used to secure the greased wipes to the probes. During this process, the 
air blast for the s::can sensors was turned off. The probes were then inserted into the flume 
and the air blasts were allowed to resume. 
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• Increased FOG: The FOG content of the influent was increased by dosing 20 gallons of 
liquified grease from the influent stilling well into the flume over 20 minutes. This simulated 
a slug of high-FOG water coming from a discharge in the sewershed and allows the FOG to 
collect on the sensors more organically.  

A.2.1.5 Spike Tests 
At the beginning and end of each experiment, and in the middle of Experiments 7a-7c, a spike 
test was done by simulating an event at the plant to test the ability of the sensors to detect 
rapid changes in the measured parameters when newly cleaned and when fouled over a period 
of time. Two spikes were done for each spike test. The first consisted of adding five gallons of a 
spiking solution into the stilling well on the upstream side of the flume over approximately 
20 minutes with an approximate dosage rate of 0.25 gpm. The spiking solution had elevated pH, 
ORP, and conductivity. The mixture varied somewhat between spiking experiments, but 
generally consisted of 5 gallons of tap water, 26 oz (737 grams) of Morton table salt, 
550-600 mL of Clorox bleach (3 percent hypochlorite), and 550-600 mL of sodium hydroxide 
(25 percent strength v/v). The handheld multimeter was placed in the flume throughout the 
spiking test to verify that the electroconductivity and pH both increased well beyond the 
baseline values. Immediately following this first spike test, a second spike test was conducted 
using 5 gallons of tap water mixed with 550 mL of Aquahume (now named Superhume) 
fulvic/humic acid concentrate (12 percent strength). This was dosed into the water at a similar 
rate as the previous spike over 10 minutes (using only half of the 5 gallons). This caused the 
water to become a darker brown and increased the BOD and COD detected by the 
spectro::lyser. The humic acid was dissolved, so it did not increase the TSS. No increase in TSS 
was simulated in the spiking tests. However, TSS was monitored during the BOD/COD spike to 
confirm that the TSS did not increase during this spiking event as a test of the sensor’s ability to 
distinguish between dissolved organic matter and suspended solids. 

One variable that could not be controlled was the quality of the influent coming into the plant. 
Throughout the experiments, there were noticeable changes in influent water quality. A diurnal 
pattern in most parameters was very clear, and there were occasional events where one or 
more of the parameters would change rapidly in response to some change in the influent, likely 
a discharge from an industry. The ability of the probes to detect these patterns and events were 
documented and are discussed in the results section. 
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Figure A-5. Schedule of the Experiments Conducted Using the Flume Along with Conditions of each Experiment.  

FOG grapping experiments consisted of 3 shorter experiments (7a-7c).  
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A.2.2 Subtask 2: Develop and Test Sensor Containment Device in Collection 
System 
CWS has developed a sensor holder (called the ‘rag guard’) that had shown promise in 
decreasing rag buildup on sensors in the collection system. In this subtask, the performance of 
this rag guard was more rigorously analyzed by installing identical sensors at the same location 
in the sanitary collection system with one set in the rag guard and the other set in a generic 
sensor holder like those received from the manufacturer. A manhole in the Forest Grove 
sewershed was chosen for this testing. This manhole had frequently been shown to have pH 
spikes based on previous monitoring and had adequate flow so that the sensors remained 
immersed at night. 

The rag guard is shown in Figures A-6, A-7, and A-8. The generic sensor holder is shown in 
Figure A-8 and Figure A-9. The rag guard is a section of 4-inch diameter PVC pipe with a 3 foot 
radius, 90 degree bend (Figure A-6). The rag guard device is suspended by stainless steel cables 
so to hang freely, and the angle and depth is directed by the flow (Figure A-8). The device 
remains pointed downstream because of the flow but is able to temporarily tilt or twist to avoid 
collecting debris and rags. The device holds the sensors parallel to the flow and provides no 
surface perpendicular to the flow for rags to collect, having only a curved, smooth surface 
facing upstream (Figures A-7 and A-8). The last length of the device has slats that get 
progressively wider with distance downstream (Figure A-7). This allows the probes to be 
submerged with water with a similar velocity to the water outside the rag guard but allows any 
rags that penetrate the slats to be pushed out by the flow. 

The generic sensor holder is based on a design frequently used from manufacturers during pilot 
tests for CWS. It consists of a long PVC pipe that is mounted to the side of the manhole 
(Figure A-8). This holds the sensors firmly in position, but unable to move in response to debris 
or rag collection. The sensors are installed at a 45-degree angle pointing downstream 
(Figures A-8 and A-9). While this angle is designed to help rags slide off, the holder and probes 
are not perfectly smooth, which provides opportunity for rag collection. The sensors 
themselves are immersed in the water without any kind of protection (Figure A-9). 

Two ECD sensors (pH and ORP, identical to those installed in the flume) were installed in the rag 
guard and in the generic sensor holder. Both had similar reading frequencies, dataloggers, and 
telemetry as the ones in the flume. Maintenance was only performed on an “as-needed” basis 
based on monitoring the data indicating that the sensors were not operating properly. One of 
the purposes of this experiment was to determine the required frequency of maintenance.  

No individual experiments were done, but the sensors were both installed for the duration of 
the study and their performance with and without the rag guard was analyzed. The sensors 
were originally installed on March 24th, 2021. However, trouble with the sensors and telemetry 
caused troubleshooting which meant that only two extended periods of data were 
representative: 

• March 24th-April 19th: Sensors in the generic sensor holder were not functioning, but data 
was being collected from the sensors in the rag guard. Several real pH events were detected 
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at the WWRF during this period which allowed for testing the ability of the sensor in the rag 
guard to detect these events. 

• June 7th-July 2nd: The pronged generic sensor holder was replaced with a single generic 
sensor holder to avoid the problems the prong was causing, and both sensors operated 
normally until the end of the study. This period allowed the comparison of probe 
performance in the rag guard versus the generic sensor holder. 

Each of these periods is slightly less than 1 month, which is less time than was desired for 
observation, but is sufficient to illustrate the performance of the rag guard. The pronged 
generic sensor holder shown in Figures 8 and 9 was replaced with a single generic sensor holder 
on June 7th to avoid the issues the prongs were causing. 

 
Figure A-6. Rag Guard Sensor Holder Showing the Enter Device. 
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Figure A-7. Rag Guard Sensor Holder Showing the Probes as Installed in the Slats. 

Slats get wider with distance downstream. 

 

 
Figure A-8. Rag Guard Sensor Holder and Generic Sensor Holder Installed in the Same Manhole.  

This is showing the ‘pronged’ sensor holder initially used. The prong was eventually removed during the 
experiment to provide a gap between the sensor holders. 
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Figure A-9. Generic Sensor Holder with the Two Probes (pH and ORP). 

This shows the ‘pronged’ sensor holder initially used to hold the pH and ORP probes. The ORP probe was later 
removed along with the prong to provide more space between the sensor holders. 

A.3 Results and Discussion 
With continuous data collected over so many parameters and so many experiments, timeseries 
of all of the data are not shown in this report. Timeseries of all of the data, along with analyses, 
are available in a spreadsheet by request. A summary of the qualitative and quantitative results 
of each of the experiments in the flume is shown in Table A-2. Several timeseries of individual 
parameters for some experiments are shown to illustrate common patterns and observations, 
and timeseries of pH from both sensors at the test manhole are shown. Visual observation of 
the timeseries along with the quantitative and qualitative results shown in Table A-2 formed 
the primary bases for the findings from this study. The results presented in this report are 
directed mainly towards supporting the reported findings rather than providing a 
comprehensive record of the results of all of the experiments.  

A.3.1 Flume Experiment Results 
Table A-2 summarizes the qualitative and quantitative results from each experiment for each of 
the parameters. ORP is not shown in the table as the ORP sensor performed very poorly and did 
not provide virtually any reasonable results. The patterns and observations for COD were 
similar for BOD and UV254, so only the results from the COD data are shown in the table. For 
each experiment, the table shows several results indicating how the sensor performed. These 
include: 

• Qualitative assessment of how well the sensor detected each of the spiking events. This was 
based on visual observation of each spiking event for each sensor in each experiment. Some 
example plots are shown in the discussion below. Notes are provided, as needed, to clarify 
and justify the qualitative assessment. 
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• The average difference between the values reported by the laboratory of a grab sample or 
the handheld multimeter and the values reported by the sensor at the same moment. Data 
collected during spike test periods were excluded for this calculation. 

• Qualitative assessment of the agreement of the sensor with the laboratory or multimeter 
values. These observations were based on a combination of the calculated difference above 
and a visual observation of the timeseries for each parameter in each experiment. 
Justification and additional notes are also provided, where appropriate. Some example 
timeseries are shown in the discussion below. 

• Qualitative assessment of the ability of the sensor to consistently detect the diurnal pattern 
of the analyte and to detect any real events that occurred during the experiments. This was 
based on visual observation of the timeseries and comparison with the influent SCADA 
values. 

• The squared Pearson correlation coefficient (R2) of the pH data from each of the three pH 
sensors in the flume with the influent pH recorded in the SCADA system. The pH sensor in 
the influent was cleaned daily by treatment plant personnel, but still had periods where it 
was temporarily fouled. Periods when the quality of the influent SCADA pH data were poor 
were removed for this calculation. Because the sensors in the flume each collected data at 
different intervals ranging from 2-minutes to 10-minutes, 10-minute averages were 
computed for the purposes of computing the correlation coefficient so that a common 
interval could be used. For all of the correlation coefficients shown in Table A-2, the p-value 
was computed, and it was always much less than 0.05 due to the large number of 
observations with 10-minute interval readings over days and weeks. 

A.3.1.1 Effects of Velocity and Depth 
Experiments 1-3 show the differences in performance observed due to changing the velocity 
and depth. Experiments 4-6 are equivalent to Experiments 1-3 and provide an additional 
replicate for observing the effect of changing velocity and depth on sensor performance. As 
summarized in Table A-2, decreases in velocity did not significantly affect sensor performance, 
in general. Qualitative and quantitative performance measures were either similar across 
Experiments 1 through 6 for a sensor or did not show a trend of decreasing performance from 1 
to 3 and from 4 to 6. The lone exception to this is the ECD pH sensor, where the ability of the 
sensor to detect the final spike is very good at the highest velocity experiments and poor at the 
lowest velocity experiments. Further analysis, however, showed that this was not due to 
changes in velocity (see section below). The agreement with the handheld pH and the 
agreement with the influent SCADA pH also do not show a strong trend with velocity and depth 
for the ECD pH sensor.  

The lack of trend in performance with velocity and related depth was unexpected given 
previous observations in the sanitary collection system where locations with very high velocity 
tended to have less FOG buildup. One potential explanation for this is the limited range in 
velocities that could be applied to the flume given the flow rate and flume width. The maximum 
velocity that could be applied while maintaining at least 3 inches of depth was 1.3 ft/s. 
Velocities higher than this certainly occur in the collection system at some locations, and it is 
possible that a wider range of velocities may show more of a relationship with sensor 
performance. Adjustments to the flume are in discussion for being able to increase the flow 



 

Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source  
Control Programs for Potable Reuse 135 

rate. A second potential explanation is that the higher velocities in the flume were 
accompanied by lower depths that provided less cross-sectional area to enable debris to get 
around or under the sensors. This may have offset the decreased ability for FOG to deposit on 
the sensors at the higher velocity. 
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Table A-2: Summary of Results from Each Experiment for Each Parameter and Sensor in the Flume. 
All p-values for the correlation coefficients were <<0.05, so are not shown in this table. 

* = cleaned sensors after 7 and 14 days due to drift that occurred after an event. ** = sensors cleaned just before this spike, so it does not represent conditions after the experiment period. *** = The handheld pH sensor consistently had values roughly 0.5 standard 
units higher than the influent SCADA sensor, s::can sensor, and ECD sensor when all were clean and calibrated. For computing the average difference between the handheld sensor and the s::can and ECD sensors, 0.5 was subtracted from the value to create the value 

for this table. The Yosemitech pH sensor also had values roughly 0.5 higher than the others similar to the handheld, so this adjustment was not applied to that sensor. 
Experiment 1 2 3 4 5 6 7a 7b 7c 8 

Velocity (ft/s) 1.3 0.8 0.6 1.3 0.8 0.6 0.6 0.6 0.6 0.6 
Depth (inches) 3 5 7 3 5 7 7 7 7 7 

Duration (Days) 7 7 7 7 7 7 2 2 2 24* 

Added Grease None None None None None None Grease dipped Grease wipe 
wrapped Grease dosed None 

s:
:c

an
 p

H
 

Agreement with 
Influent Excellent Excellent Excellent Excellent Excellent Excellent 

Excellent, though a 
consistent offset of 

about 0.1. 

Excellent, though a 
consistent offset of 

about 0.2  

Excellent, though a 
consistent offset of 

about 0.2 

Good, but drifts 
away from influent 
after each cleaning 

Correl Coeff with 
Influent 0.94 0.73 0.77 0.76 0.88 0.84 0.74 0.68 0.79 0.52 

Agreement with 
Handheld Excellent Excellent Excellent Good Excellent Good Only 1 value, but 

matches well 
Only 1 value, but 

matches well Excellent Excellent 

Average difference w 
handheld*** 0.01 -0.13 -0.16 -0.29 0.1 -0.29 -0.16 -0.23 -0.13 -0.08 

Detected Real Events 
and Diurnal Patterns Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

Very good, but 
drifts after each 

cleaning 
Detected Initial Spike Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

Detected Second Spike NA NA NA NA NA NA Excellent NA Excellent Excellent 
Detected Final Spike Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

EC
D 

pH
 

Agreement with 
Influent Fair 

Poor, except for 
first day and last 

day 
Poor 

Visually looks much 
better than the 

coeff,  

Excellent for first 3 
days, then fair as it 

drifts upwards 

Excellent for first 3 
days, then fair as it 

drifts upwards 

Poor, severely 
affected by the 

grease 

Poor, severely 
affected by the 

grease 
Fair Poor 

Correl Coeff with 
Influent 0.27 0.07 0.01 0.11 0.28 0.03 0.08 0.1 0.13 0.02 

Agreement with 
Handheld Good Very good Very good Excellent 

Upward drift after 3 
days causes larger 

difference 

Underpredictions 
early and 

overpredictions late 

Never recovers 
from grease 

Never recovers 
from grease Fair Fair 

Average difference w 
handheld*** 0.38 0.2 0.21 0.05 -0.27 -0.05 2 1.34 -0.77 -0.71 

Detected Real Events 
and Diurnal Patterns 

Very good when not 
fouled, but fouled 
first day and last 2 

days 

Poor, except for 
first day and last 

day 

Poor, except for a 
few days in middle 

Excellent except for 
a few periods of 

drift, but recovers 

Excellent for first 3 
days, then fair as it 

drifts upwards 

Excellent for first 3 
days, then fair as it 

drifts upwards 
Poor Poor 

Shift partway 
through and lots of 

oscillation, but 
patterns are ok 

Pattern is ok, but 
drifts and offset 

Detected Initial Spike Excellent Excellent Excellent Excellent Excellent Excellent Poor Poor Excellent Excellent 
Detected Second Spike NA NA NA NA NA NA Poor NA Excellent Excellent 

Detected Final Spike Excellent Excellent Poor Excellent Poor Poor Poor Poor Good Excellent 
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Table A-2: Summary of Results from Each Experiment for Each Parameter and Sensor in the Flume. (Continued) 
All p-values for the correlation coefficients were <<0.05, so are not shown in this table. 

* = cleaned sensors after 7 and 14 days due to drift that occurred after an event. ** = sensors cleaned just before this spike, so it does not represent conditions after the experiment period. *** = The handheld pH sensor consistently had values roughly 0.5 standard 
units higher than the influent SCADA sensor, s::can sensor, and ECD sensor when all were clean and calibrated. For computing the average difference between the handheld sensor and the s::can and ECD sensors, 0.5 was subtracted from the value to create the value 

for this table. The Yosemitech pH sensor also had values roughly 0.5 higher than the others similar to the handheld, so this adjustment was not applied to that sensor. 
Experiment 1 2 3 4 5 6 7a 7b 7c 8 

Velocity (ft/s) 1.3 0.8 0.6 1.3 0.8 0.6 0.6 0.6 0.6 0.6 
Depth (inches) 3 5 7 3 5 7 7 7 7 7 

Duration (Days) 7 7 7 7 7 7 2 2 2 24* 

Added Grease None None None None None None Grease dipped Grease wipe 
wrapped Grease dosed None 

Yo
se

m
ite

ch
 p

H 

Agreement with 
Influent 

Very good for first 4 
days, fair after that 

Very good for first 3 
days and last 2 

days, fair in middle 
Very good 

Visually looks 
better, but has 
offset, missing 

periods, and drift 

Matches well, but 
missing data the 

vast majority of the 
time. 

Only 1 day where 
data are present 

and matching 
influent 

Poor, severely 
affected by the 

grease 

Poor, severely 
affected by the 

grease 
Fair Poor 

Correl Coeff with 
Influent 0.30 0.47 0.61 0.29 0.2 0.04 0.1 0 0.16 0 

Agreement with 
Handheld 

First 3 excellent, 
last one good 

First 2 good, last 2 
poor 

Value is pretty 
consistent Excellent Average is great, 

but high variability 
Average is good, 

but high variability 
Never recovers 

from grease 
Never recovers 

from grease Very good Excellent 

Average difference w 
handheld*** 0.05 0.33 -0.3 -0.13 0.06 0.22 1.95 2.1 0.22 0.08 

Detected Real Events 
and Diurnal Patterns 

Excellent first 4 
days, fair after that Very good Excellent 

Excellent most of 
the time except 

offset by ~ 1 pH unit 
and missing some 

periods 

Matches pattern 
well, but 1 unit 

offset and missing 
data the vast 

majority of the 
time. 

Fair. Drifts badly 
after the first 2 

days. Also cuts out 
a lot 

Poor Poor 

Good when it's not 
fouled, but has 

several periods of 
fouling 

Fair. Several false 
positives, and drift 
within a day or two 
after each cleaning 

Detected Initial Spike Excellent Excellent Excellent Excellent Excellent Not functioning Poor Poor Excellent Excellent 
Detected Second Spike NA NA NA NA NA NA Poor NA Excellent Excellent 

Detected Final Spike Poor Excellent Fair Poor Not functioning Not functioning Poor Poor Good Excellent 

s:
:c

an
 C

O
D 

(S
im

ila
r f

or
 B

O
D 

an
d 

U
V2

54
) 

Agreement with Lab 
Good before 3/31, 

poor after 3/31 
(Drift) 

Underpredicted 
both samples 

Consistently 
underpredicts 

Consistently 
underpredicts 2/3 very good 2/3 very good Only 1 value, but 

matches well 
Only 1 value, but 

matches well 1/2 very good 
Poor due to drift. 
Better soon after 

each cleaning. 
Average Difference 

from Lab Values (mg/L) -167 283 269 249 66 101 32 36 63 -59 

Detected Real Events 
and Diurnal Patterns Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

Detected Initial Spike Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 
Detected Second Spike NA NA NA NA NA NA Excellent NA Excellent Excellent** 

Detected Final Spike Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent** 
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Table A-2: Summary of Results from Each Experiment for Each Parameter and Sensor in the Flume. (Continued) 
All p-values for the correlation coefficients were <<0.05, so are not shown in this table. 

* = cleaned sensors after 7 and 14 days due to drift that occurred after an event. ** = sensors cleaned just before this spike, so it does not represent conditions after the experiment period. *** = The handheld pH sensor consistently had values roughly 0.5 standard 
units higher than the influent SCADA sensor, s::can sensor, and ECD sensor when all were clean and calibrated. For computing the average difference between the handheld sensor and the s::can and ECD sensors, 0.5 was subtracted from the value to create the value 

for this table. The Yosemitech pH sensor also had values roughly 0.5 higher than the others similar to the handheld, so this adjustment was not applied to that sensor. 
Experiment 1 2 3 4 5 6 7a 7b 7c 8 

Velocity (ft/s) 1.3 0.8 0.6 1.3 0.8 0.6 0.6 0.6 0.6 0.6 
Depth (inches) 3 5 7 3 5 7 7 7 7 7 

Duration (Days) 7 7 7 7 7 7 2 2 2 24* 

Added Grease None None None None None None Grease dipped Grease wipe 
wrapped Grease dosed None 

s:
:c

an
 T

SS
 

Agreement with Lab Very good, though 
some baseline drift Excellent Excellent Excellent 

Very good. Large 
difference due to 1 

sample during 
turbulent period. 

Excellent Only 1 value, but 
matches well 

Only 1 value, but 
matches well Excellent 

Poor due to drift. 
Better soon after 

each cleaning. 

Average Difference 
from Lab Values (mg/L) -23 13.7 -31 16 -558 50 41 13 53 -566 

Detected Real Events 
and Diurnal Patterns Excellent Excellent Excellent 

Excellent, but 
noisier than other 

experiments 
Excellent Excellent Excellent Excellent Excellent Very good 

Does not respond to 
dissolved humic acid 

spikes 
Excellent Excellent 1/2 Excellent, the 

other is affected Excellent 
Good, variability 

during spikes 
inconclusive 

Good, variability 
during spikes 
inconclusive 

2/3 Excellent, the 
other is affected Excellent Excellent Very good 

s:
:c

an
 C

on
du

ct
iv

ity
 

Agreement with 
Handheld Excellent 

Very good, 
difference driven by 

1 sample during 
turbulent period 

Excellent Excellent Excellent Excellent Only 1 value, but 
matches well 

Only 1 value, but 
matches well Excellent Excellent 

Average Difference 
from Handheld (uS/cm) -29 -207 -22 -1 -46 -13 3 -10 29 -9 

Detected Real Events 
and Diurnal Patterns Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 

Detected Initial Spike Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent 
Detected Second Spike NA NA NA NA NA NA Excellent NA Excellent Excellent** 

Detected Final Spike Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent** 
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A.3.1.2 Effects of Sensor Types 
The greatest effect on performance of the sensors was the sensor type. While all sensors 
detected the spikes well and matched the lab, handheld, or SCADA pH values well when they 
were clean, they differed greatly in their ability to resist fouling and their response to being 
fouled during the course of each experiment. The performance of each of the sensor types is 
described in the subsections below. 

A.3.1.2.1 s::can spectro::lyser 
The spectro::lyser measured BOD, COD, TSS, NO3, UV254, and temperature. The performance 
was similar for each of these parameters, so only COD and TSS are discussed in this section. 
Figure A-10 shows the COD timeseries during Experiment 6 (with spiking periods removed), 
which was fairly typical of the other experiments. The figure shows that the sensor detected 
the diurnal pattern of COD consistently and detected real events that occurred in all 
experiments in Experiment 6. This was the case for all of the experiments. While the sensor 
detected the patterns and spikes closely, the reported values often differed fairly substantially 
with the measurements of the grab samples despite being calibrated (Figure A-10 and 
Table A-2). These differences tended to get smaller over the course of the study even though 
no recalibration was done (Table A-10).  

 
Figure A-10. Timeseries of COD in Experiment 6. 

Spiking periods removed as measured by the s::can spectro::lyser and by grab samples. 

Figure A-11 shows the COD measured by the spectro::lyser during the final spike test in 
Experiment 6. The sensor detected the spike closely even after 7 days in the influent with no 
maintenance. In fact, the sensor always detected the spikes throughout each of the 
experiments showing a remarkable resistance to fouling. The spike only caused an increase of 
approximately 50 mg/L of COD over 10 minutes, while real events that occurred where 
frequently much larger (Figure A-10). This showed that the sensor maintained high sensitivity to 
rapid changes in influent quality. 
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The COD baseline reported by the spectro::lyser was generally consistent showing no drift over 
the course of an experiment while still detecting the diurnal pattern, as shown in Figure A-10. 
This was typical of all of the experiments except Experiment 1 and Experiment 8 when an event 
occurred that affected the lens and caused the signal to drift steadily upwards. Figure A-12 
shows the COD timeseries form the spectro::lyser in Experiment 1 where the baseline is seen to 
clearly drift upwards after the event on March 31. This drift was corrected after cleaning 
between Experiment 1 and Experiment 2 but was persistent even after cleaning during 
Experiment 8 where cleaning occurred on June 7 and June 14 (Figure A-13). The cause of this 
change in behavior was not determined before the end of the study where the equipment on 
loan from s::can was returned. Kimwipes used to clean the lens showed no obvious compound 
responsible for the fouling in initial tests. Other utilities have reported iron addition as a source 
of fouling of the lens of the spectro::lyser, but this was not revealed to be the case in this study. 

 
Figure A-11. COD Measured by the s::can spectro::lyser. 

Before and during a spike test in Experiment 6 after 7 days in influent without cleaning. 
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Figure A-12: Timeseries of COD in Experiment 1. 

Spiking periods removed as measured by the s::can spectro::lyser and by grab samples. 

 
Figure A-13. Timeseries of COD in Experiment 8. 

Spiking periods removed as measured by the s::can spectro::lyser and by grab samples. Cleaning occurred on 
June 7 and June 14. 

The spectro::lyser detected TSS values close to the laboratory values and recorded the expected 
diurnal variations and real events that occurred (Table A-2). Figure A-14 shows the TSS 
timeseries reported by the spectro::lyser in Experiment 6, which was typical of the other 
experiments. The diurnal patterns and real events are clearly visible, the baseline is stable, and 
the values agree much better with the grab samples than did COD and some other optical 
parameters. In general, the spikes of humic acid did not affect the TSS reading by the 
spectro::lyser, showing that the instrument could distinguish the two different parameters. 
However, it was somewhat affected in a few of the spiking events as described in Table A-2. The 
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same events that affected the COD in Experiments 1 and 8 also affected the TSS readings by the 
spectro::lyser causing similar baseline drift. 

 
Figure A-14. Timeseries of TSS in Experiment 6. 

Spiking periods removed as measured by the s::can spectro::lyser and by grab samples. 

The spectro::lyser was able to detect the patterns, spikes, and real events even after at least 
7 days without maintenance. This showed its capability of serving as an alarm system for events 
and analyzing temporal and spatial patterns in water quality at the influent and the collection 
system. However, for some of the parameters its lack of accuracy in reproducing the absolute 
values measured by the laboratory may limit its usefulness for applications that require 
accurate values such as plant operation, loading calculations, and strength calculations for 
billing purposes. However, improved calibration may help alleviate this. The sensor reported 
TSS values close to the laboratory samples in this experiment, and several other cities in 
Arizona and Washington use optical COD sensors to replace BOD and COD samples for billing 
and other calculations. With improved calibration, it may be capable of providing values that 
match laboratory values of COD more closely.  

The current version of the spectro::lyser requires AC power and the datalogger/computer 
cannot be installed inside a manhole. It is, therefore, most useful at the influent or at 
established permanent monitoring stations in the sanitary sewer equipped with power and a 
utility box. s::can is developing a version that can be run off battery power and be placed inside 
manholes in the future. 
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A.3.1.2.2 s::can condu::lyser 
The condu::lyser detected conductivity both accurately and precisely on a consistent basis 
(Table A-2). Similar to the spectro::lyser, the sensor detected patterns and real events, had a 
stable baseline, and detected all spike events. Figure A-15 shows a timeseries of conductivity 
measured by the condu::lyser in Experiment 1 that was typical of all other experiments. The 
reported values consistently agreed with the handheld measurements very well, and the 
baseline did not drift even in Experiment 1 and 8 when the spectro::lyser drifted after events 
that occurred at the influent. While the conductivity values measured by the condu::lyser were 
variable and did not show a strong diurnal pattern like most other parameters, they always 
agreed with handheld measurements in the flume using the multimeter and where correlated 
with other parameters such as nitrate measured by the spectro::lyser. Known temporal 
patterns such as pump station on/off cycles were visible during high conductivity events. 
Therefore, the variability in conductivity in the influent appeared to be real and not an artifact 
of the instrument. It is likely that intermittent industrial discharges and pump station cycles 
cause the large differences that mask the diurnal pattern. 

 
Figure A-15: Timeseries of Conductivity in Experiment 1. 

Spiking periods removed as measured by the s::can condu::lyser and by the handheld multimeter. 
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A.3.1.2.3 pH Sensors 
The three pH sensors om the flume differed fairly substantially in their performance in this 
experiment. While all three detected the initial spikes and matched the temporal pattern 
measured by the influent pH probe when they were clean, the s::can pH::lyser was much more 
consistent in its ability to detect spikes at the end of experiments and match the influent values 
over time than the other two sensors (Table A-2). Figure A-16 shows a timeseries of pH during 
Experiment 2 from all of the pH sensors. This was fairly typical of the other experiments. At the 
beginning of the experiment, all of the sensors detected an actual high pH event that occurred 
at the influent soon after the initial spiking test and matched the pattern of the influent pH 
sensor from SCADA well for approximately the first 24 hours. The ECD pH sensor showed more 
variation, and the Yosemitech sensor had a consistent offset from the influent values, but their 
temporal patterns were similar to the influent pH from SCADA (Figure A-16). The s::can 
pH::lyser continued to match the influent closely for the rest of the experiment, capturing 
several other high pH events that occurred. This sensor even captured some likely high pH 
events that occurred while the SCADA pH sensor was not operational such as the night of 
April 8th (Figure A-16). It had a stable baseline and reflected the same diurnal pattern 
measured by the influent pH sensor. The ECD pH sensor began to drift soon after the first day 
due to fouling, and the variation increased. This was typical of the other experiments, though it 
sometimes was stable for up to 2-4 days before drifting. Sometimes it corrected itself (likely a 
rag came off), and it matched the influent values well again temporarily, as occurred in the last 
12 hours of Experiment 2 (Figure A-16). The Yosemitech pH sensor consistently had the 
approximately 0.5 unit offset from the influent, and it also tended to drift away from the 
influent value at times. However, it usually recovered more quickly and did not drift as 
significantly as the ECD pH sensor as shown in Experiment 2 (Figure A-16). It did tend to be less 
predictable with larger differences in behavior observed between experiments, while the ECD 
was more predictable in that it consistently drifted after the first few days and had more 
variation than the other sensors. The Yosemitech pH sensor detected most of the real pH 
events that occurred during this experiment but missed the last few on April 8th as it fouled 
and drifted downwards. The Yosemitech pH timeseries also showed many gaps including some 
long gaps in some of the experiments which caused it to miss spiking events (Table A-2). 
However, this was an artifact of the open source telemetry being employed with this sensor 
rather than an issue with the sensor itself.  
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Figure A-16. Timeseries of pH in experiment 2 as measured by all three pH sensor types, the handheld 

multimeter, and the influent SCADA pH. 

The ability of the ECD and Yosemitech sensors to detect the spikes at the end of the 
experimental period varied between experiments. This was mainly determined by whether or 
not the sensor was currently fouled when the experiment ended. For example, in Experiment 2, 
despite being fouled for long portions of the experiment, both the ECD and the Yosemitech 
sensors performed well for the last 12 hours of the experiment, and both detected the final 
spike in that experiment much better than in most of the other experiments (Figure A-16). The 
s::can pH sensor consistently detected all spikes (Table A-2). Figure A-17 shows the 10-minute 
average of the pH measured by each of the sensors compared to the 10-minute average of the 
influent SCADA pH in Experiment 6. The s::can pH::lyser matched the influent pH sensor from 
SCADA tightly, while the other two pH sensors showed much less agreement due to their 
variation and periods of drift. The differences in performance are apparent in their Pearson 
correlation coefficients (Table A-2). This pattern was typical of the other experiments. 
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Figure A-17. Agreement Between Measured pH Values for Each Type of Sensor with those Measured by the 

SCADA pH Sensor in Experiment 6. 
Periods of poor data quality by the SCADA sensor were removed for this analysis. 

The pH::lyser was less affected by the events that occurred in Experiments 1 and 8 that caused 
the spectro::lyser to drift (Figure A-18). However, some drift was apparent in response to these 
events, and that drift continued even after cleaning in Experiment 8, similar to the 
spectro::lyser but to a much smaller extent (Figure A-18). Therefore, whatever affected the lens 
on the spectro::lyser likely also had a minor effect on the bulb on the pH::lyser, though it 
appears to have not affected the condu::lyser. Even when affected, it still matched the influent 
pattern closely up until the last few days of the experiment and performed better than either of 
the other two pH sensors. The Yosemitech pH may also have been affected by the event in 
Experiment 8 as it began having large false positive events not observed at the influent and 
went to a constant value towards the end of the extended experiment without maintenance 
(Figure A-18). The ECD sensor mostly behaved similarly in the extended experiment to the 
shorter-term experiments (Figure A-18). 
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Figure A-18. Timeseries of pH in Experiment 8. 

as measured by all three pH sensor types, the handheld multimeter, and the influent SCADA pH. 

The s::can pH sensor showed more precision and accuracy than the other two pH sensors in 
these experiments and showed much more resilience to fouling. This was partly driven by the 
air blast, as periods during initial testing of the equipment showed that when the air blast was 
turned off or not functioning the pH measured by the pH::lyser drifted. However, the sensing 
technology is also different from the other pH sensors making it less affected when the bulb is 
fouled. It is more expensive than the other sensors, and it requires more power for the air 
compressor, which keeps it from being suitable for installation in manholes. However, similar to 
the spectro::lyser, s::can is working on a version that can run off battery power and be installed 
in manholes. 

The ECD pH sensor was affected badly by fouling and had a lot more variation than the other 
sensors in the flume. However, CWS has used this sensor many times in the sanitary collection 
system and, as long as it was installed in the rag guard sensor holder, it performed very well for 
a month or more at a time without maintenance. When not in the rag guard, the performance 
was similar to what was seen in the flume. This is a good sensor to use as long as the rags and 
FOG can be controlled. 

The Yosemitech sensor is the least expensive of all of the sensors and works with the EnviroDIY 
system that makes the datalogger and supporting equipment much less expensive, as well. It 
performed fairly similarly to the ECD pH sensor in the flume with maybe a slight improvement 
in its resistance to fouling in some experiments. However, the calibration issue needs to 
correct, and it needs testing in the actual sanitary sewer over a longer period. The current 
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dataloggers also cannot be placed inside a manhole and are solar powered, making them not 
suitable for many locations in the sanitary sewer. CWS is working on updates that will allow 
them to run off battery power and be placed inside the manholes. CWS is currently testing the 
Yosemitech sensor side-by-side with an ECD sensor in the collection system. 

A.3.1.2.4 Effects of FOG and Rags 
The results of Experiments 7a-7c showed that the s::can sensors were virtually unaffected by 
the introduction of the FOG and rags, regardless of the method. The other sensors were 
severely affected by the FOG in Experiments 7a and 7b, but much less so for Experiment 7c. 
Figure A-19 shows the timeseries of pH by all three types of pH sensors during Experiment 7a 
(when the sensors were dipped in grease from the stilling well) with the spike events removed. 
This pattern is typical of that seen at the other sensors in Experiment 7a and 7b, as well as the 
condu::lyser and spectro::lyser. The s::can pH sensor recovers very quickly with the air blast 
quickly removing smeared grease from the bulb, and it detected the initial spike and 
subsequent spikes closely. The other two pH sensors did not recover from the grease within the 
two days of the experiment period and did not detect any of the spikes. Figure A-20 shows the 
timeseries of pH by all three pH sensors in Experiment 7c where FOG was dripped into the 
stilling well at the front of the flume over 20 minutes. The sensors performed fairly similarly to 
Experiments 1 through 6 in this case, except that the ECD sensor began the experiment ~1 pH 
unit higher than the influent SCADA pH instead of drifting after the first few days. Therefore, 
the effect of increase in liquid FOG on the sensors, at least in a typical range, may be limited. 
However, when rags aid in the FOG collection or the FOG is hardened on the sensor through 
cold or dry conditions, the effect can be dramatic if the sensors do not have the ability to clean 
themselves. 
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Figure A-19. Timeseries of pH Readings from All Three Types of Sensors During Experiment 7a. 

The Sensors Were dipped in grease from the stilling well. 
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Figure A-20. Timeseries of pH Readings from All Three Types of Sensors During Experiment 7c. 

Liquified grease was dripped into the flume over a 20-minute period. 

A.3.2 Rag Guard Testing Results 
As described in the Methods section, there were two periods of representative results for the 
rag guard. The period where both sensors (in the rag guard and in the generic sensor holder) 
were operating normally was June 7th-July 2nd (the end of the study). The pH timeseries for 
this period from both sensors in shown in Figure A-21. The behavior of the pH probe in the 
generic sensor holder was typical of many previous pilot studies conducted by CWS with 
different pH probes in the collection system. Downward drift with much less variability began 
very soon after installation/cleaning and continued with intermittent periods of returns to an 
expected pH as rags/FOG dislodged from the sensor temporarily (Figure A-21). The diurnal cycle 
was typically visible, but the pH range and values were not reliable. In contrast, the probe in the 
rag guard had a much more stable baseline for the entire period (almost a month) and detected 
the diurnal patterns consistently (Figure A-21). There were occasional periods where it drifted 
downwards such as on June 27th, but it recovered much more quickly and returned to the 
stable baseline. Between March 24th to April 19th, the probe in the generic sensor holder was 
not functioning, but the probe in the rag guard was functional with no maintenance for almost 
a month (Figure A-22). During this period, the baseline was stable and many real pH events 
occurred that were confirmed by the pH sensor at the influent (Figure A-22). Therefore, it 
appears that the rag guard may make it feasible for a pH probe to last at least a month in the 
collection system without maintenance while providing a stable baseline and sufficient 
sensitivity to detect short-duration discharge events. This is a marked improvement over the 
generic sensor holder where the pH sensor was fouled so frequently tcohat extended periods of 
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reliable data were not obtained. Adjustments are needed to ensure more consistency between 
locations and further refine the sensor holder. CWS is currently working on these refinements. 

 
Figure A-21. Timeseries of pH Measured by Both pH Sensors at Hwy 47 Test Manhole June 8-July 2, 2021. 

 
Figure A-22. Timeseries of pH Measured by the pH Sensor in the Rag Guard at Hwy 47 Test Manhole 

March 27 through April 19th. 
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A.4 Conclusions 
This study demonstrated that water quality sensors can be successfully deployed in sanitary 
sewers without an excessive maintenance burden. The main factors affecting the success of the 
deployments were the ability to limit fouling and the type of sensor used. Fouling was shown to 
be limited by air-blast self-cleaning in the case of the s::can sensors deployed in the flume and 
by the rag guard deployed at a manhole in the collection system. Resistance to the effects of 
fouling was also a function of the type of technology used by the sensor. Velocity and depth 
were not shown to be major variables in the success of the different deployments, but this may 
be limited by the range of velocities available to test at this flume and/or the counter effects of 
changes in depth. 

In general, the s::can sensors were successful except when events occurred that affected the 
lens/sensors. They were consistently able to track measured values and detect spikes after at 
least a week in the influent, even when impacted by FOG and rags. The combination of the 
self-cleaning and the technology made them very resistant to typical fouling and caused them 
to outperform the other sensors. However, they are expensive, require more power, and 
cannot currently be deployed in manholes (though this may change in the future). These could 
be an excellent choice for sensors at the influent or at established monitoring stations in the 
collection system equipped with power and a utility box. While the spectro::lyser detected the 
temporal patterns in the influent consistently, it sometimes varied greatly from measured 
values despite calibration. This may be solvable with better calibration as shown in the case of 
TSS and at other cities, but it may also mean that the sensors can be used more for detecting 
patterns rather than replacing laboratory samples of COD and other parameters.  

The ECD pH probes were not successful for more than a few days at a time except when 
deployed inside the rag guard. With the rag guard, the ECD pH probes performed well for a 
month with no maintenance. These can currently be deployed in the collection system inside 
manholes. The Yosemitech probes showed promise that these inexpensive probes could 
perform similarly to the ECD probes in the collection system. However, they will likely also 
require a rag guard to avoid excessive maintenance, and their dataloggers cannot currently be 
deployed inside manholes (though that may change in the future). 

The ORP probes did not perform well in any of the applications regardless of the methods used 
to prevent fouling and will not be used by CWS in their continuous monitoring programs. 

A.5 Next Steps 
CWS is looking into potentially purchasing and installing an s::can system at the influent of the 
Forest Grove plant (where the flume is located). This study provided sufficient evidence to 
make a good business case for installing these at the influent. CWS is also making refinements 
to the rag guard using 3D printing and some new design elements to improve upon the existing 
model. CWS is also testing a Yosemitech pH probe in the collection system side-by-side with an 
ECD pH probe to determine if they can perform similarly in the rag guard. CWS has also 
deployed four permanent pH monitoring stations in the Forest Grove collection system based 
on the success of this study and previous pilots using ECD pH probes that are installed in the rag 
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guards. Yosemitech pH probes, as well as other probe types, have been installed permanently 
in rivers and creeks throughout the watershed by CWS, and CWS will continue testing 
additional sensors with the EnviroDIY system in the flume and collection system. CWS is also 
looking into adjustments to the flume in order to allow a larger range of testing velocities. 
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APPENDIX B  

Hampton Roads Sanitation District Machine Learning 
Case Study  

B.1 Introduction  
The sensor analysis detailed in this appendix focused upon data collected within a secondary 
WWTP and in a downstream advanced water treatment facility (AWTF). Online instruments 
within WWTPs or AWTFs generally undergo less fouling, clogging etc. due to upstream 
treatment (e.g., screening or primary settling). Thus, their maintenance is expected to be less 
expensive in terms of staff hours, and they should produce a cleaner dataset in terms of fewer 
gaps or errors. Slugs of industrial discharge may be relatively diluted or equalized by the time 
they reach these instruments. This dilution and equalization could be beneficial since there 
would be lower baseline variance, or a limitation since there would be a smaller true water 
quality change resulting from an equivalent industrial discharge.  

Hampton Roads Sanitation District (HRSD) has begun the Sustainable Water Initiative for 
Tomorrow (SWIFT), which will purify effluent from many of HRSD’s WWTPs to recharge the 
Potomac Aquifer. The SWIFT Research Center (SWIFT RC) is a 3.8 million L/day demonstration-
scale AWTF, which treats secondary effluent from a WWTP with a 5-stage Bardenpho Process 
for biological nutrient removal. The SWIFT RC treatment train includes coagulation, 
flocculation, settling, ozonation, biofiltration, GAC, and UV disinfection. SWIFT has a final 
treated TOC goal of 4 mg/L (Gonzalez et al. 2021).  

HRSD has a robust industrial pretreatment program. For example, HRSD has identified sources 
of bromide, PFAS, acrylamide, and 1,4-dioxane discharged to its WWTPs (Nading et al. 2022). 
Permits, flow limitations, or innovative industrial pretreatment have been implemented to 
reduce the concentrations of these chemicals. However, approximately monthly spikes in 
online monitoring surrogates including secondary effluent TOC have been observed at the 
SWIFT RC and caused pauses in production.  

Elevated TOC has a cascading effect on both downstream treatment and water quality (e.g., 
higher TOC could cause a larger ozone demand, and higher TOC on the inlet to the AWTF may 
result in higher TOC in the finished water which may present disinfection byproduct 
challenges). The chemical(s) and industrial source causing these events has not yet been 
identified. Since no TOC instruments were located at the WWTP influent, it is unknown whether 
these industrial discharge events were pass-through (i.e., organic substance(s) not fully 
removed by the WWTP) or interference (i.e., organic or inorganic substance(s) that inhibited 
the WWTP’s removal of overall TOC). Rapid detection of future such events would be beneficial 
for (1) for corrective action such as increased ozone dose or GAC contact time and (2) collecting 
water samples to assist with identifying the chemical signature of these events. Chemical 
analysis collected in the midst of these events could then provide clues about the responsible 
industry. 
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B.2 Methods 
In this study, 35 SML models were compared to detect suspected industrial discharge events at 
the SWIFT RC. Models were trained and tested on real, full-scale, hourly data from 30 variables 
with a total sample size of 878 (about 37 days). Since the industrial source was unknown, 
datapoints were labeled “Normal” or “Event” based on retrospective expert human judgement. 
SML was conducted in R using the caret package. Caret is a package in the R programming 
language that enables around two hundred different SML model types to be applied using 
similar code structure (Kuhn 2008). Preprocessing methods were also compared to enhance 
model accuracy. SML performance was benchmarked against fixed thresholds on each of the 30 
variables.  

B.2.1 Online Instrumentation 
Models were trained on 30 variables that included readings from online instruments or gauges 
(Table B-1). 

Table B-1. HRSD Variables and Instrument Locations. 
Location Variable Manufacturer Instrument Units 

Raw Wastewater Influent Conductivity Hach 3725E2T mS/cm 
Secondary Wastewater 

Effluent 
Flow Rosemount 8750W gpm 
Total Nitrogen Shimadzu TOC-4200 FA E 

ROHS 
mg/L 

Total Inorganic Nitrogen WTW TresCon mg/L 
Total Organic Carbon Shimadzu TOC-4200 FA E 

ROHS 
mg/L 

Nitrite WTW TresCon mg/L 
Nitrogen Oxides WTW TresCon mg/L 
Nitrate WTW TresCon mg/L 
Ammonia WTW TresCon mg/L 
Conductivity Hach D3727E2T mS/cm 
UV Transmittance Hach UVAS % 
Turbidity Hach TU5300 NTU 
pH Foxboro 871A 

 

Temperature Foxboro 871A °C 
Settled Water (Post-

Floc/Sed) 
UV Transmittance Hach UVAS % 
Monochloramine Hach 5500 mg/L 
Ammonium Hach 5500 mg/L 
Total chlorine Hach CL-17 mg/L 
Redox potential Foxboro 871A 

 

Total Organic Carbon Shimadzu TOC-4200 FA E 
ROHS 

mg/L 

Total Nitrogen Shimadzu TOC-4200 FA E 
ROHS 

mg/L 

Free Ammonia Hach 5500 mg/L 
Ozonation System Ozone Dose Wedeco LC400Plus lbs/day 

Ozone Sidestream Flow NA NA gpm 
Ozone Residual Setpoint NA NA mg/L 
Ozone Residual Hach Orbisphere 

410 
mg/L 

Biofiltration Influent UV Transmittance Hach UVAS % 
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Location Variable Manufacturer Instrument Units 
Total Chlorine Hach CL-17 mg/L 
Redox potential Foxboro 871A 

 

pH Foxboro 871A 
 

 

B.2.2 Data Collection 
Data was exported hourly on dates May 20th, 2019 through June 4th, 2019; June 15th, 2019 
through June 21st, 2019; May 25th, 2020 through June 2nd, 2020; and October 17th, 2020 
through October 21st, 2020 (Table B-2). Suspected abnormal industrial discharges occurred 
during these data periods on June 16th, 2019; June 1st, 2020; and October 18th, 2020. It was 
assumed these industrial discharges were from the same source or related enough to classify 
within the same SML output category. Missing data was assumed zero for ozone residual, 
ozone dose, and ozone output, since missing data for these variables was associated with 
shutdown of the ozonation system. For other variables (i.e., independent variables), missing 
data was assumed equal to the most recent previously measured value. 

Table B-2. Data Time Periods. 
Time Period Start Date End Date Industrial Discharge Dataset 

#1 5/20/2019 6/4/2019 None Training 
#2 6/15/2019 6/21/2019 6/16/2019 Training 
#3 5/25/2020 6/2/2020 6/1/2020 Training 
#4 10/17/2020 10/21/2020 10/18/2020 Testing 

B.2.3 Supervised Machine Learning 
Machine learning is the study of algorithms that learn from data. Supervised machine learning 
(SML) creates a model or function that predicts outputs from inputs based on example 
input-output pairs. These example input-output pairs are called the training set. The example 
outputs in the training set are called labels. SML is in contrast to unsupervised machine 
learning, which finds patterns in unlabeled data; examples include principal component analysis 
(PCA) or clustering algorithms. There are over 200 types of SML models; some examples include 
neural networks, nearest neighbors, or random forest (Kuhn 2019). SML models fall into two 
categories based on their application: classification or regression. Classification SML models 
predict categorical outputs (e.g., Good vs Bad or Normal vs Event). Regression SML models 
predict quantitative outputs (e.g., 17 percent industrial wastewater).  

In addition to a training set to train the model, SML also requires a fully separate testing set 
(also known as the verification set) to assess its predictive capabilities (Figure B-1). Many SML 
are highly complex and flexible—analogous to a linear or polynomial model with many terms—
and thus capable of an extreme degree of overfitting if appropriate training and testing 
protocols are not followed. Overfitting is when a model fits a particular data set too closely, 
interpreting noise or random errors as if they represent true underlying patterns in the 
phenomenon being studied. Overfit models have extremely high accuracy for their training set 
but lower accuracy on new data compared to similar but less overfit models. Overfitting is a risk 
when dealing with timeseries data such as online water quality data. For example, TOC above 
10 mg/L might be a highly reliable indicator of an industrial discharge within a given time 
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window, but over time, the average TOC may decline due to treatment changes, or the average 
measured TOC or its standard deviation may increase over time due to fouling. Thus, applying 
models to a new, fully separate testing set from a later time ensures that models are in fact 
capable of making good predictions using new data from new times, and not just overfit to data 
from a certain time period.  

 

Figure B-1. Data Splitting, Cross-Validation, and Testing Workflow. 

The accuracy of certain types of SML models depends in part on random chance. For example, 
random forest models randomly select a subset of the observations and/or variables and then 
construct a decision tree based on this random subset. This process is repeated, typically 
hundreds of times, and an average or consensus is taken of the outputs of the decision trees. If 
the same random forest model is trained on the same data, but different subsets of data are 
selected for each tree, different testing set accuracies could result. In programming 
environments, randomness is simulated using random number generator algorithms such as 
Mersenne-Twister (Matsumoto and Nishimura 1998). In the programming language R, 
numerical seeds can be provided to the random number generator. The same seed can be 
provided to enable reproducible results, or different seeds can be provided to simulate random 
replication. In this study, the seed was set to 1 unless otherwise noted to ensure 
reproducibility. For models selected for in-depth evaluation, seeds were set to integers from 1 
to 30 or 1 to 100 to check whether the model accuracy was subject to random chance.  

Most SML models have parameters that can be adjusted within the model that impact the 
learning process rather than being determined via the training. These parameters are called 
tuning parameters or hyperparameters. For example, k-nearest neighbors models assign new 
data to a class based on the most common label of the most similar datapoints. k is the number 
of similar datapoints considered in the analysis and is an example of a tuning parameter. Tuning 
parameters are selected in a step in the machine learning process called cross-validation 
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(Figure B-1). In cross-validation, the training set is repeatedly split into smaller training and 
testing sets (sometimes called validation sets in this context). Models with different tuning 
parameter settings are trained on each internal training set and tested on each validation set. 
The tuning parameters that result in the best average performance on the validation sets are 
then selected, and applied when making predictions on the final, fully separate testing test.  

SML was conducted in R version 3.6.3 using the caret package (Kuhn 2008). The caret package 
contains a set of programming functions that streamline the process of generating SML models. 
It allows a library of over 200 types of SML models to be trained and tested using similar coding 
grammar. Observations occurring during suspected abnormal industrial discharges were labeled 
Event. Other observations were labeled Normal. Data from May 20th, 2019 through June 2nd, 
2020 (i.e., the first three of the four time periods, see Table B-2) were used as a training set and 
contained two abnormal industrial discharge events: June 1st, 2019 and June 16th, 2019 (total 
sample size 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=758, event sample size 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=66). Data from October 17th, 2020 through 
October 21st, 2020 was used as a testing set and contained one industrial discharge event: 
October 18th, 2020 (𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=120, 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=28). Thus, the data was split approximately 86 percent 
training set, 14 percent testing set. 

Thirty-five models (Table B-3) were selected for screening based on their accuracy performing a 
similar classification task—detecting de facto reuse in surface water—using similar online water 
quality instrumentation (Thompson and Dickenson 2021). Models were screened on raw data 
(i.e., no preprocessing) using default tuning parameters in the caret package.  

Training set accuracy, testing set accuracy, event sensitivity, and total false alerts (i.e., false 
positives or Normal observations incorrectly predicted as Event), and p-value relative to the no 
information rate (NIR) were recorded for each model. Accuracy in the context of classification 
models means the overall percent of the dataset for which the model predicted the correct 
label. Sensitivity is how often the models were correct when the true answer was an Event. The 
NIR is the accuracy that could be achieved by always assuming the most common label, which 
in this case was Normal. The NIR was 76.7 percent. The p-value that the testing set accuracy 
was above the NIR was calculated using the binomial confidence interval method (Kuhn 2008; 
Clopper and Pearson 1934).  

The training set accuracy was internally cross-validated with 25 bootstraps (Kuhn 2008). That is, 
25 random samples were selected from the training set with the same total sample size as the 
original training set. These random samples were “with replacement,” i.e., it was possible for 
datapoints to occur twice, or not at all. Random samples like these are called “bootstraps.” The 
bootstraps were then split 75:25 into training and validation sets, and the models were trained 
and validated 25 times using each bootstrap. The average accuracy on the validation sets was 
then calculated and is referred to simply as “training set accuracy” below. This bootstrapped 
training set accuracy was used for selecting tuning parameters before final evaluation with the 
fully separate testing set (Figure B-1).  
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Table B-3. List of SML Models Screened. 
AdaBoost 

Classification 
Trees 

DeepBoost Linear Distance 
Weighted 

Discriminant 

Oblique Random 
Forest with Ridge 

Regression 

Sparse Distance 
Weighted 

Discrimination 
Bayesian 

Generalized 
Linear 
Model 

Distance Weighted 
Discrimination with Radial 

Basis Function Kernel 

Linear Support Vector 
Machines with Class 

Weights 

Oblique Random 
Forest with Support 

Vector Machines 

Sparse Linear 
Discriminant Analysis 

Boosted 
Classification 

Trees 

Generalized Additive 
Model using LOESS 

Localized Linear 
Discriminant Analysis 

Penalized Logistic 
Regression 

Stabilized Nearest 
Neighbor Classifier 

Boosted 
Linear 
Model 

Generalized Additive 
Model using Splines 

Mixture Discriminant 
Analysis 

Quadratic 
Discriminant 

Analysis 

Support Vector 
Machines with Linear 

Kernel 
Boosted 

Smoothing 
Spline 

Generalized Linear Model 
with Stepwise Feature 

Selection 

Neural Network with 
Feature Extraction 

Random Forest 
Rule-Based Model 

Support Vector 
Machines with Radial 
Basis Function Kernel 

Boosted 
Tree 

L2 Regularized Linear 
Support Vector Machines 

with Class Weights 

Oblique Random 
Forest with Logistic 

Regression 

Rotation Forest Tree-Based 
Ensembles 

Cost-
Sensitive 

C5.0 

Least Squares Support 
Vector Machine with 
Radial Basis Function 

Kernel 

Oblique Random 
Forest with Partial 

Least Squares 
Regression 

Single C5.0 Ruleset Weighted k-Nearest 
Neighbors 

Testing set accuracy was used as the primary metric of success in this study. Nonetheless, 
models from the screening phase were selected for further evaluation and tuning based on 
ranking in the top two for any of the following criteria: training set accuracy, testing set 
accuracy, or testing set event sensitivity. This was done because it was hypothesized that (1) 
models that were overfit (relatively high training set accuracy compared to testing set accuracy) 
might perform better on the testing set after tuning parameter optimization; and (2) models 
with high testing set sensitivity but many false positives might perform better after 
preprocessing to reduce noise.  

The models selected for the in-depth evaluation phase were first trained and tested with one 
hundred distinct seeds (1 to 100) to check whether their high performance was inherent to the 
model or due in part to random chance (Figure B-2). Next, preprocessing techniques were 
tested to enhance model accuracy. Then, least important variables were iteratively omitted to 
investigate whether training time could be improved without loss in accuracy. Finally, models 
were cross-validated across a greater range of tuning parameter values. 
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Figure B-2. Workflow of this SML Proof-of-Concept Study: Model Screening, Model Section, Checking for 
Randomness, Preprocessing, Variable Omission, Tuning Parameter Optimization. 

Least important variables were identified using the variable importance (varImp) function from 
the caret package (Kuhn 2008). The varImp function calculates importance differently 
depending on the type of the model. However, in all cases, variables are ranked and normalized 
on a scale of 0 to 100 based on their importance relative to the most important variable. Where 
the varImp function was not applicable, variables were omitted one at a time. If there was one 
variable whose omission resulted in equal or greater testing set accuracy, this variable was 
omitted. If there were multiple variables whose singular omission resulted in equal testing set 
accuracy, training set accuracy was used as a tiebreaker. If there were multiple variables whose 
singular omission resulted in equal testing and training set accuracies, one of these variables 
was selected at random for omission in the next iteration. This process was repeated until no 
variables could be omitted without a loss in accuracy.  

B.2.4 Preprocessing 
It was hypothesized that certain preprocessing methods could enhance model accuracy by 
reducing noise in the data or counteracting the effects of instrument drift. The three 
preprocessing methods assessed in this case study were: rolling median, difference from rolling 
median, and principal component analysis (PCA). The rolling median of the past three 
observations of each variable was calculated to reduce noise in the data and omit 
non-consecutive outliers. The difference between each observation and the median of the past 
day (i.e., 24 hourly observations) was calculated to account for the non-stationary nature of 
real wastewater data and optimize the data for detecting sudden changes (Figure B-3). 
Differences from the rolling median were provided to the models as variables both instead of 
and in addition to the raw data. PCA was conducted to promote diversity among the variables, 
considering that each principal component is perpendicular (non-correlated) with the others. 
PCA has previously been applied as a preprocessing technique for SML (Rodriguez et al. 2006). 
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The PCA model was constructed based on the training set and then the scores for each principal 
component were then also calculated on the testing set. 

 

Figure B-3. Example of the Preprocessing Technique of Substracting the 24-hr Rolling Median. 
The example data is settled TOC from the testing set. 

Raw wastewater influent and the secondary wastewater effluent had hydraulic residence times 
upstream of the post-floc/sed settled water of 18 and 2 hours, respectively. Thus, any changes 
or spikes from industrial discharges would be expected to begin at these sensor locations 
sooner, out of sync with the downstream sensors. Lagging the upstream sensors to align with 
the sensors in the settled water would provide many synchronized variables, while still 
providing a degree of advanced warning compared to the final purified water. So, lagging the 
raw wastewater influent and secondary wastewater effluent based on hydraulic residence time 
to match the settled water was explored as another preprocessing method. 
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B.3. Results 
B.3.1 Water Quality Data 
Descriptive statistics for Normal and Event data are shown in Table B-4 and Table B-5, 
respectively. These tables include both train and testing set data. Timeseries for all variables are 
shown in Figure B-4, illustrating the four segments of time from which data were analyzed. 
Within the figure, graphics #1, #2, and #3 are the training set and graphic #4 is the testing set. 

Table B-4. Summary Descriptive Statistics of Normal Data (n=784). 
Variable Mean SD Min Median Max 

Raw Cond. (µS/cm) 1142 178 -500 1113 2278 
Inf. Flow (gpm) 857 18 779 854 943 
Inf. TN (mg/L) 2.05 0.82 0.54 1.84 4.05 
Inf. TIN (mg/L) 1.94 0.99 -0.05 2.19 3.91 
Inf. TOC (mg/L) 8.85 2.50 -0.06 9.34 12.04 
Inf. NO2 (mg/L) 0.042 0.048 -0.001 0.012 0.190 
Inf. NOx (mg/L) 1.99 0.82 0.49 1.78 3.94 
Inf. NO3- (mg/L) 1.95 0.82 0.49 1.73 3.94 
Inf. NH3 (mg/L) 0.060 0.016 0.025 0.056 0.150 

Inf. Cond. (µS/cm) 1030 95 921 1004 1343 
Inf. UVT (%) 58 4 46 58 64 

Inf. Turb. (NTU) 1.55 0.53 0.28 1.50 3.60 
Inf. pH 7.32 0.11 6.93 7.35 7.51 

Inf. Temp. (°C) 24.4 1.3 21.8 24.6 26.9 
Settled UVT (%) 70.2 2.7 56.1 70.6 74.8 

Settled NH2Cl (mg/L) 2.57 0.77 0.00 2.41 4.32 
Settled NH4+ (mg/L) 0.727 0.204 0.030 0.694 1.308 

Settled Total Cl2 (mg/L) 2.68 0.76 0.00 2.51 4.43 
Settled ORP (mV) 278 104 0 311 415 

Settled TOC (mg/L) 7.30 0.85 -0.03 7.44 9.41 
Settled TN (mg/L) 1.93 0.78 -0.04 2.05 3.68 

Settled Free Ammonia (mg/L) 0.219 0.132 0 0.213 0.859 
Ozone Sidestream Flow (gpm) 372 69 0 407 446 

Ozone Dose (lb/d) 55.9 8.2 0.0 55.8 86.9 
Ozone Resid. Setpoint (mg/L) 0.546 0.069 0.350 0.552 0.769 

Ozone Resid. (mg/L) 0.407 0.190 0.000 0.409 1.025 
Biof. Inf. UVT (%) 81.1 2.1 74.9 81.1 85.1 

Biof. Inf. Total Cl2 (mg/L) 0.0539 0.1800 0.0027 0.0453 4.9496 
Biof. Inf. ORP (mV) 299 98 0 306 480 

Biof. Inf. pH 7.12 0.10 6.78 7.15 7.32 
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Table B-5. Summary Descriptive Statistics of Event Data (n=94). 
Variable Mean SD Min Median Max 
Raw Cond. (µS/cm) 1080 426 -500 1176 1396 
Inf. Flow (gpm) 855 23 777 853 923 
Inf. TN (mg/L) 1.23 0.53 0.40 1.19 2.35 
Inf. TIN (mg/L) 1.53 0.91 -0.05 1.92 2.78 
Inf. TOC (mg/L) 11.3 7.3 -0.1 12.0 20.3 
Inf. NO2 (mg/L) 0.00232 0.00250 -0.00077 0.00139 0.00827 
Inf. NOx (mg/L) 1.16 0.52 0.35 1.14 2.18 
Inf. NO3- (mg/L) 1.16 0.52 0.35 1.14 2.17 
Inf. NH3 (mg/L) 0.0631 0.0196 0.0402 0.0552 0.1605 
Inf. Cond. (µS/cm) 1080 87 972 1049 1235 
Inf. UVT (%) 42.9 8.5 22.1 43.9 60.7 
Inf. Turb. (NTU) 3.51 1.48 0.83 3.66 8.44 
Inf. pH  7.02 0.12 6.83 7.01 7.38 
Inf. Temp. (°C) 24.5 1.4 22.6 24.3 26.9 
Settled UVT (%) 59.8 6.1 51.1 58.7 72.7 
Settled NH2Cl (mg/L) 2.18 1.35 0.00 2.39 3.93 
Settled NH4+ (mg/L) 0.73 0.39 0.00 0.88 1.28 
Settled Total Cl2 (mg/L) 2.33 1.40 0.00 2.62 4.16 
Settled ORP (mV) 181 157 0 256 409 
Settled TOC (mg/L) 12.8 4.5 6.7 11.7 20.3 
Settled TN (mg/L) 1.96 0.38 1.26 2.00 2.75 
Settled Free Ammonia (mg/L) 0.303 0.162 0.000 0.343 0.592 
Ozone Sidestream Flow (gpm) 259 137 0 281 418 
Ozone Dose (lb/d) 63 35 0 71 127 
Ozone Resid. Setpoint (mg/L) 0.530 0.078 0.391 0.548 0.669 
Ozone Resid. (mg/L) 0.434 0.308 0.000 0.445 1.057 
Biof. Inf. UVT (%) 73.6 3.5 62.4 72.9 80.5 
Biof. Inf. Total Cl2 (mg/L) 0.0452 0.0588 0.0027 0.0449 0.5914 
Biof. Inf. ORP (mV) 268 133 0 323 414 
Biof. Inf. pH 6.89 0.13 6.68 6.89 7.15 
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Figure B-4. Timeseries of 30 Water Quality Variables. 

Grouped A-F based on similar maximum values. Horizontally, panels are separated into the four time-segments analyzed. #1 and #2 are in 2019. #3 and #4 are 
in 2020. #1, #2, and #3 were used for the training set and #4 was the testing set. Gray shaded areas represent abnormal industrial slug events. 
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B.3.2 Machine Learning Results 
Based on the screening results, six models were selected for further evaluation: Cost-Sensitive 
C5.0 (C5.0Cost), Oblique Random Forest with discriminative nodes based on linear support 
vector machines (ORFsvm), Penalized Logistic Regression (plr), Support Vector Machines with 
Radial Basis Function Kernel (svmRadial), Random Forest Rule-Based Model (rfRules), and 
Boosted Tree (bstTree) (Table B-6). 

Lagging the raw waster influent and secondary effluent variables resulted in less testing set 
accuracy for all six of these models. This could be because lagging reduced the training set 
sample size by n=54 or about 7%—eighteen sample points now had missing data at the start of 
each of the three non-consecutive periods. The lower testing set accuracy after lagging may 
also have been in part due to the increased percent accuracy loss per error with the smaller 
testing set (n=102 instead of n=120). 



 

Integrating Real-Time Collection System Monitoring Approaches into Enhanced Source Control Programs for Potable Reuse 169 

Table B-6. Model Screening Results. 
All models were trained with raw data for all 30 variables using their default tuning parameter options in the caret package. Selected for in-depth evaluation 

and optimization. 

Model Abb. 

Training 
Set Testing Set 

Acc. Acc. 
p-value  

(Acc. > NIR) 
Event 

Sensitivity 
False 

Positives 
Boosted Classification Trees ada 99% 93% 1.13×10-6 71% 0 

AdaBoost Classification Trees adaboost 99% 95% 4.95×10-8 82% 1 
Bayesian Generalized Linear Model bayesglm 99% 93% 4.46×10-6 68% 0 

Boosted Linear Model BstLm 93% 77% 0.55 0% 0 
Boosted Smoothing Spline bstSm 98% 94% 2.54×10-7 75% 0 

Boosted Treea bstTree 99% 95% 4.95×10-8 89% 3 
Cost-Sensitive C5.0a C5.0Cost 99% 97% 1.12×10-9 86% 0 
Single C5.0 Ruleset C5.0Rules 98% 93% 1.13×10-6 79% 2 

DeepBoost deepboost 99% 93% 1.13×10-6 71% 0 
Linear Distance Weighted Discriminant dwdLinear 99% 93% 1.13×10-6 71% 0 

Distance Weighted Discrimination with Radial Basis 
Function Kernel 

dwdRadial 92% 77% 0.55 0% 0 

Generalized Additive Model using LOESS gamLoess 99% 83% 0.049 29% 0 
Generalized Additive Model using Splines gamSpline 99% 82% 0.12 21% 0 

Generalized Linear Model with Stepwise Feature 
Selection 

glmStepAIC 99% 83% 0.049 29% 0 

Weighted k-Nearest Neighbors kknn 99% 93% 4.46×10-6 68% 0 
Localized Linear Discriminant Analysis loclda 99% 77% 0.55 0% 0 

Least Squares Support Vector Machine with Radial 
Basis Function Kernel 

lssvmRadial 99% 88% 0.00094 50% 0 

Mixture Discriminant Analysis mda 99% 92% 1.57×10-5 64% 0 
Tree-Based Ensembles nodeHarvest 99% 93% 1.13×10-6 71% 0 

Oblique Random Forest with Logistic Regression ORFlog 99% 89% 0.00038 54% 0 
Oblique Random Forest with Partial Least Squares 

Regression 
ORFpls 99% 95% 4.95×10-8 79% 0 

Oblique Random Forest with Ridge Regression ORFridge 99% 93% 1.13×10-6 71% 0 
Oblique Random Forest with Support Vector Machines ORFsvm 99% 96% 8.20×10-9 82% 0 
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Table B-6. Model Screening Results. (Continued) 
All models were trained with raw data for all 30 variables using their default tuning parameter options in the caret package. Selected for in-depth evaluation 

and optimization. 

Model Abb. 

Training 
Set Testing Set 

Acc. Acc. 
p-value  

(Acc. > NIR) 
Event 

Sensitivity 
False 

Positives 
Neural Network with Feature Extraction pcaNNet 99% 92% 1.57×10-5 64% 0 

Penalized Logistic Regressiona plr 100% 88% 0.00094 50% 0 
Quadratic Discriminant Analysis qda 98% 77% 0.55 0% 0 

Random Forest Rule-Based Modela rfRules 98% 54% 1 100% 55 
Rotation Forest rotationForest 99% 95% 4.95×10-8 79% 0 

Sparse Distance Weighted Discrimination sdwd 95% 77% 0.55 0% 0 
Stabilized Nearest Neighbor Classifier snn 97% 77% 0.55 0% 0 
Sparse Linear Discriminant Analysis sparseLDA 92% 77% 0.55 0% 0 

Support Vector Machines with Linear Kernel svmLinear 99% 92% 1.57×10-5 64% 0 
Linear Support Vector Machines with Class Weights svmLinearWeights 99% 90% 0.00015 57% 0 
L2 Regularized Linear Support Vector Machines with 

Class Weights 
svmLinearWeights2 98% 83% 0.077 25% 0 

Support Vector Machines with Radial Basis Function 
Kernela 

svmRadial 99% 83% 0.077 25% 0 
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B.3.2.1 Cost-Sensitive C5.0 
C5.0Cost is a decision tree algorithm with adaptive boosting and efficient pruning algorithms for 
relatively fast calculation (Nolan 2002; Peng et al. 2020). C5.0Cost had the highest testing set 
accuracy in the screening, 96.7 percent (Table B-7). The testing set accuracy of this model did 
not depend on the seed. Preprocessing by PCA, taking the rolling median of each variable, or 
the difference relative to the rolling median of each variable did not increase testing set 
accuracy. Biofilter influent pH was identified as the least important variable but omitting it 
reduced testing set accuracy. C5.0Cost has four tuning parameters: (1) whether the model is 
based on associative rules or decision trees, (2) the number of boosting iterations (i.e., trials), 
(3) the cost of errors, (4) and whether an internal variable section process called winnowing is 
used. A rules-based model without winnowing with 20 trials (boosting iterations) and cost=1 
(weight of one assigned to errors) was selected based on the bootstrapped training set 
accuracy. Trials over 20 or cost greater than 1 would have led to overfitting, with similar 
training set accuracy but lower testing set accuracy (Figure B-6). C5.0 had zero false positives 
and four false negatives, which were consecutive at the beginning of the industrial discharge 
event (Figure B-7). Thus, there would have been a 4-hour delay between the first hourly 
datapoint considered to be part of the event and the automated alert (i.e., first true positive).  

 

Figure B-6. Train and Testing Set Accuracy of C5.0Cost with Rules-Based Model without Winnowing Across Range 
of (A) trials and (B) cost. 
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Figure B-7. Testing set results of C5.0Cost. 
Using all raw data with default tuning parameters (Cost=1, trials=20, model=rules, winnow=false). The shaded gray 

area represents the Event. Red X’s indicate false negatives. The four most important variables (biofilter influent 
UVT, influent turbidity, influent UVT, and ozone sidestream flow) are shown and scaled by training set standard 

deviation and mean.  
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Table B-7. Summary and Performance Metrics of Six Optimized Models with Their Most Beneficial Preprocessing Techniques, Optimal Tuning Parameters, 
and Final Variable Selection. 

Testing set false negatives and false positives are out of a sample size of n=120 or 5 days of hourly data. 

Model Preprocessing Variables Tuning Parameters 

Training 
Set Testing Set 

Accuracy Accuracy 
Balanced 
Accuracy 

Cohen’s 
Kappa 

Event 
Sensitivity 

False 
Positives 

Time until 
1st 

Detection 
(hr) 

C5.0Cost None All Winnow=FALSE, 
model=rules, 

cost=1, trials=20 

99.2% 96.7% 92.9% 0.902 86% 0 4 

ORFsvm Raw and 
Differences from 

the Rolling Median 

All Mtry=31 99.3% 96.7% 92.9% 0.902 86% 0 3 

plr PCA Principal 
Components 1 

through 22 

CP=BIC, 
lambda=0.001 

99.3% 90% 78.6% 0.672 57% 0 5 
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Table B-7. Summary and Performance Metrics of Six Optimized Models with Their Most Beneficial Preprocessing Techniques, Optimal Tuning Parameters, 
and Final Variable Selection. (Continued) 

Testing set false negatives and false positives are out of a sample size of n=120 or 5 days of hourly data. 

Model Preprocessing Variables 
Tuning 

Parameters 

Training 
Set Testing Set 

Accuracy Accuracy 
Balanced 
Accuracy Cohen’s Kappa 

Event 
Sensitivity False Positives 

Time until 1st 
Detection (hr) 

svmRadial Raw and 
Differences 

from the 
Rolling 
Median 

Influent UVT difference, influent 
pH difference, influent 

temperature difference, settled 
UVT difference, settled ORP 

difference, ozone dose 
difference, biofilter influent UVT 
difference, biofilter influent pH 

difference, raw conductivity, 
influent NH3, influent 

conductivity, influent UVT, 
influent turbidity, influent pH, 
ozone residual setpoint, and 

biofilter influent ORP 

C=1, 
sigma=0.015 

99.5% 98.3% 96.4% 0.952 93% 0 2 

rfRules Raw and Differences from 
the Rolling Median 

Influent nitrite, settled TOC, influent nitrate 
difference, raw conductivity, ozone sidestream 

flow, and influent ammonia difference 

mtry=6, 
maxdepth=4 

99.3% 94.2% 88.7% 0.826 79% 1 6 
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Table B-7. Summary and Performance Metrics of Six Optimized Models with Their Most Beneficial Preprocessing Techniques, Optimal Tuning Parameters, 
and Final Variable Selection. (Continued) 

Testing set false negatives and false positives are out of a sample size of n=120 or 5 days of hourly data. 

Model Preprocessing Variables 
Tuning 

Parameters 

Training 
Set Testing Set 

Accuracy Accuracy 
Balanced 
Accuracy 

Cohen’s 
Kappa 

Event 
Sensitivity 

False 
Positives Time until 1st Detection (hr) 

bstTree None Raw conductivity, influent nitrate, influent conductivity, influent 
UVT, settled NH4+, settled ORP, settled TOC, biofilter influent total 

Cl2, biofilter influent pH 

maxdepth=3, 
nu=0.1, 

mstop=150 

99.3% 99.2% 98.2% 0.976 96% 0 1 
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B.3.2.2 Oblique Random Forest with Support Vector Machines 
Oblique random forest is a decision tree ensemble in which multivariate trees learn optimal 
split directions at internal nodes using linear discriminative models (Menze et al. 2011). 
ORFsvm is a type of oblique random forest in which node splitting rules are based on support 
vector machines (Poona et al.2016). ORFsvm had the second highest testing set accuracy in the 
screening, 95.8 percent (Table B-7). Retraining the model with 100 distinct seeds revealed that 
the testing set accuracy of this model was stochastic (Figure B-8A). Nevertheless, the mean 
testing set accuracy was 95.5 percent with 0.1 percent standard error, so this model would 
indeed rank second in testing set accuracy on average. Training the model on both the raw data 
and the differences from the rolling median increased the ORFsvm median testing set accuracy 
to 96.7 percent, tying C5.0Cost as the most accurate model (Figure B-8B). The four errors in 
ORFsvm with this preprocessing were all false negatives, three of which were at the start of the 
event, and one at the end of the event (Figure B-9). Thus, in practice, this model would have 
detected the event three hours after the first hourly datapoint considered part of the event. 
This would have exceeded the performance of C5.0Cost. ORFsvm had one tuning parameter, 
mtry, which is the number of randomly selected variables for each decision tree within the 
ensemble. However, varying mtry from 1 to 60 had no impact on train or testing set accuracy 
when using both raw data and differences from the rolling median. 

ORFsvm had a relatively slow training calculation time, about 6 minutes per tuning parameter 
setting and seed iteration with 60 variables (all raw data and differences from rolling median). 
The varImp() function was not applicable for ORFsvm, and so could not be used to omit 
variables. Considering ORFsvm accuracy was stochastic, a sample size of at least 30 seed 
iterations would be required to determine if small changes in accuracy were the result of 
variable omission or random chance. Thus, a one-at-a-time variable omission procedure would 
have taken at least one week of computation time, and potentially months or over a year 
depending on the number of variables omitted. So, ORFsvm was not evaluated for variable 
omission. While not necessarily precluding the usage of this model, this slow training time 
could be a practical limitation, especially if the utility chooses to expand the training set sample 
size over time.  
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Figure B-8. Distribution of Testing Set Accuracy of ORFsvm. 
All variables and with default tuning parameters over 100 distinct seeds, with (A) raw data and (B) both raw data 

and differences from the rolling median. The solid vertical black lines represent the median and the dashed vertical 
black lines represent the mean. 
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Figure B-9. Testing Set Results of ORFsvm Using All Variables, Both Raw Data and Differences from the 24-hr 
Rolling Median, and Default Tuning Parameters (mtry=31). 

The shaded gray area represents the Event. Red X’s indicate false negatives. Biofilter influent UVT, influent 
turbidity, influent UVT, and ozone sidestream flow are shown and scaled by training set standard deviation and 

mean.  

B.3.2.3 Penalized Logistic Regression 
plr is logistic regression with 𝐿𝐿2-regularization (Park and Hastie 2008). plr had the highest 
training set accuracy in the screening, 99.8 percent (see table above). However, its test 
accuracy was a less impressive 88.3 percent, indicating that under the conditions of the 
screening, this model was relatively overfit (i.e., mistaking random noise in the training set for 
true patterns, and thus resulting in a model fit that is more accurate for the training set but less 
accurate for the testing set). The testing set accuracy of this model did not depend on seed. 
PCA was the most beneficial preprocessing technique for this model, improving testing set 
accuracy from 88.3 percent to 90 percent. PCA also decreased the training time per tuning 
parameter setting from 196 s to 1.7 s. Omitting the 23rd through 30th principal components 
further decreased the training time to 1.5 s with no loss in testing set accuracy. Training and 
testing set accuracy were unaffected if the “complexity parameter” (CP) tuning parameter were 
set to Bayesian information criterion (BIC) or Akaike information criterion (AIC). Testing set 
accuracy was not affected over L2 penalties ranging from 10-5 to 1. Despite the improvements 
with preprocessing, the 90 percent testing set accuracy for plr would not be satisfactory 
compared to other models evaluated. 
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B.3.2.4 Support Vector Machines with Radial Basis Function Kernel 
Support vector machines construct optimal separations in multi-dimensional space using the 
points that are closest to the boundaries (Schölkopf et al. 1997). svmRadial constructs non-
linear hyperplanes based on distances from centers (Schölkopf et al. 1997). svmRadial had the 
second highest training set accuracy in the screening, 99.5 percent (see table above). However, 
its test accuracy was a less impressive 82.5 precent, indicating that under the conditions of the 
screening, this model was relatively overfit. The accuracy of this model did not depend on the 
seed. The most beneficial processing technique was using both the raw data and the 
differences from the rolling median, improving the testing set accuracy to 86.7 percent. 
Omitting 40 variables improved the testing set accuracy to 98.3 percent. The remaining 
variables after these omissions were differences from the rolling median for influent TIN, 
influent nitrate, influent UVT, influent pH, influent temperature, settled UVT, settled ORP, 
ozone dose, biofilter influent UVT, biofilter influent pH; as well as raw conductivity, influent 
NOx, influent NH3, influent conductivity, influent UVT, influent turbidity, influent pH, influent 
temperature, ozone residual setpoint, and biofilter influent ORP. Omitting four more variables 
(influent TIN difference, influent temperature, influent NOx, and influent nitrate difference) 
resulted in no loss of accuracy and improved the training computation time from 1.8 to 
0.97 seconds. With this preprocessing and set of variables, svmRadial had zero false positives 
and only two false negatives, which were consecutive at the beginning of the event 
(Figure B-10). Thus, this model outperformed C5.0Cost or ORFsvm.  

 

Figure B-10. Testing set results of svmRadial. 
(C=1, sigma=0.15, raw and differences from rolling median, 44 unimportant variables omitted). The shaded gray 

area represents the Event. Red X’s indicate false negatives. The three variables whose omission would have 
resulted in greatest loss in testing set accuracy (influent pH, influent turbidity, and influent UVT), are shown.  
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Tuning parameters for svmRadial were C, the cost of errors, and sigma, the decay rate as points 
become more distant from the centers. For all raw data and differences from the rolling 
median, the optimal settings among the default options were C=1 and sigma=0.015. So, these 
settings were kept when iteratively omitting variables. Broader ranges of tuning parameters 
were then tested using the sixteen selected variables. Holding C to 1, highest testing set 
accuracy was reached with sigma around 0.15, while highest training set accuracy occurred at a 
slightly higher sigma of 0.23 (Figure B-11A). Holding sigma to 0.15, the highest training set 
accuracy occurred with C around 1.5, but highest testing set accuracy occurred with C around 1 
(Figure B-11B). Thus, the default tuning parameter settings were effectively optimal for 
predictive accuracy in this dataset.  

 

Figure B-11. Training Set (red) and Testing Set (blue). 
Accuracy with (A) Sigma Ranging from 0.001 to 0.81 with C=1 and (B) C ranging from 0.01 to 2 with sigma = 0.015. 
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B.3.2.5 Random Forest Rule-Based Model 
rfRules is an ensemble classifier based on associative rules (Deng et al. 2014). In the screening, 
rfRules had the highest event sensitivity at 100 percent (see table above). However, it had a 
testing set accuracy of 54.2 percent with 55 false positives, which is clearly unacceptable over 
the five-day timeframe of the testing set. Replicating with 30 distinct seeds, the testing set 
accuracy of this model was stochastic, ranging from 54.2 percent to 98.3 percent with a median 
of 82.5 percent, This indicated the median testing set accuracy was likely better than it 
appeared in the screening, but more variable compared to ORFsvm. Also, the distribution of 
testing set accuracies with different seeds was not normally distributed. Based on a paired 
Wilcoxon test and the same thirty distinct seeds, PCA, rolling median, and differences from the 
rolling median did not result in a significant increase in testing set accuracy (p-value > 0.05). 
However, including both raw data and the differences from the rolling median did increase 
median testing set accuracy (p-value = 0.0085), to 93.75 percent. With that preprocessing, 
according to the varImp function, all variables had an importance score of 0 except influent 
nitrite, settled TOC, influent nitrate difference, raw conductivity, ozone sidestream flow, and 
influent ammonia difference. With just these six variables, the training time did not 
meaningfully decrease but the testing set accuracy was significantly higher (p-value = 0.0046), 
94.2 percent in all 30 seed iterations. rfRules had two tuning parameters: mtry, the number of 
variables randomly selected for each tree; and maxdepth, the maximum depth of each tree. 
With the six variables listed above, mtry was varied from 1 to 6 and maxdepth was varied from 
1 to 5. Training set accuracy generally increased with higher maxdepth and mtry (Figure B-12A). 
The maximum testing set accuracy was 94.2 percent, and this occurred with a maxdepth of at 
least 3 and mtry of at least 5 (Figure B-12B). This maximum testing set accuracy corresponded 
to six hours until the first detection, which would not be competitive with the models described 
above. 
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Figure B-12. Contour Plot of (A) Train and (B) Testing Set Accuracy of rfRules with Six Variables. 
(influent nitrite, settled TOC, influent nitrate difference, raw conductivity, ozone sidestream flow, and influent 

ammonia difference); maxdepth from 1 to 5, and mtry from 1 to 6.  

B.3.2.6 Boosted Tree 
bstTree is a type of decision tree ensemble in which each subsequent tree is adjusted to 
optimize performance using a truncated loss function for robustness against outliers (Wang 
2018). In the screening, bstTree had second highest event sensitivity at 89.3 percent (Table B-7) 
and a testing set accuracy of 95 percent. However, it had 3 false positives, which could be 
considered unacceptable over the five-day timeframe of the testing set. bstTree testing set 
accuracy did not depend on seed. None of the investigated preprocessing techniques improved 
bstTree testing set accuracy. Omitting influent TOC and ozone residual setpoint increased the 
testing set accuracy to 99.2 percent. Further omitting variables until only thirteen remained 
(raw conductivity, influent nitrate, influent conductivity, influent UVT, settled NH4+, settled 
ORP, settled TOC, biofilter influent total Cl2, biofilter influent pH) resulted in no loss in accuracy 
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and decreased the training time from 32 to 21 s. bstTree had three tuning parameters: 
maxdepth, the maximum depth of the decision trees; mstop, the number of boosting iterations; 
and nu, the step size. Maxdepth=3, mstop=150, and nu=0.1 were selected from among the 
default options based on training set accuracy for the model trainings described above. Ranging 
maxdepth 1 to 4, nu from 0.1 to 1, and mstop from 50 to 500 revealed that highest testing set 
accuracy was achieved with maxdepth=3 and either nu=0.1 with mstop=150 or nu=1 with any 
value for mstop. Thus, the default tuning parameters were among the most accurate for 
bstTree. The testing set accuracy of 99.2 percent with bstTree was the highest in this study and 
corresponded to one false negative and zero false positives. The sole false negative occurred on 
the first datapoint of the event (Figure B-13), so this model would have detected the event 
after about 1 hour.  

 

Figure B-13. Testing Set Results of bstTree (n=0.1, mstop=150, maxdepth=3). 
Trained on the raw data of thirteen variables (raw conductivity, influent nitrate, influent conductivity, influent UVT, 

settled NH4+, settled ORP, settled TOC, biofilter influent total Cl2, biofilter influent pH). The shaded gray area 
represents the Event. Red X’s indicate false negatives. The three variables whose omission would have resulted in 

greatest loss in testing set accuracy (influent pH, raw conductivity, and settled TOC), are shown. 
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B.3.3 Actual Thresholds 
A simpler approach than SML for alerts is to set a fixed threshold on a single variable (e.g., 
settled TOC over 10 mg/L triggers an alert). This is a common approach in current practice at 
wastewater and drinking water facilities, so it was applied to this dataset as a reference against 
which to benchmark the performance of the SML models. 

This section shows the time until detection using alert thresholds values that were in place at 
the SWIFT RC. These alerts were set conservatively lower than corresponding alarms, which 
were based on ensuring the public health and regulatory compliance. Alerts were in place on six 
of the variables shared for this study (Table B-8). Only three were triggered during the testing 
set event: secondary effluent turbidity, settled water total chlorine, and ozone dose. Secondary 
effluent turbidity triggered soonest during the event, after just two hours. However, there were 
also two alerts for effluent turbidity within the five-day testing set not associated with the 
industrial event.  

Table B-8. Actual Threshold-Based Alerts in Place at SWIFT RC and Their Performance Detecting the Event in the 
Testing Set. 

Accuracy, false positives, and time until first detection are all for the testing set.  

Location Variable Unit 
Actual Alert 
Threshold Accuracy 

False 
Positives 

Time Until 
1st 

Detection 
(hr) 

Secondary Effluent 
/ SWIFT RC 
Influent 

Total Inorganic Nitrogen mg/L 4 76.7% 0 Never 

Conductivity mS/cm 1500 76.7% 0 Never 

Turbidity NTU 3.5 95.8% 2 2 

Settled Water 
(Post Floc/Sed) 

Monochloramine mg/L 2 76.7% 0 Never 

Total chlorine mg/L 2 77.5% 0 5 

Ozonation System Ozone Dose mg/L 7 89.2% 0 5 

B.3.4 Data-Driven Thresholds 
Current fixed-threshold-based alerts at the SWIFT RC are based on safety factors, critical control 
points, and ensuring the public health or regulatory compliance. However, another approach 
would be to set alert thresholds based on the maximum (or a high percentile) of the data 
considered normal. This approach would be SML-like, in that it would be data-driven, and 
thresholds could be trained, tested, and refined over time. However, compared the SML 
methods described above, this approach would be much simpler since it would be 
monovariate. In this section, alerts were set based on maximum or minimum normal datapoint 
for each variable in the training set. Alerts set this way are herein called “data-driven 
thresholds.” For pH, UVT, and disinfectant residuals, the data-driven threshold was set to the 
minimum normal datapoint in the training set (Figure B14). Otherwise, the data-driven 
threshold was set to the maximum normal datapoint in the training set.  
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For most variables, a data-driven threshold would not have predicted any events in the testing 
set (equivalent to the NIR) (see Table B8). However, a threshold based influent UVT would have 
achieved 98.3 percent testing set accuracy with zero false positives. This testing set accuracy 
would be equal or better than all but one of the SML models evaluated.  

However, greater sample size would be expected to improve the relative performance of the 
SML models. In contrast, greater sample size might not improve the data-driven threshold 
results. The use of minima or maxima to set thresholds like was done here would become 
increasingly conservative (i.e., fewer false positives, more false negatives) with greater sample 
size because it would allow more time for non-industrial outliers in the Normal training data. 
This could be counteracted somewhat by setting the threshold based on a specified percentile 
that strikes the desired balanced between false positives and false negatives.  

 

Figure B-14: Data-Driven Threshold Example Using Influent UVT. 
The dashed black line represents the threshold. The blue arrow indicates the Normal, training set datapoint on 

which it was based. Shaded grey areas indicate events. 
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Table B-9. Performance of a Fixed Threshold Approach Based on each of the 30 Variables. 
Since the thresholds were set to the maximum Normal value of each variable in the training set, all thresholds 

would have resulted in zero training set false positives.  

Location Variable 

Training set 
Event 

Sensitivity 
Testing set 
Accuracy 

Testing 
set p-
value 

Testing set 
False 

Positives 

Testing set 
Event 

Sensitivity 
Raw 

Wastewater 
Influent 

Conductivity 0% 76.7% 0.55 0 0% 

Secondary 
Wastewater 

Effluent 

Flow 0% 76.7% 0.55 0 0% 
Total Nitrogen 0% 76.7% 0.55 0 0% 

Total Inorganic Nitrogen 0% 76.7% 0.55 0 0% 
Total Organic Carbon 63.6% 82.5% 0.077 1 29% 

Nitrite 0% 76.7% 0.55 0 0% 
Nitrogen Oxides 0% 76.7% 0.55 0 0% 

Nitrate 0% 76.7% 0.55 0 0% 
Ammonia 0% 71.7% 0.92 8 7% 

Conductivity 0% 76.7% 0.55 0 0% 
UV Transmittance 60.6% 98.3% 9.9×10-12 0 93% 

Turbidity 48.5% 95.8% 8.2×10-9 3 93% 
pH 27.3% 82.5% 0.077 0 25% 

Temperature 0% 76.7% 0.55 0 0% 
Settled Water UV Transmittance 40.9% 79.2% 0.30 0 11% 

Monochloramine 18.2% 76.7% 0.55 0 0% 
Ammonium 0% 76.7% 0.55 0 0% 

Total chlorine 0% 76.7% 0.55 0 0% 
Redox potential 0% 76.7% 0.55 0 0% 

Total Organic Carbon 75.8% 93.3% 1.1×10-6 0 71% 
Total Nitrogen 0% 76.7% 0.55 0 0% 
Free Ammonia 0% 76.7% 0.55 0 0% 

Ozonation 
System 

Ozone Dose 31.8% 80% 0.23 0 14% 
Ozone Sidestream Flow 0% 76.7% 0.55 0 0% 
Ozone Residual Setpoint 0% 70% 0.96 8 0% 

Ozone Residual 0% 76.7% 0.55 0 0% 
Biofiltration 

Influent 
UV Transmittance 63.6% 93.3% 1.1×10-6 0 71% 

Total Chlorine 0% 76.7% 0.55 0 0% 
Redox potential 0% 23.3% 1 92 100% 

pH 21.2% 85.8% 0.0090 0 39% 

B.4 Discussion 
Testing set accuracy has limitations as a metric of success for SML models. For “unbalanced” 
data [e.g., data with many more of one class than the other(s)], such as used here, models 
could achieve over 70 percent accuracy by always assuming datapoints were Normal, or by 
randomly guessing Random vs Event based solely on their proportion in the training set. 
Furthermore, using only testing set accuracy, the success of models cannot be directly 
compared across studies, since the accuracy would depend in part on the proportion of classes 
in the respective datasets.  

One alternative metric is “balanced accuracy,” or what the accuracy would be if there were 
equal percentages of each class in the dataset. Balanced accuracy is more intercomparable 
across studies and cannot be increased by increasing the proportion of a specific class. 
However, in the context of alert systems for the water or wastewater industry, false positives 
would be a more important error type than false negatives. False positives (i.e., Normal 
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datapoints incorrectly predicted as Event) would waste resources and eventually lead to a boy-
who-cried-wolf scenario in which the alert system is disregarded or discontinued. For hourly 
data frequency, even a 1 percent false positive rate would lead to false alerts roughly twice per 
week, which would be plainly unacceptable to utility operators. In contrast, many of the 
datapoints labeled and predicted as an Event in this study could be considered to occur at low 
levels that would not yet pose an immediate threat to the operation or treatment goals of the 
facility. Thus, a higher false negative rate could be considered tolerable compared to the 
acceptable false positive rate. Considering the above, for a dataset with 75 percent Normal 
data, a model with 0 percent false positive rate, 80 percent false negative rate, and 80 percent 
accuracy and 60 percent balanced accuracy (Figure B-15 Example A) would be considered far 
preferable to a model with 40 percent false positive rate, 0 percent false negative rate, and 
70 percent accuracy and 80 percent balanced accuracy (Figure B-15 Example B). Balanced 
accuracies for the optimized versions of the models selected for in-depth evaluation are shown 
in Table B-7. Except for plr, the optimized versions of all models selected for in-depth 
evaluation had balanced accuracy over 88 percent. bstTree had the highest test set balanced 
accuracy at 98.2 percent. 

Example A  Example B 
  Reference    Reference 
  Normal Event    Normal Event 

Prediction 
Normal 750 200  

Prediction 
Normal 450 0 

Event 0 50  Event 300 250 

         
 n 1000    n 1000  
 Sensitivity 20%    Sensitivity 100%  

 
Balanced 
Accuracy 60% 

   
Balanced 
Accuracy 80% 

 
 Accuracy 80%    Accuracy 70%  
 FPR 0%    FPR 40%  
 FNR 80%    FNR 0%  

Figure B-15. Hypothetical Model Result Examples with Contrasting Accuracy and Balanced Accuracy. 
FPR is false positive rate. FNR is false negative rate. 

Another alternative to accuracy is Cohen’s Kappa. Cohen’s Kappa compares the agreement 
between the true classifications and the model classifications to the agreement that could 
occur due to random allocation (Cohen 1960). The formula for Cohen’s Kappa with two classes 
is: 

Equation B-1. Adapted from Chicco et al. (2021). 

 
 

Where TP is true positives, FP is false positives, FN is false negatives, and TN is true negatives. 
One of the limitations with Cohen’s Kappa is that there is not a universally agreed magnitude 
considered adequate (i.e., less consensus compared to the typically acceptable p-value 
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threshold of less than 0.05). One highly cited guideline is that Cohen’s Kappa above 0.81 is 
almost perfect agreement (Landis and Koch 1977). Except plr, the optimized versions of all 
models selected for in-depth evaluation exceeded this threshold. bstTree had the highest 
Cohen’s Kappa at 0.976.  

B.5 Conclusions 
• The model bstTree had the highest testing set accuracy for this dataset, 99.2 percent. 

bstTree would have detected the event in about an hour with zero false positives over the 
5-day testing set. bstTree also the highest balanced accuracy at 98.2 percent and Cohen’s 
Kappa at 0.976. Thus, bstTree would have been selected for future monitoring and alerts 
among the SML models investigated in this study.  

• A data-driven fixed threshold based on influent UVT would have resulted in a testing set 
accuracy of 98.3 percent, below that of bstTree but only by about 1 percent. Based on 
training set results and regulatory considerations, a threshold based on settled TOC would 
have been more likely chosen in practice. A settled TOC-based threshold would have 
resulted in a testing set accuracy of only 93.3 percent. This data-driven threshold for UVT or 
the actual threshold for secondary effluent turbidity would have detected the event in 
about two hours, one hour slower than bstTree. 

• The most beneficial preprocessing method differed among the SML model types. Two 
models performed best without preprocessing, one with PCA, and three with raw data and 
differences from the rolling median.  

• In many cases, some variables could be omitted to decrease training time without loss in 
accuracy. However, the optimal selection of variables depended on the model.  

• Certain SML model types from within the random forest family (e.g. ORFsvm, rfRules) had 
testing set accuracies that depended on the seed to the random number generator. Thus, 
the accuracy of these models would be more uncertain in full-scale applications, even with 
appropriate validation and testing procedures.  

Looking to the future, the team would make following recommendations:  

• As next steps to engineer an accurate, practical, SML-based alert system at HRSD, the team 
would recommend repeating the above analyses but with greater sample size, including 
multiple instances of the events in the testing set. This would provide greater confidence 
about the relative performance of the models, particularly whether the highest-performing 
model would be best for detecting all events of this type, not just the individual event in this 
testing set. After that, a small number of high-performing SML models could be piloted in 
real-time, until an additional event occurs. The time until first detection of the SML models 
could then be compared in the field against human monitoring and other alert approaches.  

• Since Event and Normal datapoints in this dataset were distinguished based on human 
judgement, the best the models could possibly do would be to match—not exceed—human 
judgement. On the other hand, a human monitoring the data in real-time might not have 
concluded that an event was occurring as soon as a human evaluating the whole dataset 
retrospectively. In future research on machine learning for wastewater or reuse alert 
systems, this could be achieved by simulating industrial discharges in a pilot or flume like 
the one at Clean Water Services (CWS) (see Section 3.1). Alternatively, real full-scale 
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industrial events could be labelled objectively if the industrial source is known and keeps 
records of discharge flow (e.g., the landfill that discharges limited quantities of leachate to 
the WWTP that feeds SWIFT RC) (Gonzalez et al. 2021; Nading et al. 2022). 

• A limitation of SML-based alert systems is that they are designed to detect events of a 
known, previously documented type. If a new type of industrial discharge were to occur 
associated with a different response from the online instrumentation, this may or may not 
trigger an SML-based alert. Changes in the water quality pattern at the AWTF during 
industrial discharge events could also occur due to changes in the treatment operation 
response at the WWTP. So, a strategic solution would be to employ both SML-based and 
threshold-based alerts or alarms. This would combine the sensitivity of SML with the 
generalizability of thresholds. These additional thresholds could be set based on training set 
data, health-based goals, or operational considerations. Advanced multivariate statistical 
methods for fault or outlier detection other than SML also merit further research in the 
context of wastewater and reuse (Klanderman et al. 2020).  
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APPENDIX C  

Clean Water Services Machine Learning Case Study 

C.1 Introduction  
Clean Water Services (CWS) in Hillsboro, Oregon collected data for ten water quality variables 
from six sensors in a flume of real wastewater influent. Two types of simulated industrial 
discharge were spiked into the flume on twenty total occasions. The two spike types were (1) a 
blend of bleach, NaCl, and NaOH and (2) humic acid. The data was originally collected for the 
purpose of testing sensor containment devices and comparing the instruments under various 
conditions such as ragging, FOG, and different velocities (Section 3.1 and Appendix A). 
However, due to (1) high sample size, (2) numerous variables, and (3) known labels for when 
spikes were occurring, the dataset was also suitable for testing the ability of SML to detect 
industrial discharges.  

In a previous study, (Appendix B), SML performed only marginally better than fixed thresholds 
to detect real industrial discharges in a demonstration-scale AWTF. However, that studied 
labelled data into just two classes (Normal and Event). Since the CWS had two types of 
simulated industrial discharges, datapoints were labelled into three classes (Normal, Spike 1, 
and Spike 2), so a fixed threshold on a single variable would not be applicable. Furthermore, the 
CWS dataset has more than three instances of both spike types, which enables multiple 
instances of each spike type in chronological split training and testing sets. This in turn 
facilitates a more robust evaluation. Since the spikes were added at known times, there is less 
risk that datapoints may have been mislabeled. The greater noisiness of the CWS dataset due to 
its location in primary effluent could be expected to lead to more benefit from preprocessing, 
or greater difficulty for detecting the events through human visual monitoring. The CWS 
dataset has greater total sample size which should in theory improve the accuracy of SML 
models, all else equal. On the other hand, the CWS dataset contains a smaller sample size of 
datapoints that are true positives, which limits the representativeness of the training set and 
robust evaluation with the testing set. 

C.2 Methods 
C.2.1 Construction of the Flume 
See Appendix A for the construction of the flume. 

C.2.2 Sensors Installed in the Flume 
The installed sensors are summarized briefly in Table C1. and described in detail in Appendix A. 
BOD, COD, TSS, and nitrate were estimated based their site-specific correlations with UV 
absorbance at various wavelengths measured by the s::can Spectro::lyser. 
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Table C-1. Water quality variables used for supervised machine learning.  
Water Quality Variable Brand Instrument Unit 

pH Yosemitech Y532-A  
Redox Potential (ORP) ECD ORP Pt Cap peek, two-tang probe mV 

pH ECD Extended Life pH Electrode RADEL body  
BOD s::can Spectro::lyser mg/L as O2 
COD s::can Spectro::lyser mg/L as O2 

TSS s::can Spectro::lyser mg/L 
UV254 s::can Spectro::lyser 1/m 
Nitrate s::can Spectro::lyser mg/L as N 

Conductivity s::can condu::lyser μS/cm 
pH s::can pH::lyser  

C.2.3 Experiments Conducted 
Experiments were run with the original goal of comparing the sensors’ reliability under various 
conditions, particularly different velocities, which were hypothesized to impact fouling. The 
experimental phases are summarized in Table C-2 and described in detail in Appendix A. While 
both types of simulated industrial discharge were conducted in each experiment phase, in some 
cases, data for one or more sensors was not available at the time of the spike. Table C-3 shows 
which Experiments had data for all sensors for at least one datapoint of each spike.  

Table C-2. Summary of Flume Experiments and Industrial Spikes. 

Experimental 
Phase 

Water 
Velocity 

(m/s) 

SML 
Modeling 
Dataset Start End 

All Data 
Available 

for Spike 1 

All Data 
Available for 

Spike 2 
Experiment 1 0.4 Training 2021-03-29 

09:00 
2021-04-05 

08:20 
✔ ✔ 

Experiment 2 0.24 Training 2021-04-05 
09:10 

2021-04-12 
07:40 

✔  

Experiment 3 0.17 Training 2021-04-12 
08:30 

2021-04-19 
08:30 

 ✔ 

Experiment 4 0.4 Testing 2021-04-27 
08:10 

2021-05-04 
08:40 

✔ ✔ 

Experiment 5 0.24 Testing 2021-05-04 
09:40 

2021-05-11 
10:00 

✔  

Experiment 6 0.17 Testing 2021-05-11 
10:30 

2021-05-18 
08:50 

✔ ✔ 

C.2.4 Data Collection and Preparation 
Data was recorded for ten water quality variables (Table C-1) using the sensors described in 
Appendix A. Data was collected every two minutes for the s::can sensors, every 5 minutes for 
the ECD sensors, and every 10 minutes for the Yosemitech sensor. Data was analyzed at 
10-minute intervals, with data from the more frequent instruments averaged over the 
preceding 10-minute period. Known cleaning events were omitted. Observations were omitted 
if any of the independent variables included had missing data.  

C.2.5 Supervised Machine Learning 
Supervised machine learning was conducted in R version 4.1.0 using the caret package (Kuhn 
2008). Observations were labelled Normal, Spike 1, or Spike 2. Data from 11:20 a.m., 
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March 27th, 2021 through the end of Experiment 3 (8:20am, April 19th, 2021) was used as a 
training set. Three instances each of Spike 1 and Spike 2 occurred over the time range of the 
training set. However, data for one or more variables was not available during Experiment 2 
Spike 2 and Experiment 3 Spike 1 (Figure C-1). So, there were effectively two instances each of 
both spike types when modeling with all variables. Data immediately after the end of 
Experiment 3 (8:30 a.m., April 19th, 2021) through the end of Experiment 6 (8:50 a.m., 
May 18th, 2021) was used as the testing set. Thus, there was roughly a 50:50 train:test split. 
The testing set time range had three instances each of Spike 1 and Spike 2. However, one or 
more variables was unavailable for all of Experiment 5 Spike 2 and parts of Experiment 5 
Spike 2, Experiment 6 Spike 1 and Experiment 6 Spike 2. Since observations were only included 
when data was available for all variables, the sample size depended on the variables included 
(Table C-3). 
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Figure C-1. Training Set Water Quality Data for (A) Variables with Mean Absolute Values Over 100 and (B) Variables with Mean Absolute Values Below 100. 

Blue and red solid vertical lines indicate Spike 1 and Spike 2 events, respectively.
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Table C-3. Sample Sizes With and Without Different Variables. 
(Nitrate as measured by the s::can spectro::lyser, pH as measured by the Yosemitech probe, and ORP as measured 

by the ECD probe) 

Variables 
Training Set Testing Set 

Total Spike 1 Spike 2 Total Spike 1 Spike 2 
All 2473 9 9 2802 8 6 
No s::can Nitrate 2473 9 9 2802 8 6 
No Yosemitech pH 2836 10 9 3808 10 10 
No ECD ORP 2756 12 11 2944 8 6 

Twenty-eight models were considered for screening based on achieving at least 95 percent 
testing set accuracy detecting stormwater or wastewater effluent in surface water with raw 
data for nine water quality variables in Thompson and Dickenson (2021). However, two of those 
models—Random Forest Rule-Based Model and Partial Least Squares with a kernel algorithm 
for wide datasets—were omitting for requiring over 10 minutes per training iteration. So, 
26 models (Table C-4) were trained and tested on raw data for all ten variables. Among these, 
the three with highest testing set accuracy were selected for in-depth evaluation.  

Models were screened on raw data (i.e., no preprocessing) using default tuning parameters in 
the caret package. The following metrics were recorded for each model: training set accuracy; 
testing set accuracy; testing set specificity (accuracy of the model when the true classification 
was not Normal); total false alerts (i.e., false positives, Normal observations incorrectly 
predicted as either Spike 1 or Spike 2); total false negatives (Spike 1 or Spike 2 incorrectly 
predicted as Normal); total misclassifications (Spike 1 incorrectly predicted as Spike 2 or vice 
versa); and p-value that the testing set accuracy exceeds the no information rate (NIR). NIR is 
the accuracy that could be achieved by always assuming the most common label, which in this 
case was Normal. The NIR was 99.50 percent since the vast majority of the data was Normal. 
The training set accuracy was internally cross-validated with 25 bootstraps (Kuhn 2008). This 
means 25 random samples were selected with replacement (i.e., with the possibility of the 
same datapoint being selected twice) with the same sample size as the original training set. 
These random samples were then split 75:25 into training and testing sets; the average 
accuracy on these random testing sets selected from within the training set was considered the 
training set accuracy. This bootstrapped training set accuracy was used for selecting tuning 
parameters.  
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Table C-4. List of 26 SML Models Screened. 
Model Abb. 

Bagged MARS bagEarth 
C5.0 C5.0 

Single C5.0 Ruleset C5.0Rules 
Single C5.0 Tree C5.0Tree 

Partial Least Squares kernelpls 
Weighted k-Nearest Neighbors kknn 

Linear Discriminant Analysis lda 
Linear Discriminant Analysis with Number of Discriminant Functions Tuning Parameter lda2 

Localized Linear Discriminant Analysis loclda 
Least Squares Support Vector Machine with Radial Basis Function Kernel lssvmRadial 

Mixture Discriminant Analysis mda 
Neural Networks with Feature Extraction pcaNNet 

Penalized Discriminant Analysis pda 
Penalized Linear Discriminant Analysis PenalizedLDA 

Partial Least Squares pls 
Random Forest Rborist 

Shrinkage Discriminant Analysis sda 
Partial Least Squares simpls 

Sparse Partial Least Squares spls 
Linear Discriminant Analysis with Stepwise Feature Selection stepLDA 

Support Vector Machines with Linear Kernel (kernlab package) svmLinear 
Support Vector Machines with Linear Kernel (e1071 package) svmLinear2 
Support Vector Machines with Radial Basis Function Kernel svmRadial 

Support Vector Machines with Radial Basis Function Kernel with Cost Tuning Parameter svmRadialCost 
Support Vector Machines with Radial Basis Function Kernel with Sigma and Cost Tuning 

Parameters 
svmRadialSigma 

Support Vector Machines with Radial Basis Function Kernel with Sigma, Cost, and Weight 
Tuning Parameters 

svmRadialWeights 

The three models selected for in-depth evaluation were trained and tested with thirty or more 
distinct seeds to check whether their performance was subject to random chance (see 
Appendix B for discussion on why this is a best practice). The three selected models were then 
trained and tested with the nitrate variable omitted, since this variable was not fully calibrated 
during Experiments 1 and 2. Next, the models were trained and tested with Yosemitech pH or 
ECD ORP data omitted, since these variables had missing data. Yosemitech pH had 416 and 
1193 observations missing from the training and testing sets, respectively. ECD ORP had 341 
and 306 observations missing from the training and testing sets, respectively. So, omitting these 
variables enabled greater samples sizes in both the training and testing sets. The three models 
were also trained and tested with full-scale wastewater influent flow as an eleventh variable.  

C.2.6 Preprocessing 
Four preprocessing methods were assessed to enhance model accuracy: (A) principal 
component analysis (PCA); (B) difference from the 24-hour rolling median; (C) difference from 
the training set median for each hour of the day (1:00 a.m. to 1:50 a.m., 2:00 to 2:50 a.m., etc.); 
and (D) B then C. PCA was conducted to promote diversity among the variables, considering 
that each principal component is perpendicular (non-correlated) with the others. PCA has 
previously been applied as a preprocessing technique for SML (Rodriguez, Kuncheva, and 
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Alonso 2006). The PCA model was constructed based on the training set and then the scores for 
each principal component were then also calculated on the testing set. The difference between 
each observation and the median of the past day (i.e., 144 observations at 10-minute intervals) 
was calculated to correct for drift due to fouling. The difference from the rolling median was 
provided to the models both in addition to and instead of the raw data, in case both the total 
value and the recent relative change of the variables were useful for event detection. The 
difference between each observation and the median for that hour of the day within the 
training set was calculated to correct for diurnal patterns.  

C.2.7 Hyperparameter Tuning 
Lastly, the three selected models, with their optimal variable selection and optimal 
preprocessing technique(s), were trained and tested with a wider array of settings for their 
hyperparameters (a.k.a. tuning parameters). Training and testing set accuracies were calculated 
for each combination of hyperparameter settings. This revealed whether selecting the 
hyperparameter settings based on the highest training set accuracy would have led to the 
hyperparameter settings with highest testing set accuracy. However, as per machine learning 
validation protocol, the testing set was used for evaluation purposes only, and was not used to 
inform the hyperparameter settings in the final model recommendation(s).  

C.3 Results  
C.3.1 Screening Results with Raw Data 
Among the 26 models evaluated on raw data, the three with highest testing set accuracy were 
Neural Networks with Feature Extraction (pcaNNet), Bagged Multivariate Additive Regression 
Spline (bagEarth), and Single C5.0 Ruleset (C5.0Rules) (Table C-5). So, these three models were 
selected for more in-depth evaluation. The testing set accuracies of pcaNNet, bagEarth, and 
C5.0Rules using the raw data were 99.75 percent, 99.75 percent, and 99.68 percent, 
respectively. For all three models, there were zero false positives and at least one detection of 
each Spike type. So, even without preprocessing or hyperparameter tuning, these three models 
could be considered satisfactory and useful. The testing set accuracies of pcaNNet and bagEarth 
had p-values of 0.031 relative to the NIR and C5.0Rules had a p-value of 0.11. Based on the 
conventional criterion of p-value < 0.05, pcaNNet and bagEarth could be considered 
significantly better than the NIR. However, considering the number of models screened, it is 
conceivable the success of these models was in part due to random chance.  
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Table C-5. Screening Results for 26 Models with Default Tuning Parameters and Raw Data for Ten Water Quality 
Variables. 

*Select for in-depth evaluation based on testing set accuracy. 
Abb. Training Set Testing Set 

 Accuracy Accuracy p-value 
Acc. > 

NIR 

Specificity Total 
False 
Alerts 

Total False 
Negatives 

Mis-
classifications 

pcaNNet* 99.42% 99.75% 0.031 50% 0 7 0 
bagEarth* 99.31% 99.75% 0.031 50% 0 7 0 
C5.0Rules* 99.23% 99.68% 0.109 43% 0 8 1 
C5.0 99.38% 99.64% 0.175 57% 2 6 2 
lssvmRadial 99.35% 99.61% 0.259 21% 0 11 0 
lda 98.51% 99.61% 0.259 43% 3 8 0 
lda2 98.57% 99.61% 0.259 43% 0 8 3 
pda 98.51% 99.61% 0.259 43% 3 8 0 
Rborist 99.35% 99.57% 0.358 14% 0 12 0 
PenalizedLDA 96.58% 99.54% 0.464 36% 4 9 0 
svmRadial 99.30% 99.50% 0.570 0% 0 14 0 
svmRadialSigma 99.30% 99.50% 0.570 0% 0 14 0 
spls 99.29% 99.50% 0.570 0% 0 14 0 
kernelpls 99.29% 99.50% 0.570 0% 0 14 0 
svmRadialCost 99.30% 99.50% 0.570 0% 0 14 0 
svmRadialWeights NA 99.50% 0.570 0% 0 14 0 
pls 99.29% 99.50% 0.570 0% 0 14 0 
simpls 99.29% 99.50% 0.570 0% 0 14 0 
stepLDA 99.23% 99.46% 0.670 0% 1 14 0 
sda 99.03% 99.39% 0.828 0% 3 14 0 
C5.0Tree 99.15% 99.39% 0.828 50% 8 7 2 
kknn 99.33% 99.25% 0.971 50% 14 7 0 
mda 98.75% 99.11% 0.997 43% 16 8 1 
loclda 99.29% 99.00% 1.000 29% 18 10 0 
svmLinear 99.48% 98.93% 1.000 50% 23 7 0 
svmLinear2 99.48% 98.93% 1.000 50% 23 7 0 

pcaNNet is a feed-forward, single-layer neural network with PCA preprocessing for feature 
extraction (Venables and Ripley 2002). pcaNNet has two hyperparameters: size and decay. Size 
is the number of units in the hidden layer. Decay is a regularization penalty applied to the sum 
of squares of the weights of the units in the hidden layer.  

Open-source implementations of multivariate adaptive regression splines are abbreviated 
“Earth” because “MARS” has been trademarked. Earth uses weighted sums of basic functions, 
which can be constants, hinge functions, or products of hinge functions (Friedman 1991). 
Bagging is bootstrap aggregation, or taking the average of models trained on random samples 
of the data with replacement with the same sample size as the original data (Irizarry 2019). 
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bagEarth is the bagged version of Earth. bagEarth has two tuning parameters: degree and 
nprune. Degree is the maximum degree of interaction, i.e., the maximum number of hinge 
functions multiplied together. Nprune is the maximum number of terms in the Earth models. 

C5.0Rules generates a single set of if-then rules using the C5.0 system (Kuhn et al. 2020). As 
implemented in the caret package, C5.0Rules does not having any tunable hyperparameters. 

C.3.2 Checking for Randomness 
Out of 100 trials, pcaNNet had a testing set accuracy of 99.75 percent 88 times and 
99.79 percent 12 times. Thus, there was an element of randomness in the performance of this 
model, but its median accuracy was still equal or greater than the other models tested. 
Similarly, in 30 trials, bagEarth had a testing set accuracy ranging from 99.71 percent to 
99.75 percent but would still have ranked first or second among the models tested on raw data. 
C5.0Rules testing set accuracy did not depend on the seed. So, multiple seed iterations were 
not tested in the remainder of this study.  

C.3.3 Omitting and Adding Variables  
Omitting s::can nitrate reduced testing set accuracy for pcaNNet, bagEarth, and C5.0Rules from 
99.75 percent, 99.75 percent, and 99.68 percent respectively to 99.61 percent, 99.64 percent, 
and 99.57 percent respectively. So, it was concluded that the nitrate variable conveyed useful 
information for classification despite not being calibrated during Experiments 1 and 2.  

Omitting Yosemitech pH reduced testing set accuracy for pcaNNet, bagEarth, and C5.0Rules 
from 99.75 percent, 99.75 percent, and 99.68 percent respectively to 98.20 percent, 
99.53 percent, and 99.37 percent respectively. This loss of accuracy occurred even though the 
training set sample size increased from 2473 to 2836. Furthermore, all three models went from 
having zero false positives to at least one false positive. So, the Yosemitech pH was a useful 
enough variable to include in the models despite its relatively frequent data gaps.  

Omitting ECD ORP reduced testing set accuracy for pcaNNet from 99.75 percent to 
96.84 percent despite the training set sample size increasing from 2473 to 2756. However, for 
bagEarth, the testing set accuracy increased slightly from 99.75 percent to 99.76 percent, with 
the same number of true positives and false negatives but with more true negatives from the 
expanded sample size. For C5.0Rules, the testing set accuracy improved from 99.68 percent to 
99.73 percent (or 99.71 percent on the original testing set) with zero false positives and two 
misclassifications. So, it was decided to omit ECD ORP from the training sets for bagEarth and 
C5.0Rules models but not pcaNNet. However, to ensure that comparisons among the models 
were fair, all three models were compared on the testing set observations for which data was 
available for all ten variables (n=2802) in the analyses below. 

Including flow as an eleventh variable decreased pcaNNet, bagEarth, and C5.0Rules testing set 
accuracy from 99.75 percent, 99.75 percent, and 99.73 percent respectively to 99.71 percent, 
99.75 percent, and 99.71 percent respectively.  
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C.3.4 Preprocessing 
None of the preprocessing techniques evaluated improved the accuracy of the three models. 
PCA preprocessing reduced the bagEarth and C5.0Rules testing set accuracies from 
99.75 percent and 99.71 percent to 99.50 percent and 99.61 percent, respectively. PCA 
preprocessing was not tested with pcaNNet because that model already automatically includes 
PCA preprocessing. An example of the other preprocessing techniques is demonstrated in 
Figure C-2 and Figure C-3 for the UV254 variable. Visually, it appears that these preprocessing 
techniques succeeded in reducing the variance of the data due to drift or diurnal patterns. 
Nevertheless. taking the difference from the rolling median of the previous 24-hours decreased 
pcaNNet, bagEarth, and C5.0Rules testing set accuracy from 99.75 percent, 99.75 percent, and 
99.71 percent respectively to 99.14 percent, 99.00 percent, and 99.46 percent, respectively. 
pcaNNet was equally accurate after subtracting the hourly median from each variable; 
however, BagEarth and C5.0Rules testing set accuracy were reduced from 99.75 percent and 
99.71 percent respectively to 99.71 percent and 99.50 percent respectively. After subtracting 
both the 24-hour rolling median and the median for each hour of the day, pcaNNet, bagEarth, 
and C5.0Rule testing set accuracy decreased from 99.75 percent, 99.75 percent, and 
99.71 percent respectively to 99.50 percent, 99.50 percent, and 99.54 percent respectively.  

 
Figure C-2. Raw Data (red); the 24-hr Rolling Median (yellow); Difference Between Raw Data and the 24-hr 
Rolling Median (green); Hourly Median of Differences Between the Raw Data and the 24-hr Rolling Median 
(blue); and the Difference Between the Difference from the 24-hr Rolling Median and Its Hourly Medians 

(purple) for s::can UV254 (1/m) in the training set. 
Blue and red solid vertical lines indicate Spike 1 and Spike 2 events, respectively. 
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Figure C-3. Raw Data (red); the Median for Each Hour of the Day (green). 

The difference from the median of each hour of the day (blue) for s::can UV254 (1/m) in the training set. Blue and 
red solid vertical lines indicate Spike 1 and Spike 2 events, respectively. 

C.3.5 Hyperparameter Tuning 
bagEarth had higher testing set accuracy with degree equal to one but higher training set 
accuracy with degree equal to two, indicating that higher degree led to overfitting for this 
model and dataset (Figure C4). bagEarth had highest testing set accuracy with degree equal to 
one and nprune equal or greater to 9, which includes the default settings used above.  

 
Figure C-4. Train and Testing Set Accuracy of bagEarth with Degree 1 or 2 and nprune from 8 to 18. 

Panel heading indicates degree.  

Ranging size from one to ten and decay from 0.1×2-4 to 0.1×26, pcaNNet train and testing set 
accuracies were both generally highest with size equal to or greater than four (Figure C-5). 
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However, training set accuracy was highest with decay of 0.00625, but testing set accuracy was 
highest with decay equal to 0.1. The highest pcaNNet testing set accuracy was 99.79 percent 
with decay equal to 0.1 and size in the range four to ten, or decay equal to four and decay equal 
to 0.05. This testing set accuracy was the highest yet in this study with seed set to one. 
However, pcaNNet with default tuning (size=5 and decay=0.1) had also achieved this testing set 
accuracy in 12 percent of replicates with different seeds. So, it was plausible that these tune 
settings had the highest testing set accuracies due in part to random chance.  
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Figure C-5. pcaNNet (A) Train and (B) Testing Set Accuracies with Size from 1 to 10 and Decay from 

 0.1×2-4 to 0.1×26. 
Seed was set to one. The decay axis is log2 transformed. 

So, this pcaNNet tuning was repeated with 30 replications with 30 distinct seeds. This 
procedure produced a smoother contour plot (Figure C-6). It also produced a unique maximum 
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testing set accuracy: 99.79 percent with size of 10 and decay of 0.1. This testing set accuracy 
was the highest in this study. However, it should be noted that these hyperparameter tune 
settings would not have been selected based on the training set bootstrapping cross-validation 
procedure with a large array of potential tune settings. Higher decays are associated with 
underfitting and lower decays are associated with overfitting (Venables and Ripley 2002). 
Decays in the range 0.0001 to 0.1 are generally recommended, and both the training set 
accuracy optimal decay and the testing set accuracy optimal decay would fall in this range 
(Venables and Ripley 2002). Nevertheless, for this particular combination of model and dataset, 
it appears that the bootstrapping cross-validation procedure would not recommend the 
optimal range of decay for truly new timeseries data. Since standard machine learning 
procedure is to use testing sets for evaluation purposes only and not hyperparameter selection, 
pcaNNet with size of 10 and decay of 0.1 should not be recommended for implementation at 
CWS without further validation and testing.  
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Figure C-6. pcaNNet (A) Train and (B) Testing Set Accuracies with Size from 1 to 10 and Decay from 

 0.1×2-4 to 0.1×26. 
Accuracy is mean of 30 distinct seeds. The decay axis is log2 transformed. 
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C.4 Discussion 
As discussed in the HRSD case study (Appendix B), accuracy is arguably a misleading metric of 
success. Models tested on unbalanced data could achieve high-sounding accuracy simply by 
usually predicting the most common class. This is especially true for the CWS data used in this 
section, since the percentage of Normal data in the testing set was 99.5 percent, as opposed to 
76.7 percent in the HRSD dataset. pcaNNet and bagEarth had testing set balanced accuracy of 
66.7 percent (100 percent accuracy among Normal datapoints and 50 percent accuracy among 
both spike types) (Table C-6). Treating the two spike types as a single class would increase the 
balanced accuracy to 75 percent, still below the balanced accuracies of the optimized models 
for the HRSD dataset. C5.0Rules had a slightly lower balanced accuracy of 62.5 percent.  

Table C-6. Performance Metrics of the Three Models Selected for In-Depth Evaluation. 

Abb. pcaNNet bagEarth C5.0Rules 

Variables Excluded None ECD ORP ECD ORP 
Training Set Accuracy 99.42% 99.31% 99.23% 

Training Time 34 480 4 

Testing Set Accuracy 99.75% 99.75% 99.68% 

Balanced Accuracy 66.70% 66.70% 62.50% 

Cohen’s Kappa 0.666 0.666 0.635 

False Positives 0 0 0 

False Negatives 7 7 6 

Misclassifications 0 0 2 

Another alternative to accuracy is Cohen’s Kappa. The formula for Cohen’s Kappa with three or 
more classes is: 

Equation C-1. Adapted from Chicco et al. (2021). 

 
 

Where c is the total number of observations correctly predicted, s is the total number of 
observations, pk is the number of times class k was predicted, and tk is the number of times 
class k truly occurs. The three optimized models had Cohen’s Kappas ranging 0.635-0.666, 
which could be considered good or substantial (Table C-6) (Landis and Koch 1977; Fleiss 1981). 

Not all errors in wastewater influent monitoring are equally important. Considering the high 
frequency of data collection, a very low false positive rate is required. For data analyzed every 
ten minutes, a 1 percent false positive rate would equate to false alerts more than once per 
day; 0.1 percent would mean false alerts approximately weekly. Too many false alerts would 
initially lead to poor allocation of resources and eventually to complacency or discontinued use 
of the model. Furthermore, the spikes simulated in this study could be considered 
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non-extreme, i.e., would not exceed the equalization and treatment capability of the WWTP. 
More extreme industrial events would eventually be noticed by human monitoring or fixed 
thresholds. Furthermore, even one true positive within the sequential set of two to five 
10-minute observations within each spiking event could be considered a true detection of the 
spiking event as a whole. So, a few false negatives within datasets of the size used here could 
be relatively acceptable. Considering this contextual information, false positives would be 
considered a worse error type than false negatives. Misclassifications of Spike 1 as Spike 2 or 
vice versa would be the most minor type of error since either prediction would instigate human 
investigation and corrective action.  

Considering the above, a weight of 4 was applied to each false positive, 2 to each false negative, 
and 1 to each spike misclassification. bagEarth and pcaNNet both had 7 false negatives, while 
C5.0Rules had 6 false negatives and 2 misclassifications (Table C-6). With this weighting 
scheme, all three models would have a score of 14 (or 0.0050 normalized by dividing by the 
testing set sample size). So, all three models could be considered equally good on this testing 
set, despite the slightly lower unweighted accuracy for C5.0Rules. 

The importance of errors for classification of timeseries data depends not only on the types of 
errors but also the locations of errors. For example, at least one detection within each 
consecutive spiking event would be more useful than complete detection of one spiking event 
but all false negatives for the others, even if the overall accuracy were the same. However, the 
pcaNNet, bagEarth, and C5.0Rules were equivalent by this criterion too with at least one true 
positive in three out of five consecutive spike events with available data in the testing set 
(Figure C-7 and Figure C-8). In fact, pcaNNet (with all water quality variables) and bagEarth 
(omitting ECD ORP) were exactly equivalent in terms of their errors and true predictions.  
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Figure C-7. Testing Set Results for pcaNNet with All Water Quality Variables or bagEarth Omitting ECD ORP, Which Produced the Same Predictions. 

Black squares indicate true positives. (A) variables with mean absolute values over 100 and (B) variables with mean absolute values below 100. Blue and red 
solid vertical lines indicate Spike 1 and Spike 2 events, respectively. 
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Figure C-8. Testing Set Results for C5.0Rules with All Water Quality Variables. 

Black squares indicate true positives. (A) variables with mean absolute values over 100 and (B) variables with mean absolute values below 100. Blue and red 
solid vertical lines indicate Spike 1 and Spike 2 events, respectively.
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Another potential criterion for SML model selection is training time. A quicker training time 
enables training and testing on more iterations (e.g. hyperparameter tunings or random 
replicates), facilitating ongoing optimization. Training time shorter than the data recording 
interval would be ideal since this would enable the model to be updated after each new 
datapoint in real-time. C5.0Rules, pcaNNet, and bagEarth training required 4 seconds, 
34 seconds, and 480 seconds, respectively, on a laptop with 11th Gen Intel(R) Core(TM) i7-1185G7 
@ 3.00GHz and 32 GB of RAM. In practice, these training times could increase over time with 
increasing training set sample size or the addition of new water quality sensors. So, bagEarth 
could be considered borderline too slow, while C5.0Rules and pcaNNet would be sufficiently 
fast.  

Interpretability is another potential criterion for SML model selection, especially in fields such 
as drinking water and wastewater treatment where clear communication with regulators and 
the public is a priority. A neural network model is “black box” by nature. In contrast, C5.0Rules 
generates a single, interpretable ruleset. In this case, C5.0Rules generated five rules using just 
three variables (ECD pH, s::can pH, and s::can nitrate) (Table C-7). An additional benefit of this 
model in this case would be that the Yosemitech pH variable was not used and so could be 
discontinued, saving operations and maintenance cost.  

Table C-7. Rules for C5.0Rules using raw data for water quality variables excluding ECD ORP.  
Rule Output 

s::can NO3 eq > 1.92 Normal 
s::can pH ≤ 7.21 Normal 
ECD pH ≤ 7.85 Normal 

s::can NO3 eq > 1.62 and s::can NO3 eq ≤ 1.92 and ECD pH > 7.85 and s::can pH > 7.21 Spike 1 
s::can NO3 eq ≤ 1.16 and ECD pH > 7.85 and s::can pH > 7.21 Spike 2 

It could be considered surprising that the rule for Spike 2 was based in part on nitrate, since 
Spike 2 was addition of humic acid, not nitrate. However, considering the nitrate variable is an 
absorbance-based estimate, it appears the humic acid interfered with the absorbance 
wavelengths used to estimate nitrate. Counterintuitively, pH increased during the Spike 2 
humic acid addition. Possibly, the humic acid solution had higher pH than the wastewater 
influent due to higher pH in the tap water used for the dilution or the presence of a buffer in 
the humic acid standard.  

It is notable that in this study, testing set accuracies were almost always higher than training set 
accuracies. Such a trend is unusual, though not impossible. In this case, it may have been due to 
the major fouling incident occurred on the s::can spectro::lyser instrument (which measured 
BOD, COD, TSS, UV254, and nitrate) that occurred during Experiment 1 in the training set 
(Figure C-1). Such a drastic fouling event did not occur during the testing set (Figure C-7). 
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C.5 Conclusions 
• pcaNNet, bagEarth, and C5.0Rules were the most accurate models using raw data for ten 

water quality variables with testing set accuracies of 99.75 percent, 99.75 percent, and 
99.68 percent, respectively. 

• pcaNNet, bagEarth, and C5.0Rules had zero false positives and at least one detection of 
both spike types in the testing set. 

• Omitting ECD ORP to increase the effective sample size of the other variables did not 
decrease bagEarth accuracy and increased C5.0Rules testing set accuracy to 99.71 percent.  

• Preprocessing with PCA or median-based methods to remove diurnal patterns and drift did 
not increase the testing set accuracy of pcaNNet, bagEarth, or C5.0Rules. 

• Considering the relative importance of types and locations of errors, pcaNNet, bagEarth, 
and C5.0Rules were equally successful.  

• However, considering training time and interpretability, the team would recommend 
C5.0Rules for this application.  
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