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Abstract and Benefits 
 
Abstract: 

The goal of project 4951 was to develop a sound technical framework for (1) the evaluation of direct 
potable reuse facility performance using a probabilistic assessment of treatment train performance 
(PATTP), and (2) the use of quantitative microbial risk assessment (QMRA) to assess the level of 
treatment required to achieve risk-based targets. This framework was built into a tool—called DPRisk—
that allows the California State Water Resources Control Board’s (State Water Board’s) Division of 
Drinking Water to quantify and characterize pathogen risk in direct potable reuse applications. The 
Technical Work Group (TWG) overseeing the effort completed a literature review of previous PATTPs 
and QMRAs, and developed a framework for the consistent application of these approaches. The 
research team used the framework to develop the web-based DPRisk tool and an accompanying 
guidance document (Appendix B). Together the TWG and research team provided training to the State 
Water Board on the use of DPRisk. DPRisk and the guidance document will help the State Water Board 
identify or confirm the treatment requirements for direct potable reuse.  

Benefits: 

• Provides a tool and guidance for the California State Water Resources Control Board’s development 
of direct potable reuse criteria. 

• Provides a consistent approach for performing PATTP and QMRA.  
• Provides a transparent tool with the flexibility to evaluate all of the inputs to QMRA. 
• Allows for the evaluation of non-treatment or management barriers such as dilution, environmental 

die-off, and blending. 
• Allows for evaluation of treatment failures and their impact on risk. 

Keywords: Direct potable reuse, QMRA, PATTP. 
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CHAPTER 1  
 

Introduction  
 
1.1 Purpose of Project  
The California State Water Resources Control Board (State Water Board) recommended that research be 
conducted to support their development of criteria for direct potable reuse (DPR). Six research projects 
were identified to address the critical knowledge gaps. The first of the DPR research topics (DPR-1) 
focuses on developing tools for the State Water Board’s Division of Drinking Water (DDW) to implement 
a probabilistic assessment of treatment train performance (PATTP) and quantitative microbial risk 
assessment (QMRA). The purpose of these tools is to quantify and characterize pathogen risk in DPR 
applications. These processes are critically important in identifying the log reduction values (LRVs) 
necessary for adequate protection of public health from waterborne pathogens. The tool—called 
DPRisk—may be used by anyone interested in characterizing the performance of a specific DPR system, 
but it was specifically envisioned for regulators and other stakeholders to use this tool to inform the 
development of risk-based criteria for the design and operation of DPR systems. An overview of the 
QMRA and PATTP processes are shown in Figure 1-1. 

 
Figure 1-1. Overview of the Steps Involved in Quantitative Microbial Risk Assessment and Probabilistic 

Assessments of Treatment Train Performance. 
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1.2 Technical Work Group and Research Team 
The State Water Board commissioned a Technical Work Group (TWG) and research team to conduct the 
DPR-1 research. The TWG provided technical support and review for all phases of the project including 
the literature review, the development of a framework for the PATTP and QMRA approach, 
specifications, and scope of work for the research team, and coordination with the research team on 
project deliverables. The research team was responsible for incorporating input from the TWG and 
developing tools and guidance for the use of PATTP and QMRA. The goal of the DPR-1 project was to 
develop sound technical opinions on two key topics: 1) development of guidelines for the evaluation of 
DPR facility performance (PATTP), and 2) the use of QMRA to assess the level of treatment required to 
achieve risk-based targets. The relationship between pathogen concentrations, treatment performance, 
and risk is shown in Figure 1-2. 

 
Figure 1-2. Relationship between Pathogen Concentrations, Treatment Performance, and Risk. 

1.3 Key Deliverables 
The project was divided into three phases that built off of each other. The major deliverables from the 
three phases are described below. Throughout the process, the TWG and research team had frequent 
communication and input from staff from the State Water Board, the Water Research Foundation, and 
the Research Coordinating Committee. All deliverables were reviewed by the relevant stakeholders. 

1.3.1 Literature Review 
The TWG developed the literature review to 1) review key assumptions associated with PATTP/QMRA, 
2) develop a uniform method to evaluate PATTP/QMRA, 3) develop a set of relevant scenarios, and 4) 
develop guidance on how to review and evaluate findings. The literature reviewed served as the basis 
for the subsequent deliverables produced by the research team. 
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1.3.2 Specifications for PATTP and QMRA Tool 
The TWG created specifications for the research team to help guide the development of the PATTP and 
QMRA tools. The document described the functionality, flexibility, and outputs of the tools. 

1.3.3 Research Team Scope of Work 
The TWG developed a scope of work for the research team describing the required tasks to develop the 
PATTP and QMRA tools, conduct quality assurance, engage with the TWG and the State Water Board, 
and provide recommendations for future work. 

1.3.4 Quality Assurance Project Plan  
The research team developed a quality assurance project plan (QAPP) to ensure the final web-based 
tool, guidance document, workshop materials, and other supporting information satisfied the 
requirements of the research team’s scope of work and the technical specifications that were reviewed 
and approved by the State Water Board. 

1.3.5 Guidance Document and DPRisk Tool 
The research team developed a web-based tool called “DPRisk” and a guidance document (Appendix B) 
to facilitate the QMRA and PATTP processes so that users could easily evaluate various policy and 
treatment alternatives. 

1.3.6 Training Workshops 
Workshops were held on July 14 and August 4, 2020, to provide training to the State Water Board staff 
on PATTP and QMRA. Workshops were conducted by both the TWG and the research team. 

1.4 Organization of Final Report 
The three major deliverables from the project are the literature review, the DPRisk tool, and the 
guidance document. These documents are summarized in Chapter 2 and provided in their entirety as 
appendices. Chapter 3 concludes the Final Report with conclusions, recommendations, and proposed 
future efforts. 
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CHAPTER 2 
 

Summary of Work Performed and Deliverables 
 
2.1 Literature Review  
The first phase of the project was a literature review with the following goals: 

• Identify and compare key assumptions underlying published QMRAs, including the target pathogens 
evaluated (reference pathogens), the modeling of treatment performance, the metrics used for 
quantifying the presence and removal of pathogens, and assumptions regarding pathogen exposure 
and relevant dose-response functions.  

• Develop a uniform method to review and evaluate PATTP and QMRA. 
• Develop a set of most relevant and important scenarios (e.g., pathogen, treatment, and exposure 

route combinations) for consideration in the PATTP and QMRA. 
• Develop guidance on how to review and evaluate the data and assumptions for PATTP and QMRA, 

including how to evaluate pathogen data from nonculture methods such as molecular methods, 
where viability and infectivity is a consideration. 

The outcomes of the literature review were used to develop a scope of work including specifications and 
requirements for the PATTP and QMRA tools. The goal of the PATTP and QMRA tools is to provide DDW 
with a consistent approach that has been developed and vetted by the experts involved with the TWG 
and research team. The literature review was the first step to developing a consistent approach for 
PATTP and QMRA (Figure 2-1).  

The literature review was submitted to DDW for review and comment. The final literature review can be 
found in Appendix A. 

 
Figure 2-1. Literature Review Aimed to Develop Consistent Approach for PATTP and QMRA. 
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2.2 Specifications for PATTP and QMRA Tool 
Upon completion of the literature review, the TWG put together specifications for the functionality of 
the PATTP and QMRA tool. The specifications acted as a blueprint for the research team’s development 
of the PATTP and QMRA tools. The specifications included requirements for the defaults, functionality, 
flexibility, inputs, outputs, and limits for each step of the PATTP and QMRA process. The specifications 
provided the research team with a roadmap for how to develop a tool that would apply PATTP and 
QMRA with a consistent approach and would satisfy the desired end-uses for DDW. 

Draft specifications were provided to DDW for review and comment. Comments were incorporated into 
the research team’s scope of work. 

2.3 Research Team Scope of Work  
The TWG developed a scope of work for the research team. The scope of work described the 
expectations of the research team. The scope included the development of the PATTP and QMRA tools, 
development of a QAPP, communication and interaction with the TWG, development of workshop 
materials for the State Water Board, and development of a guidance document. The tool specifications 
were included as an attachment to the research team’s scope of work. 

2.4 Quality Assurance Project Plan  
The research team developed a QAPP for the development of the PATTP and QMRA tools. The goals of 
the QAPP were to ensure the PATTP and QMRA tools would: 

• Provide results that could be replicated/verified 
• Be updated with new data appropriately 
• Function as anticipated (no bugs/loop holes) 
• Undergo appropriate quality assurance/quality control (QA/QC) prior to release. 

The QAPP was reviewed by the TWG and submitted to DDW for review. The QAPP provided the research 
team and TWG with a roadmap of items (directly related to the technical specifications) to address as 
the tool and guidance document were developed. 

2.5 Guidance Document and DPRisk Tool  
The research team developed the DPRisk Tool and the accompanying guidance document (Appendix B). 
The development of these deliverables included multiple workshops with the TWG as well as frequent 
conference calls with the TWG to ensure proper flexibility and functionality was included in the DPRisk 
Tool.  

The tool was developed using RStudio’s freely available, web-based Shiny platform. RStudio provides 
open source software that allows the user to leverage the R statistical language (https://www.r-
project.org/), which is increasingly being used for QMRA and the analysis of complex microbiological 
data (e.g., metagenomics applications). The free Shiny add-on (https://shiny.rstudio.com/) allows for 
interactive web-based user interfaces. DPRisk was developed with significant flexibility to allow for 
adaptation to a wide variety of potential treatment scenarios. A screenshot of the home screen for 
DPRisk is provided in Figure 2-2. 

DPRisk provides the user with the ability to specify the following: 

• Raw Wastewater Pathogen Concentrations 
o Target pathogen 
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o Concentration dataset (raw data or as a distribution) 
• Treatment Train Performance 

o Log reduction for multiple unit processes described using raw data, a point estimate, or a 
probability distribution 

• Treatment Failures 
o Magnitude, duration, and frequency of failures applied to unit processes or overall treatment 

train 
• Management Barriers 

o Inclusion of blending, dilution, and pathogen die-off 
• Exposure 

o Volume and frequency of consumption of water in a day either by point estimate, probability 
distribution, or a user-input file 

• Dose-Response 
o Dose response model and parameters including the option for a user-input dose-response 

model 

 
Figure 2-2. Home Page of the DPRisk Tool. 

The primary outputs from DPRisk include the resulting distributions of treatment performance, daily 
risk, and annual risk. Figure 2-3 shows an example of a daily risk output. These results are available to 
the user to download. 
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Figure 2-3. Example Output of Daily Risk Distribution. 

The guidance document accompanies DPRisk and is the “user guide” for the tool. The guidance 
document describes the functionality of each step of the DPRisk tool and provides case studies from the 
literature as examples for the user to become familiar with the inputs and outputs of the tool. These 
case studies also acted as QA/QC on the tool to ensure DPRisk could accurately replicate studies from 
the literature (Figure 2-4). The guidance document provides insights into how changing certain 
parameters in the PATTP and QMRA will impact the resulting risk of infection. 
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Figure 2-4. Case Studies Acted as QA/QC for DPRisk. 

Both DPRisk and the guidance document went through multiple rounds of review with the TWG. The 
research team held a workshop with the TWG to introduce the first version of DPRisk and the guidance 
document. The TWG provided comments and provided QA/QC on DPRisk to ensure there were no bugs 
or loop holes in the tool’s functionality. DDW was also provided with a period to provide QA/QC on the 
tool. 

The guidance document and DPRisk were provided to DDW for review and comment. Comments were 
incorporated into final versions. The final guidance document is provided in Appendix B. 

2.6 Training Workshops  
In addition to the guidance document, the research team and TWG held two virtual training workshops 
with DDW.  

The first workshop was held on July 14, 2020, and included the following agenda: 

• Introduction and Background on PATTP & QMRA (Figure 2-5) 
• Live Demonstration of DPRisk Tool 
• Case Study – Live Demonstration 

The goal of the first workshop was to provide DDW with background on the PATTP and QMRA processes 
and introduce the functionality of DPRisk. Following the first workshop, DPRisk and the guidance 
document were provided to DDW so they could become more familiar with DPRisk and develop 
questions or comments for the second workshop. 

A

B

Daily Benchmark
C

DPRisk Output
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Figure 2-5. Slide from the First Virtual Workshop with DDW. 

A second virtual workshop was held with DDW on August 4, 2020. The agenda for the second workshop 
included: 

• Review Case Studies (Figure 2-6) 
• Impact of Raw Wastewater Pathogen Concentration Assumptions 
• Impact of Treatment Redundancy 
• Impact of Treatment Variability 
• Impact of Failure Assumptions 
• Sensitivity Analysis 

The goal of the second workshop was to dive deeper into the functionality of the DPRisk and provide 
insights on how different assumptions impact risk. The training and case studies were meant to 
introduce the various features of the tool to the State Water Board and demonstrate its capabilities and 
limitations. The TWG and research team did not provide guidance on how the tool should be used to 
develop regulations nor was this part of either group’s charge.  

 
Figure 2-6. Slide from the Second Virtual Workshop with DDW. 

The complete workshop materials are provided in Appendix C. 
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CHAPTER 3  
 

Conclusions and Future Efforts 
 
3.1 Conclusions 
Maintaining consistent control of pathogens is the most critical goal for public health protection in DPR. 
The DPR-1 research project provides the State Water Board with a framework for understanding how to 
characterize the risk from waterborne pathogens in DPR settings and how that risk can be controlled 
through treatment. The DPR-1 TWG and research team purposefully did not offer recommendations for 
specific treatment requirements in DPR. Nevertheless, the DPRisk tool can be used to evaluate how the 
selection of different log reduction targets—such as 12/10/10 for enteric 
virus/Giardia/Cryptosporidium—impacts the ability of a system to meet different performance or risk 
targets, such as the daily risk target of 2.7x10-7 infections per person. Given the stochastic approach 
recommended by DPR-1, the State Water Board will need to define the level of compliance that is 
sufficient to meet their requirements for both risk and treatment. Should compliance with the daily risk 
goal be achieved 90% of the time? 99%? These risk management decisions were not addressed by the 
DPR-1 project, but will be important decisions for regulatory development. The impact of treatment on 
compliance with the risk goal was illustrated during the August 4, 2020, workshop (Figure 3-1). 
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Figure 3-1. Impact of Treatment Redundancy on Compliance with the Daily Risk Goal. 
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While the DPR-1 project focused on the interaction between treatment and risk, it is important to keep 
in mind that multiple other elements of a potable reuse system factor into public health protection, 
including source control, monitoring, operations, diversions, secondary disinfection in the distribution 
system, blending, and storage. Because these elements work in tandem, a reduction in one element can 
often be compensated by augmenting another. For example, shorter storage times could be offset by 
elements such as a) more rapid monitoring that allows operators to identify water quality issues and 
divert before the water is distributed to consumers, or b) downstream treatment at a surface water 
treatment plant.  

The key differentiator between DPR and indirect potable reuse (IPR) is the absence of a “significant” 
environmental buffer, i.e., one that complies with the requirements of the groundwater recharge or 
surface water augmentation regulations. The absence of the environmental buffer means that its 
benefits—including retention time and contaminant control (i.e., dilution and/or die-off)—need to be 
accounted for by other elements in the system. A recent series of papers provides additional discussion 
on the benefits of these buffers for public health protection (Pecson et al. 2018a, 2018b). One 
intermediate option that is open to raw water augmentation (RWA) DPR projects, however, is the use of 
a small reservoir (or groundwater basin) that cannot meet the requirements of the IPR regulations. The 
State Water Board acknowledged that such projects have a different (ostensibly lower) risk profile than 
either a hard-piped RWA project or a treated water augmentation (TWA) project (SWRCB 2016). In 
addition, the DPR Expert Panel encouraged the State Water Board to consider the potential benefits of 
environmental buffers, irrespective of size, as a means of taking advantage of temperature equalization, 
storage, and peak attenuation (Olivieri et al. 2016). The DPRisk tool includes the ability to evaluate the 
benefits of “management barriers” such as small reservoirs, engineered storage buffers, and blending, 
and to quantify their benefits in terms of pathogen control.  

To fully understand the protection offered by DPR systems, the TWG recommends that the State Water 
Board continue to develop frameworks for incorporating the benefits of these management barriers 
into their analyses. Systems that use an environmental buffer might then be allowed to rebalance the 
level of protection provided by other barriers. For example, if a small reservoir provides weeks of 
retention time for a DPR project, then the requirements for automated diversions linked to real-time 
monitoring could be relaxed. The longer system response times would be the justification for 
rebalancing the monitoring and diversions. Similarly, if the reservoir provides significant attenuation of 
contaminant peaks, additional requirements for treatment could also be rebalanced to account for this 
protection. Rebalancing the requirements for systems that take advantage of an environmental buffer 
may drive more project sponsors to include these elements in their projects.  

One of the key benefits of the environmental buffer that cannot be replaced by other DPR elements is 
response time. IPR systems have developed a balance between failure prevention and failure response 
that takes into account the significant response time provided by the environment. For example, the 
stringency of treatment can be relaxed if there is ample time to respond to treatment issues that occur. 
As failure response time drops from months (IPR) to hours or minutes (DPR), however, this approach will 
become increasingly less feasible. Consequently, DPR will require greater reliance on automated 
responses (e.g., diversions) that are linked to real-time monitoring. Improvements in monitoring and 
control systems will decrease the time needed to respond to a treatment excursion or failure. Such 
modifications will be critical to adapt to the shorter retention times provided in many DPR systems. The 
Water Research Foundation’s project 4954 is currently developing a practical blueprint for an enhanced 
monitoring and control system that protects public health by providing real-time integration and 
response to performance data. The outcomes of this study will provide important information as the 
State Water Board determines monitoring and control requirements for DPR systems.  
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3.1.1 Flexibility of the DPRisk Tools 
The DPRisk tool has been built with a high degree of flexibility to allow the State Water Board to easily 
incorporate new information into their future analyses. The TWG recommends that the State Water 
Board continue to identify and incorporate new research related to relevant PATTP/QMRA topics 
including new pathogen monitoring data, studies on pathogen inactivation and removal, the 
development of new dose-response functions for relevant pathogens, and the adoption of new 
frameworks for crediting unit processes. The most obvious future addition for DPRisk evaluations is the 
use of the new pathogen monitoring data from the second DPR research project (DPR-2). Once 
complete, these results will be added into DPRisk by the research team and TWG as a default dataset. 
Other examples include the findings from WRF project 4997, which recently developed an updated 
framework for pathogen crediting through membrane bioreactors including new log reduction values. 
These new point estimates can be added into the PATTP application of DPRisk to account for the 
modifications to the virus and protozoa removal credits. The US EPA is also currently seeking applicants 
to develop new or improved frameworks for monitoring and crediting virus removal through water 
recycling plants. Future findings from these studies could also be incorporated into a DPRisk evaluation. 

Beyond crediting frameworks, researchers are also continuing to better understand the fate of 
pathogens through treatment. For example, recent advancements have provided additional insight into 
the fate of norovirus through disinfection processes. Rockey et al. (2020) recently published a study 
indicating that norovirus has greater sensitivity to ultraviolet light inactivation than other commonly 
used surrogates including MS2 bacteriophage. This finding, which was based on polymerase chain 
reaction analyses, was also recently confirmed through the use of the new norovirus culture method by 
the same group (unpublished data). Similar data for other pathogens of interest can be incorporated 
into DPRisk through the use of updated LRVs in the PATTP side; the impacts of these data can then be 
observed for both treatment and risk.  

3.1.2 Impact of SARS-CoV-2 
The COVID-19 pandemic demonstrated the importance of emerging pathogens on all aspects of life, 
including the water sector. One immediate concern with any new pathogen, in addition to factors such 
as environmental persistence, transmission route, dose-response, etc., is to know whether the pathogen 
can be controlled by existing safeguards, or whether it requires additional levels of control. For example, 
do the IPR requirements of 12/10/10 log reduction for virus/Giardia/Cryptosporidium sufficiently control 
SARS-CoV-2? As described in the DPR-1 project, multiple inputs are needed to make this assessment 
including 1) knowledge of its concentrations in raw wastewater, 2) an understanding of its removal and 
inactivation through treatment, and 3) knowledge of its dose-response characteristics. Many of these 
items were knowledge gaps at the beginning of the pandemic, though rapid progress has been made to 
understand each of these topics. For example, DPR-2 included monitoring for SARS-CoV-2 in all of its 
samples at five different wastewater treatment facilities since March 2020. A number of additional 
researchers across the country and globe have also been actively compiling these data. Studies on SARS-
CoV-2 and similar coronaviruses provide insight into its fate through treatment processes and progress 
has also been made to model the dose-response characteristics of the virus. With these data in hand, 
the DPRisk tool can be used to confirm whether or not the existing requirements—based on enteric 
viruses—will need to be reset based on SARS-CoV-2.  

3.1.3 Using Molecular Data in DPRisk 
One of the limitations of quantifying pathogen concentrations with molecular methods is the 
uncertainty regarding the ratio of genome copies to infectious units (GC:IU). In line with Van Abel et al. 
(2017), the TWG recommended in the Literature Review that a range of assumptions from 1:1 to 
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>10,000:1 be evaluated as part of the sensitivity analysis. While the DPRisk tool does not include the 
ability to specify different GC:IU ratios, the impact can be evaluated by simply adjusting the raw 
wastewater concentration inputs across multiple scenarios (i.e., a sensitivity analysis on GC:IU ratio).  

Eftim et al. (2017) developed statistical distributions to describe raw wastewater norovirus 
concentrations as a base 10 lognormal distribution with a mean of 4.0 log10 gc/L and a standard 
deviation of 1.1 log10 gc/L. Converting this to the base e lognormal distribution results in a μ of 
4.0×2.303 = 9.2 and σ of 1.1×2.303 = 2.5 (Figure 3-2). Using these parameters as a baseline scenario 
would essentially represent a GC:IU ratio of 1:1. 

 
Figure 3-2. DPRisk Input of Norovirus Concentrations Using a Base e Lognormal Distribution. 

After setting up a scenario with this raw wastewater concentration input, the bottom of the QMRA 
Output screen includes a link to download the underlying parameter set. The raw wastewater pathogen 
concentrations in units of gc/L are listed in the second column of that file (i.e., the “input” column). One 
way to implement the sensitivity analysis is to simply divide those concentrations by the desired GC:IU 
ratio. For example, a GC:IU of 100 means that for every 100 genomes detected by molecular methods, 
only 1 represents an infectious virus. After dividing each concentration by 100, the 10,000 data points 
could be transferred to a new .csv file, which could then be used as an input file for a subsequent 
modeling scenario. This process could then be repeated, each time dividing the original concentrations 
by a new GC:IU ratio, until the full range from 1:1 to 10,000:1 had been captured. 

This same approach can be used when starting with a user-defined input file for the baseline scenario. 
For example, Soller et al. (2018a) used a log10 uniform distribution to describe secondary effluent 
norovirus concentrations with a minimum-to-maximum range of 3.9-6.2 log10 gc/L. Similar to the 
adenovirus example in Case Study 3 in the guidance document (Appendix B), log10 uniform distributions 
require a user-defined input file. Different GC:IU ratios could then be evaluated by modifying the 
concentrations as described above. A GC:IU ratio of 10:1 would shift the log10 uniform distribution so 
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that the new minimum-to-maximum range would be 2.9-5.2 log10 gc/L. Corresponding shifts to 1.9-4.2 
and 0.9-3.2 log10 gc/L would account for 100:1 and 1000:1 ratios, respectively.  

Figure 3-3 illustrates the examples from Eftim et al. (2017) and Soller et al. (2018a) for GC:IU ratios 
ranging from 1:1 to 10,000:1. One important note is that the concentrations in the input file should not 
be log-transformed; the data should be actual concentrations in gc/L. The graphs show log10-
transformed data for clarity.  
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Figure 3-3. Illustration of a Sensitivity Analysis Evaluating Different Assumptions about Genome 

Copies to Infectious Units (GC:IU). 
Source: Data from Eftim et al. 2017 and Soller et al. 2018. 

When working with a lognormal distribution, such as the Eftim et al. (2017) example, there is also a 
much simpler approach to conduct the sensitivity analysis. For each GC:IU ratio, the μ, or lognormal 
mean, should be reduced by ln(GC:IU). So, for a μ of 9.2, a GC:IU ratio of 10 would require the input to 

Eftim et al. (2017)

Soller et al. (2018)
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be reduced by ln(10) or 2.3, resulting in a revised μ of 9.2 – 2.3 = 6.9. A GC:IU ratio of 100 would require 
the input to be reduced by ln(100) or 4.6, resulting in a revised μ of 9.2- 4.6 = 4.6, and so on. No change 
is required for the standard deviation so the σ parameter should remain at 2.5 for all GC:IU scenarios.  

In DPRisk, there is also a way to confirm that these modifications to the lognormal modification are 
accurate. As shown earlier, the original lognormal distribution from Eftim et al. (2017) (i.e., μ = 9.2 and σ 
= 2.5) can be input into DPRisk to generate a parameter set file containing raw wastewater 
concentrations. These baseline concentrations can be divided by 10 (i.e., GC:IU = 10) to generate a new 
.csv input file, and this new input file can be used in a subsequent modeling scenario, with DPRisk 
instructed to assume a lognormal fit for the data (Figure 3-4). Then in the QMRA output, the parameters 
of the fitted lognormal distribution will be displayed (i.e., μ = 6.9 and σ = 2.5). 

 
Figure 3-4. DPRisk Input Window for Raw Wastewater Pathogen Concentrations (Left) and 

Confirmation of the Settings in the Output Window (Right).  

3.2 Future Efforts 
Throughout the DPR-1 project, a number of knowledge gaps were identified. In each case, adequate 
assumptions or workarounds were identified and incorporated. The TWG has identified a few relevant 
topics that should be considered for future research efforts.  

3.2.1 Pathogen Monitoring Studies 
Based on the preliminary results, the DPR-2 project appears to have made significant advancements in 
the monitoring of pathogens in raw wastewater. The low rate of non-detects across all of the pathogen 
groups suggests that the new QAPP and standard operating procedures (SOPs) may offer increased 
method sensitivity compared to previous studies. Furthermore, the QA/QC requirements—including the 
use of matrix spikes—allows for the quantification of recovery efficiency and better insight into sources 
of variability between samples and locations. Consequently, the DPR-2 data set provides an important 
new baseline for understanding pathogen concentrations in raw wastewater and should be included in 
the default data for DPRisk. 

While DPR-2 provides 120 data points to characterize these concentrations (i.e., five facilities collecting 
24 samples each), additional pathogen monitoring data from these and other facilities would continue 
to offer advantages. On the drinking water side, surface water treatment plants are required to perform 
a watershed sanitary survey every five years that includes—among other requirements—a summary of 



 

Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 19 

source water quality monitoring data and a description of activities and sources of contamination (CCR 
Section 64665). The Long Term 2 Enhanced Surface Water Treatment Rule (LT2) supplemented existing 
regulations to address Cryptosporidium in systems with higher risk. LT2 requires two rounds of source 
water monitoring to characterize the risk from Cryptosporidium (categorized into four risk “bins”) and to 
determine the appropriate level of treatment to control that risk. These 24-month campaigns require 
monthly monitoring of Cryptosporidium, E. coli, and turbidity for most treatment plants (40 CFR § 
141.701). The logic of characterizing source waters and confirming treatment requirements would seem 
to apply to all potable applications regardless of the source water. This “source to tap” view of 
protection is a part of the Safe Drinking Water Act and was recommended as an appropriate strategy for 
potable reuse as well (Tchobanoglous et al. 2015). Given the relative lack of pathogen information in 
wastewater compared to surface waters, requiring periodic monitoring campaigns would provide 
additional data with which to understand the risks from pathogens in DPR. Unlike conventional sources 
where the presence of pathogens is a possibility, it is an expectation that they be present in wastewater 
systems. If the State Water Board includes requirements for monitoring, the TWG recommends that 
agencies utilize the QAPP and SOPs developed by the DPR-2 project (Pecson et al. 2020). 

3.2.2 Failure Analysis 
One of the key recommendations from the DPR-1 project is for the State Water Board to consider the 
impact of treatment failures on risk. The literature review, guidance document, and training workshops 
emphasized that even short-term or rare failures can have important consequences on risk. 
Unfortunately, there are only a limited number of studies that have characterized the frequency, 
magnitude, and duration of failures that occur at wastewater and advanced water treatment facilities. 
While additional studies are recommended, such information may be particularly difficult to obtain since 
it requires operations staff to document the errors and failures that occur at their plant. This tension 
may help explain why there are so few published papers on this topic. As a starting place, it may be 
beneficial to convene a group of regulators who have knowledge of known treatment plant failures 
(including at the wastewater, advanced water, and drinking water treatment plants) and use their 
experience to help develop reasonable failure scenarios for the modeling. Through such discussions, the 
State Water Board may develop a rationale to assign the type and frequency of the production of off-
spec water and/or overt failures to different unit processes on a process-by-process basis. In the 
meantime, the global failure approach described in the guidance document (Appendix B) is the 
recommended strategy for incorporating failures.  

It should also be noted that many of the failures that were modeled would likely have been identified by 
the surrogate monitoring framework (or some other fail-safe practice). This fact highlights again that 
multiple elements are included to protect public health with treatment being only one of them. Even 
though high risks were reported during failure events, the inclusion of other elements—such as 
monitoring, storage, and diversions—could be employed to prevent that water from being distributed to 
a consumer. It is important to understand failures and the implications for risk, but it is also important to 
understand whether those risks would actually be realized by the community or if the system has other 
features to respond and mitigate those risks.  
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APPENDIX A 
 

PATTP & QMRA Literature Review  
 
A.1 Introduction 
The California State Water Resources Control Board (State Board) has recommended research be 
conducted to address knowledge gaps that are necessary for developing criteria for Direct Potable 
Reuse (DPR). Six research projects have been identified to address these gaps. The first of the DPR 
research topics (DPR-1) focuses on developing tools for the State Board’s Division of Drinking Water 
(DDW) to implement a probabilistic analysis of treatment train performance (PATTP) and quantitative 
microbial risk assessment (QMRA). These tools can ultimately be used to help DDW confirm the 
necessary log removal requirements to protect public health from enteric viruses, parasitic protozoa 
(Cryptosporidium, Giardia) and other relevant bacterial pathogens1.  

DPR-1 is led by a Technical Work Group (TWG) that provides technical support and review for all phases 
of the project. The goal of the DPR-1 project is to develop sound technical opinions on two key topics: 1) 
development of guidelines for the evaluation of DPR facility performance (PATTP), and 2) the use of 
QMRA to assess the level of treatment required to achieve risk-based targets. The first phase of the 
project is a literature review to address the following topics: 

• Identify and compare key assumptions underlying published QMRAs, including the target pathogens 
evaluated (reference pathogens), the modeling of treatment performance, the metrics used for 
quantifying the presence and removal of pathogens, and assumptions regarding pathogen exposure 
and relevant dose-response functions.  

• Based on the literature review, develop a uniform method to review and evaluate PATTP and QMRA. 
• Develop a set of most relevant and important scenarios (e.g., pathogen, treatment, and exposure 

route combinations) for consideration in the PATTP and QMRA. 
• Develop guidance on how to review and evaluate the data and assumptions for PATTP and QMRA, 

including how to evaluate pathogen data from nonculture methods such as molecular methods, 
where viability and infectivity is a consideration. 

The outcomes of the literature review will be used to develop a scope of work including specifications 
and requirements for the PATTP and QMRA tools that will be implemented by the Research Team in 
Phase 2 of the project. The tools will provide DDW with a consistent approach that has been developed 
and vetted by the experts involved with the TWG and Research Team. DDW will also be trained by the 
Research Team and TWG so that DDW can use the tools to assist them with DPR regulatory 
development. An overview of the QMRA and PATTP processes are shown in Figure A-1. 

 
1 The PATTP/QMRA tool—referred to as DPRisk—has the flexibility to model additional pathogens in these classes 
as well as other classes of pathogens. The information needed to evaluate additional pathogens includes: a) raw 
wastewater concentrations of the pathogens, b) knowledge of the reduction of the pathogen through treatment 
processes, and c) dose-response data. 
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Figure A-1. Overview of the Steps Involved in Quantitative Microbial Risk Assessment (QMRA) and 

Probabilistic Assessments of Treatment Train Performance (PATTP). 

A.2 Historical Context of QMRA and Risk-Based Targets 
The primary goal of potable water applications is to provide drinking water that reliably protects public 
health. The two main groups of contaminants of public health concern are toxic chemicals and 
pathogenic microorganisms. At the concentrations found in municipal wastewaters, most toxic 
chemicals do not lead to a health impact after a single exposure, but rather require longer periods of 
chronic exposure to potentially exert a health effect. Brief periods of exposure to high or low 
concentrations of toxic chemicals are less relevant for understanding health impacts than the average 
lifetime concentrations. Pathogens, on the other hand, can initiate an infection after a single exposure 
and so represent an acute threat to public health2. As a result, treatment barriers must be consistently 
effective to reduce pathogen concentrations to acceptable levels.  

One of the key moments in the history of public health was identifying the link between waterborne 
pathogens and human disease. Once understood, the water industry began using a bacterial standard to 
verify the microbial acceptability of drinking water: if the treated water was shown to have non-
detectable levels of total coliform, it was deemed to be suitable for human consumption (NRC, 2004). 
With a treated water standard as the sole requirement, it was not necessary to quantify the removal of 
pathogens through treatment; it was sufficient to simply show that the treated water met the standard. 
Eventually, the scientific community realized that other pathogens—including enteric viruses and 

 
2 Many pathogens lead to acute infections that are characterized by a rapid onset of disease followed by a 
relatively short period of symptoms and then resolution. Certain pathogens, such as poliovirus and hepatitis C 
virus, however, may lead to chronic health outcomes. 
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protozoa—were more resistant to treatment than bacteria. Reliance on the coliform standard alone was 
deemed to be insufficiently protective. As a result, enteric viruses, Giardia lamblia cysts, and 
Cryptosporidium oocysts were added to drinking water regulations in the U.S. in the late 20th and early 
21st centuries.  

With the introduction of the new viral and protozoon pathogens, treated water monitoring was no 
longer capable of demonstrating adequate pathogen control: the acceptable levels of virus and protozoa 
were below those that could be detected with existing monitoring techniques (Regli et al. 1991; Macler 
and Regli 1993; Trussell et al. 2013). Instead, the new regulations required that a minimum degree of 
pathogen reduction through the treatment train be demonstrated, such that the treated water would 
achieve the low levels considered to be acceptable. One option for defining the microbial acceptability 
of potable water is to set limits on the risk of infection associated with its consumption. This risk target 
can then be used in QMRA in which experimental data are combined with mathematical models and 
statistical probabilities to estimate the required removal of a particular microbial hazard to be 
acceptable (Haas et al. 1999; World Health Organization, 2016).  

Traditionally, QMRA has been used to estimate adverse outcomes and public health risks (Haas et al. 
1999), and aid in risk management, risk communication, and decision making (Beaudequin et al. 2015; 
Petterson and Ashbolt 2016). One of the risk management strategies is to specify treatment 
requirements to ensure that source waters are adequately treated to reduce the concentrations of 
pathogens down to acceptable levels. Since the Surface Water Treatment Rule in 1989, risk-based 
treatment standards have been developed for drinking water and potable reuse (EPA, 1989; EPA, 1998; 
EPA, 2006; DDW, 2018). These standards include log-removal requirements for enteric virus, Giardia, 
and Cryptosporidium (V/G/C) of 4/3/2 for surface waters in the United States (U.S.) and 12/10/10 for 
potable reuse in California (and other states). While the specific pathogen treatment requirements 
needed to produce drinking water from surface water differ from those needed for potable reuse, both 
were developed with the same risk-based target in mind (i.e., 10-4 infections per year or an annual risk of 
1 in 10,000 people). Given the link between treatment and risk, QMRA can help identify appropriate 
levels of treatment to achieve public health targets. Regulators use this information to establish 
treatment requirements that help to ensure that the risk-based targets are met.  

Both processes include multiple steps that can be approached in different manners. The following 
sections a) describe the various inputs required for the evaluation of treatment train performance and 
QMRA, b) lay out the options for completing each of these steps, and c) provide guidance on how to 
consistently perform both PATTP and QMRA. 

A.3 Influent Raw Wastewater Pathogen Concentrations 
A.3.1 Pathogens to Include in QMRA and PATTP Evaluations 
One of the key questions in undertaking PATTP/QMRA is, “What are the pathogens of greatest 
relevance?” One option is to focus on the pathogens whose reduction is mandated by existing 
regulations. Under EPA’s Surface Water Treatment Rules, pathogens in drinking water are controlled by 
specifying log reduction requirements for three enteric pathogens3: enteric viruses, Giardia and 
Cryptosporidium spp. (EPA, 1989; EPA, 1998; EPA, 2006). These same three pathogen groups are 
regulated under California’s potable reuse regulations for groundwater recharge and surface water 
augmentation (DDW, 2018). Many past PATTP and QMRA studies have used one or more of these 

 
3 The 1989 Surface Water Treatment Rule also provides protection against the growth of microorganisms in the 
distribution system by setting limits on the concentration of heterotrophic bacteria and Legionella. 
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pathogen groups (NRC, 1998; Ander and Forss 2011; Barker et al. 2013; Amoueyan et al. 2017; Chaudhry 
et al. 2017; Pecson et al. 2017; Soller et al. 2017a; Soller et al. 2018a). 

Another strategy is to focus on pathogens that have the largest contribution to public health burden 
(Scallan et al. 2011) (Table A-1). From this lens, human Norovirus and pathogenic bacteria—including 
Salmonella and Campylobacter spp.—are also of interest. Past water reuse related QMRAs have 
included Norovirus (Ander and Forss 2011; Barker et al. 2013; Amoueyan et al. 2017; Chaudhry et al. 
2017; Soller  et al. 2017a; Soller et al. 2018a), human adenovirus (Soller et al. 2017a; Soller et al. 2018a), 
Campylobacter jejuni (Barker et al. 2013; Soller et al. 2017a; Soller et al. 2018a), and Salmonella enterica 
(Chaudhry et al. 2017; Soller et al. 2017a; Soller et al. 2018a).  

Table A-1. Health Burden of Pathogens That Are Also Waterborne. 
Source: Data from Scallan et al. 2011. 

No. Pathogen  Episodes Hospitalizations Deaths 
1 Norovirus 20,796,079 55,825 569 
2 Giardia intestinalis 1,121,864 3,289 31 
3 Salmonella spp. (non-

typhoid) 
1,095,079 20,608 403 

4 Campylobacter spp. 1,058,387 10,599 95 
5 Clostridium perfringens 966,120 438 26 
6 Cryptosporidium spp. 678,828 2,473 42 
7 Shigella spp. 421,048 4,672 32 
8 Staphylococcus aureus 241,188 1,063 6 
9 Toxoplasma gondii 173,415 8,859 654 

10 STEC non-O157 138,063 331 0 

It should be noted that the appropriate selection of a smaller group of reference pathogens can obviate 
the need to directly measure a wider range of pathogens. For example, the oocysts of Cryptosporidium 
are both small (4-5 µm) and resistant to many chemicals compared to cysts of most other parasitic 
protozoa, making it the preferred reference pathogen to represent protozoa through separation 
processes (such as granular media filtration) and disinfection (including free chlorine, chloramine, and 
ozone). Consequently, setting treatment requirements based on the reduction of oocysts of 
Cryptosporidium provides a significant factor of safety for the removal of other protozoon pathogens 
that are either larger, more sensitive to disinfection, or both (e.g., Giardia). While both Giardia and 
Cryptosporidium are regulated pathogens, some recent studies have concluded that focusing on 
Cryptosporidium alone is sufficient because its smaller size and greater resistance to disinfection (Crook 
et al. 2013; Olivieri et al. 2016; Pecson et al. 2017). The same rationale was applied in the development 
of the treatment criteria for the 1989 Surface Water Treatment Rule – the use of virus and Giardia 
eliminated the need to also regulate bacteria, since the non-bacterial indicators are more resistant to 
treatment (Regli et al. 1991). Recent risk assessments have also confirmed that bacterial pathogens do 
not significantly contribute to overall risk relative to the other target pathogens. 

The State Board has identified six critical knowledge gaps that must be addressed to support their DPR 
regulatory effort, with one gap related to the characterization of pathogen concentrations in raw 
wastewater (State Water Resources Control Board, 2016). As a result, the State Board is currently 
pursuing a pathogen monitoring campaign to develop an expanded dataset of raw wastewater pathogen 
concentrations (Table A-2). This second DPR research project (DPR-2)—undertaken by a TWG—has 
identified the following pathogens and surrogates for inclusion in this full-scale sampling campaign.  
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Table A-2. Pathogens and Surrogates Included in the DPR-2 Monitoring Campaign. 
Pathogen / Indicator Enumeration  Method 
Enterovirus Culture and molecular EPA 1615 
Adenovirus Culture and molecular Rigotto, C. et al. (2011) 

and Ko, G. et al. (2005) 
Norovirus Molecular EPA 1615 
Male-specific coliphages Culture and molecular EPA 1601 and 1602 
Giardia cysts Microscopy EPA 1693 
Cryptosporidium oocysts Microscopy EPA 1693 

The pathogens and indicators included in the pathogen monitoring campaign include the three historical 
drinking water and potable reuse pathogens: enteric viruses, Giardia, and Cryptosporidium. The 
campaign will utilize traditional EPA methods for the enumeration of these pathogens, namely, 
microscopy-based methods for Giardia and Cryptosporidium (EPA 1693), and both cell culture and 
molecular methods for enterovirus (EPA 1615). While these enumeration approaches have pros and 
cons, using these techniques allows direct comparison of the new data with previous monitoring 
campaigns, many of which have used the same methods. 

The campaign will also widen beyond the historically used pathogens to include a broader range of 
viruses evaluated with both culture (adenovirus) and molecular techniques (adenoviruses and 
noroviruses). Finally, male-specific coliphages will be used as a viral indicator and quantified with both 
EPA culture-based methods as well as a qPCR assay. Data from this study will be available to the DPR-1 
TWG and Research Team for inclusion in the PATTP/QMRA. 

TWG Recommendation: 
The TWG recommends the evaluation of the following: (1) the existing drinking water pathogens 
(Enterovirus, Giardia, and Cryptosporidium) along with (2) a wider range of enteric viruses (namely, 
adenoviruses and noroviruses), and (3) a human viral indicator (coliphages). This group of pathogens 
and indicators represents the historically relevant pathogens along with an expanded set of 
contemporary and emerging pathogens. Furthermore, additional information on coliphage 
concentrations may be useful for PATTP as an indicator for the reduction of viruses through treatment. 

A.3.2 Raw Wastewater Pathogen Data 
As the starting point for the exposure analysis in the QMRA process, it is critical that estimates of 
reference pathogen concentrations represent what may occur in raw wastewater4. Assumptions that 
cause this dataset to be too conservative could result in treatment requirements that require 
unnecessary, costly infrastructure or operational features. On the other hand, assumptions that 
underestimate pathogen concentrations in raw wastewater could result in treatment requirements that 
are not sufficiently protective of public health. To carefully scrutinize pathogen estimates, the State 
Board has devoted one project, DPR-2, to developing quality data for pathogen concentrations in raw 
wastewater. This section will explore the following questions: 

• What raw wastewater pathogen concentration data should be used? 

 
4 Multiple starting places may be selected for QMRA including raw wastewater or treated wastewater that has 
undergone primary or secondary treatment. Texas and Australia, for example, have selected secondary effluent as 
the starting place for their treatment requirements. In such cases, the pathogen concentrations in the secondary 
effluent would be the starting place for QMRA. In California’s potable reuse regulations, all requirements have 
assumed raw wastewater as the starting place. 
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• How should raw wastewater pathogen concentration data be used? 
• How should non-detect values in a dataset be handled? 

A.3.2.1 What Raw Wastewater Pathogen Concentration Data Should Be Used? 
Given the limited number of US-based studies of pathogens in raw wastewater, the work of Rose et al. 
(2004) is often used in QMRA studies (Amoueyan et al. 2017; Pecson et al. 2017). This Water 
Environment Research Foundation study evaluated raw wastewater concentrations of a number of 
pathogens (Enterovirus, Giardia, Cryptosporidium) and indicators (total and fecal coliform, Enterococci, 
Clostridium perfringens, male-specific and somatic coliphages). This data set has served as the basis for 
the crediting of pathogen removal through wastewater treatment plants engaged in potable reuse in 
California, and was used by the California DPR Expert Panel in their evaluation of DPR feasibility (Olivieri 
et al. 2016). While the Rose data have served as the historical pathogen dataset, methods have moved 
on since that study and the DDW has stated that they will no longer solely use that data as the basis for 
defining raw wastewater pathogen concentrations and assigning pathogen log reduction through 
treatment. This decision stems from a number of factors including the fact that the Rose dataset 
includes only 5-6 samples per treatment plant, which is fewer than the 20-24 samples that the State 
Board is now requiring for pathogen monitoring studies. 

In the absence of a trusted and exhaustive dataset of raw wastewater pathogen concentrations or an 
agreed to process to select such data, it is difficult to know what data should be used. The QMRA 
process is sensitive to the assumptions made in each study for raw wastewater pathogen concentrations 
(Nappier et al. 2018) and various literature reviews have been performed or used to describe 
wastewater concentrations (Amoueyan et al. 2017; Chaudhry et al. 2017; Soller et al. 2017a; Soller et al. 
2018a). However, what has not been well described is the inherent variation in reference pathogen 
concentrations (i.e., actual spatiotemporal variability) versus the uncertainties in their estimations.  

The range in occurrence data in the literature could be attributed to several different factors including 
the methods used to enumerate pathogens, inefficient or poor method recovery, the size of the 
sewershed sampled from, the geographic location, the degree of water conservation within that 
geographic location, or the season samples were taken. For example, studies have predicted that the 
distributions of pathogens in very small communities may show much greater variability in pathogen 
densities. In large communities, the impact of outbreaks is dampened out and there is a relatively lower 
degree of contact between community members (Barker et al. 2013; Olivieri et al. 2016). Given the 
direct link between wastewater quality and public health in potable reuse scenarios, higher levels of 
treatment will be required for areas with higher raw wastewater pathogen concentrations and greater 
inherent variability in pathogen treatment performances.  

Additionally, it should be noted that due to the difficulty of enumerating pathogens in raw wastewater, 
some studies have used pathogen concentrations from primary or secondary effluent. This choice also 
can impact the findings of QMRAs (Nappier et al. 2018).  

As discussed above, the State of California is undergoing a research project (DPR-2) to gain a better 
understanding of the concentrations of reference pathogens present in raw wastewater. This research 
project will fill an important knowledge gap for potable reuse-related QMRAs. The pathogen monitoring 
being undertaken by the State of California as part of DPR-2 will be conducted in large California cities 
where agencies have expressed interest in pursuing DPR or are currently pursuing IPR.  

TWG Recommendation 
The TWG recommends that DDW use the raw wastewater pathogen data developed by DPR-2 TWG. The 
TWG anticipates that this dataset will include historic literature data in addition to the new data that will 
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be collected over the 12- to 18-month monitoring campaign that the State is undertaking from 2019 to 
2021. The historical data that will be used in the dataset will have been scrutinized and filtered by the 
DPR-2 TWG to include data that meets the following criteria: 

• Data from the US, Europe, Canada, or Australia 
• Data for municipal wastewater (as opposed to industrial wastewater) 
• Data collected after 2000 
• Data collected with the newest methods available 

The use of this dataset will ensure that treatment requirements for DPR are based on the best available 
raw wastewater pathogen concentration data. Furthermore, a large number of datapoints (>120) will be 
from California wastewater agencies whose pathogen concentrations have been enumerated with the 
updated standard operating procedure from DPR-2. 

A.3.2.2 How Should Raw Wastewater Pathogen Concentration Data Be Used? 
Collecting and compiling an appropriate dataset of raw wastewater pathogen concentrations for 
modeling is its own challenge, but it is followed by the question of how to use the data. In the past, 
treatment requirements have been determined using the peak concentration of the pathogen seen in 
wastewater (Hultquist 2016; Gerba et al. 2017). In the absence of a complete, trusted dataset, this was 
the approach most protective of public health, albeit potentially overly conservative. Selecting the peak 
pathogen concentration seen in the literature as the basis for determining treatment requirements may 
place an unnecessary burden on treatment systems—the odds of a peak concentration occurring are 
rare, yet systems are required to provide a very conservative level of protection at all times. 

Other values for raw wastewater pathogen concentrations have been used in QMRA studies. Most agree 
that using an average concentration is not an appropriate assumption and not protective of public 
health due to the wide variability in pathogen concentrations that is typically observed (Gerba et al. 
2017). Instead, studies have used a probability distribution to characterize raw wastewater pathogen 
concentrations. In some studies, minimum and maximum concentrations from the literature are used 
and assumed to fit a uniform or log uniform distribution (Soller et al. 2017a). However, other studies 
aggregate data from the literature and fit a distribution to the data using maximum likelihood 
estimation (MLE) (Pecson et al. 2017). The benefit of a probabilistic analysis using a distribution of data 
is the ability to capture a range of data and performance as opposed to singular estimates that may not 
be representative of the diversity in different sets of data (Olivieri et al. 2016). Typically, a Monte Carlo 
analysis is then used in QMRA, randomly selecting multiple samples from each reference pathogen’s 
concentration distribution, simulating treatment performance (i.e., PATTP), and running the resulting 
concentration (or dose) through the dose-response model. The challenge is then to define the risk-based 
target as a percentile (say 95th percentile) for acceptability. 

Generally, raw wastewater pathogen concentrations have been fit to a probability distribution, and 
typically the distributions have been modeled using a log-normal distribution (Rose et al. 1996; Koivunen 
et al. 2003; Lemarchand and Lebaron 2003; Barker et al. 2013; Chaudhry et al. 2017; Eftim et al. 2017) or 
gamma distribution (Ander and Forss 2011; Petterson and Ashbolt 2016), which lead to minor 
differences particularly if the relative standard deviations are less than one (Haas 1997). For example, in 
the Expert Panel Final Report on the evaluation of the feasibility of DPR, Olivieri et al. (2016) developed 
a lognormal distribution of the concentration of Cryptosporidium based on data from Rose et al. (2004) 
to use in their analysis. 
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TWG Recommendation 
The TWG recommends that DDW use the dataset developed by the DPR-2 research project to develop 
distributions of raw wastewater pathogen concentrations. The distributions should be developed using 
MLE methods, the Akaike Information Criterion (AIC), or Bayesian Information Criterion (BIC). Multiple 
platforms including R, Matlab, and Crystal Ball have capabilities to perform distribution fitting. Using a 
distribution of raw wastewater pathogen concentration will allow DDW to understand the range of 
concentrations that are typically seen while still capturing extreme events on the tail ends of the 
distribution. Using the peak concentration is a conservative assumption that would result in 
conservative treatment requirements that may have significant impacts on the infrastructure and 
operational costs that would be required to pursue a DPR project. 

A.3.2.3 How Should Non-detect Values in a Dataset Be Handled? 
The occurrence of non-detects in a sample is affected by the source concentration, analytical sample 
size, and the analytical recovery profile for the sample matrix (Chik et al. 2018). When developing a 
dataset of raw wastewater pathogen concentrations, it is likely that some of the samples will yield a 
non-detect. A dataset that includes data that is either above or below the limit of detection is called a 
“censored” dataset. If the values are below the limit of detection (for which the true values of the data 
are unknown), the data are considered “left-censored.” Left-censored datasets are common in 
environmental microbiology (Canales, R.A. et al. 2018). Traditional methods to address non-detects 
include substitution (replacing non-detects with a specific value) and omission (discarding the non-
detect data), though those approaches can cause the data to be biased (Parkhurst and Stern 1998). In 
addition, non-detects can tell us something important about the dataset and can be used to help inform 
a probability distribution. Methods have been developed to utilize non-detect values (Helsel and Hirsch 
2002; Helsel 2005).  

In a critical review of how to handle non-detects in microbial datasets, Chik et al.(2018) summarized a 
few of the common practices: 

• Omit the non-detects entirely 
• Substitute the non-detects with the method detection limit 
• Substitute the non-detects with half the method detection limit 
• Assume the non-detects are zeros with random sampling error 
• Use censored data techniques 

Omitting the non-detects or substituting the non-detects are practices that result in biased distributions 
(Parkhurst and Stern 1998; Helsel 2005) and would result in overly conservative estimates of pathogen 
concentrations (Chik et al. 2018). 

In a recent paper, Canales et al. (2018) evaluated five different approaches for handling low (10%) to 
severe (90%) left-censored data and determined that two methods relying on multiple imputation led to 
the lowest error and bias when compared to actual data. The approach has two steps: in the first, the 
uncensored data are used to estimate the parameters of a lognormal distribution based on MLE 
methods. The approach accounts for the fact that part of the dataset—i.e., the censored data below the 
limit of detection—are not included in the estimation when developing the parameters. As an example, 
Figure A-2 shows a left-censored dataset where approximately 25% of the values are below the limit of 
detection (LOD). The remaining values would then be used to estimate the lognormal distribution with 
MLE methods. 
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Figure A-2. Probability Plot of a Left-Censored Dataset of Environmental Enterococci Concentrations. 

Once the distribution has been defined, the left-censored data can be assigned values through 
imputation. In brief, the modeled log-normal distribution can be randomly sampled until sufficient data 
below the LOD have been selected to replace the left-censored data. This “multiple imputation” 
approach provided the lowest error and bias compared to other approaches. Consequently, this 
approach may be useful particularly if the environmental datasets are well described by log normal 
distributions. It should be noted, however, that the TWG’s recommendation is to use the modeled 
distributions rather than the discrete data points to more fully capture the range of possible values (see 
Section 3.2.2), in which case assigning values to the left-censored data is not necessary.  

TWG Recommendation 
The TWG recommends that non-detects in a raw wastewater pathogen concentration dataset be 
included in a probability distribution of the data using censored data techniques, such as the ones 
described in Canales et al. (2018). Censored data techniques have established methods and have been 
used in the industry in the past. The literature clearly shows that omitting the data or substituting the 
non-detect data with some version of the method detection limit biases the data in an inappropriate 
manner. While the censored data technique may be a conservative method for estimating microbial 
non-detects (Chik et al. 2018), the method of assuming that non-detects are zeros and applying random 
sampling error may not be conservative enough when considering the larger implications of using this 
dataset for a QMRA for direct potable reuse. The TWG would rather have slightly conservative estimates 
of raw wastewater pathogen concentrations and understand that there may be an inherent safety factor 
built into the analysis.  

A.3.3 Enumeration Methods – Pros and Cons 
Several analytical techniques can be used to enumerate pathogens in water samples, each with its own 
set of pros and cons. A description of three of the most commonly used techniques—culture assays, 
microscopy assays, and molecular assays—is provided in the following sections. Because the assays use 
different approaches for quantifying pathogen levels, the ideal assay for measuring the performance of 
a unit process may depend on the mechanism it employs for pathogen reduction (e.g., physical removal, 
disinfection, etc.), as described in Cangelosi, G.A. and Meschke, J.S. (2014). For any method, it is also 
important to consider method recovery (performance) and if the endpoint represents likely infectious 
pathogens. 
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A.3.3.1 Culture-Based Enumeration 
Classical enumeration techniques rely on cell culture to determine the number of infectious pathogens 
present in a water sample. Cell culture quantifies the number of infectious pathogens by allowing them 
to reproduce in a population of host cells and cause an identifiable impact on the growth or morphology 
of those cells (e.g., cell death, changes in morphology, development of plaques, etc.). One benefit of cell 
cultures is that they assess the ability of a pathogen to perform all of the steps required for an infection, 
from 1) the initial identification and binding to the host, to 2) the entry of the pathogen or its genetic 
material into the host, to 3) the generation of an observable impact on the host. For this reason, cell 
cultures provide the greatest insight into the infectivity of the pathogen. This is an important criterion 
when the data are being used for risk assessment because only infective pathogens will impact public 
health. At this time, culture methods are the only technique capable of directly providing data on 
infectivity (Wigginton et al. 2018). 

The major limitation of culture methods is that they have only been developed for a subset of the 
known human pathogens, and at that, do not detect all infectious forms. The organisms with developed 
culture methods may not be the most conservative indicators of risk or treatment performance. 
Furthermore, many methods require expensive equipment, highly-trained laboratory technicians, and 
extensive time periods to yield results. While bacterial assays are the most common and least predictive 
of the selected pathogens (Table A-2), viruses and protozoa typically require more complicated host cell 
systems typically involving tissue cultures (Wigginton et al. 2018).  

Unfortunately, culture assays do not yet exist or are in their developmental stages for a number of 
important pathogens of public health concern. Norovirus, for example, is one of the key public health 
pathogens of concern for which a culture method has not yet been fully developed. Recently, new 
methods have been developed that may allow for the enumeration of norovirus by cell culture, though 
the methods remain in their infancy (Jones et al. 2014; Ettayebi et al. 2016). The use of these new 
methods is being explored in a current WRF 15-07 project. Giardia is another important pathogen for 
which there is no established culture method to estimate viability (Barash et al. 2017). 

Culture methods have been developed for Cryptosporidium, though they are not as widely employed as 
the standard microscopy-based enumeration assays described in EPA 1623 and 1693 (Wigginton et al. 
2018). 

A.3.3.2 Microscopy-Based Enumeration 
Pathogens can also be directly enumerated using microscopy-based methods. Typically, these methods 
require the concentration and purification of pathogens from water samples prior to visualization via 
microscopy. EPA 1623 and 1693 are two of the most frequently used microscopy-based methods that 
are used for the enumeration of Giardia cysts and Cryptosporidium oocysts. Microscopy methods 
benefit from the fact that they do not require the development of host cell cultures, and, therefore, 
have the potential to identify a wider range of pathogens. By eliminating the need for culturing, 
microscopy methods can also provide more rapid results than culture assays. 

The negatives of microscopy include the general inability to examine pathogen infectivity, although vital 
stains (e.g., LiveDead™) provide an approximation. Consequently, the results from microscopy-based 
methods add further uncertainty when incorporated into risk assessments. As a conservative approach, 
it can be assumed that 100% of the pathogens enumerated microscopically are infective. Due to the 
physical constraints of visualizing small particles, light microscopy is also more common for the larger 
pathogens—such as protozoa and bacteria—and is not possible for virus-sized pathogens. 
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A.3.3.3 Molecular Enumeration 
The use of molecular detection methods—such as quantitative PCR (qPCR) or digital PCR (dPCR)—has 
led to a large influx of data on pathogen concentrations in wastewater in the last two decades. The 
benefit of molecular methods is that they provide rapid, specific identification of pathogens without 
needing culture assays or microscopy. They accomplish this by targeting and quantifying the number of 
pathogen genomes present in the sample. Results of qPCR assays are typically reported in units of 
“genome copies” per mL or L. Typically, it is possible to identify target sequences in the pathogen’s 
genome that are unique to that organism, allowing for highly specific identification. This specificity is an 
advantage of molecular techniques over cell culture and microscopy techniques. 

The most important limitation of these methods is that the results are frequently difficult to relate to 
the number of infective pathogens present in the sample. Assumptions need to be made regarding what 
fraction of the genome copies in the sample are associated with infective pathogens (Haas 2020). For 
the last decade, multiple studies have documented the high degree of false-positives associated with 
PCR-based methods resulting from the presence of intact genomes within inactivated organisms 
(Nuanualsuwan and Cliver 2002; Pecson et al. 2009; Pecson et al. 2011; Wigginton et al. 2018; Hamza 
and Bibby 2019). This topic continues to be the focus of multiple research efforts. Mixed results are seen 
with modifications based on the use of propidium/ethidium monoazide to bind with inactivated 
pathogens’ nucleic acid, so inhibiting subsequent qPCR for inactivated pathogens (Leifels et al. 2019). 

For certain pathogens, however, molecular methods provide the only option for enumeration. One of 
the most important public health pathogens that can only be assayed through molecular methods is 
Norovirus (Wigginton et al. 2018). Challenges when incorporating Norovirus into QMRAs stem from the 
fact that there remains uncertainty regarding how to appropriately use molecular data in a QMRA, and 
which dose-response model or models are appropriate (NRC, 2012; Olivieri et al. 2016; Van Abel et al. 
2017). The challenges of incorporating noroviruses into QMRA is detailed further in Section 5.2.1. 

TWG Recommendation 
The TWG recommends the use of culture-based enumeration methods—when available—as they 
provide the most straightforward indication of pathogen infectivity. In the absence of culture methods, 
both microscopy and molecular methods can be used to estimate pathogen concentrations, though any 
assumptions about the infectivity of the enumerated pathogens should be emphasized. If possible, 
efforts should be made to use the same pathogen quantification technique for both the raw wastewater 
and the development of the dose-response curves. The TWG recommends sensitivity analyses to 
evaluate the impact of different assumptions about pathogen infectivity in raw sewage and any 
deviations from the original feeding studies. 

A.4 Treatment Train Performance 
Several papers have developed methods to evaluate the treatment performance of DPR treatment 
trains using QMRA (Olivieri et al. 2016; Amoueyan et al. 2017; Chaudhry et al. 2017; Pecson et al. 2017; 
Soller et al. 2017a). However, there are different methods of evaluating performance that can yield 
varying degrees of associated risks. In this section, we describe different methods for assessing 
treatment performance. 

A.4.1 Quantifying Pathogen Removal  
In a DPR treatment train, there are many treatment processes most relevant to pathogen reduction. The 
key challenge is to quantify this removal/inactivation (termed ‘pathogen reduction’ in this review), 
which can be undertaken in several different ways.  
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Multiple studies have used human pathogens or microbial indicators to directly assess pathogen 
reduction performance (Olivieri et al. 1999). It is important to note that the direct measurement of 
pathogen or indicator reduction can provide perhaps the best estimate of the “actual” performance of 
the system. Direct measurements may not, however, be feasible for ongoing operational monitoring due 
to the long turnaround between the time when the water is sampled and when results are available. 
Due to the limitations of current pathogen monitoring methodologies, days to weeks may be needed to 
evaluate pathogen removal performance. These long delays can be problematic, particularly if the 
quality of the water needs to be monitored and verified on shorter timescales. Oftentimes, regulations 
require that unit processes be measured on an interval as frequent as once every 15 minutes, a 
constraint that limits the applicability of many microbial methods. In fact, the Expert Panel Final Report 
evaluating the feasibility of DPR suggests that all DPR systems have high frequency monitoring of 
surrogate constituents (Olivieri et al. 2016). 

For this reason, it is important to differentiate between the “actual” level of pathogen removal and that 
which can be rapidly and continuously demonstrated. In lieu of direct pathogen measurements, 
surrogate water quality parameters are frequently used to provide a continuous evaluation of system 
performance. Combining data on microbial challenge studies with surrogate water quality parameters 
provides useful information on the relationship between the two measures (Zimmerman et al. 2016). 
Examples of surrogate use include turbidity to measure filter performance and disinfectant “CT” dose to 
quantify the degree of inactivation. Oftentimes, these surrogates have lower sensitivity (i.e., greater 
conservatism) than direct microbial methods, and thus may underestimate the actual level of public 
health protection that could be demonstrated in a microbial challenge study. Because they can provide a 
rapid and continuous demonstration of performance, however, surrogates are frequently used as the 
basis for the crediting of pathogen barriers.  

Both of these methodologies for quantifying pathogen reduction have been used in QMRA studies. For 
example, Soller et al. (2017a) and Chaudhry et al. (2017) used pathogen reduction values from the 
literature to develop statistical distributions describing treatment process efficacy, or log removal values 
(LRVs). Whereas Pecson et al. (2017) calculated pathogen reduction from high-frequency surrogate 
monitoring data at a 1 MGD demonstration facility. The LRVs calculated in Pecson et al. (2017) were 
based on the California regulatory crediting scheme. The use of existing crediting schemes to evaluate 
treatment performance has also been used by Amoueyan et al. (2017) and Amoueyan et al. (2019).  

In addition to pathogen reduction through treatment barriers, other factors affecting pathogen 
concentrations can be considered in a QMRA. Some studies assign pathogen decay rates based on 
values found in the literature that contribute to the reduction of pathogens through a treatment train 
(Lim et al. 2017) or through the environment (Amoueyan et al. 2017). Risk assessments have included 
varying the impacts of different assumptions (e.g., sensitivity analyses on storage and travel time in the 
environment) to quantify the benefits of IPR buffers relative to DPR. One issue with incorporating 
assumptions about die-off is that DDW generally does not recognize die-off in its crediting of pathogen 
reduction for potable reuse projects. For example, studies have evaluated the natural attenuation of 
pathogens in surface waters (Boehm et al. 2018), but in California no pathogen credit is assigned for the 
retention of purified water in the surface water augmentation projects. One notable exception is the 
crediting of virus inactivation at the rate of 1 log per month of retention time in the aquifer in 
groundwater recharge projects. While this is something that could be considered in the future, the fate 
of pathogens and rate of die-off through the environment are not yet well-understood. Moreover, this 
component of overall pathogen reduction will be insignificant in DPR applications that do not contain an 
environmental buffer. 
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A.4.4.1 TWG Recommendation 
The TWG recommends that the PATTP/QMRA focuses on performance data that can be used to show 
regulatory compliance with pathogen reduction requirements. In most cases, this is synonymous with 
surrogate monitoring data that are required for existing crediting frameworks in lieu of direct pathogen 
measurements. Given the lower frequency of data collection, direct pathogen measurements may not 
capture the variability present in treatment performance. With conservative surrogate monitoring 
frameworks, a wider range of performance can be captured due to the high frequency of the 
monitoring. By developing the treatment requirements for DPR using similar high-frequency surrogate 
data, DDW will be able to directly compare the treatment requirements they develop to what a 
potential project may be proposing. In this way, there will not be the need for additional safety factors 
to be applied to treatment requirements.  

A.4.2 Describing Performance  
To effectively estimate risk, it is important to accurately characterize the operational performance 
provided by the treatment train. This means capturing periods when the treatment train is performing 
at or above its design criteria, but also periods of sub-optimal performance or overt failure when the 
train is failing to meet minimum requirements. The characterization of performance can be achieved in 
many ways, including through the use of point estimates or distributions of unit process performance. 
The selection of an appropriate distribution or point estimate is one of the most critical pieces of a 
QMRA (Nappier et al. 2018).  

Generally, studies quantify performance through the use of either a) surrogates that relate pathogen 
reduction to indirect measurements of process performance (e.g., turbidity reduction), or b) through 
challenge studies in which pathogens or indicator organisms are directly measured into and out of a 
process. Once the data are collected, the performance of the unit processes are frequently described as 
either point estimates (i.e., single values of performance) or with distributions (i.e., ranges of values). 
Previous QMRAs have used the full gamut of possibilities to quantify and model performance. Site-
specific surrogate performance data have been used to develop both point estimates (Amoueyan et al. 
2017) and distributions of pathogen removal (Pecson et al. 2017). Both site-specific challenge studies 
(Olivieri et al. 1999) and ranges from the literature have been used (Chaudhry et al. 2017; Soller et al. 
2017a) to develop performance distributions. 

 One principal benefit of site-specific data is that they provide the most accurate depiction of 
performance at a given site. At the same time, the data may be less applicable across facilities where 
differences in the treatment train design, operations, and maintenance may lead to significant variations 
in performance. In such circumstances, using performance data from the literature may provide a more 
broadly applicable view of performance. Nevertheless, this practice includes more variability than would 
be expected at any single facility (Smeets 2010). Caution should be used when aggregating performance 
data from the literature given that different jurisdictions may have different regulatory requirements 
that impact the shape and range of performance distributions. If an acceptable performance interval at 
Site 1 is unacceptable at Site 2, it would not be appropriate to use performance data from Site 1 to 
evaluate compliance at Site 2. For example, the UV disinfection of unrestricted-use recycled water in 
California requires a minimum dose of 100 mJ/cm2 after granular media filtration. Using performance 
data from a facility with different UV dosing requirements would not be appropriate for aggregation into 
the dataset. 

Several different distribution types have been used to describe performance of the unit processes. 
Chaudhry et al. (2017) used a combination of distributions (normal and uniform) along with point 
estimates to describe the performance of unit processes various treatment train. Soller et al. (2017a) 
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used uniform distributions based on minimum and maximum values seen in the literature for some 
treatment processes and used single point estimates for other treatment processes. In contrast, Pecson 
et al. (2017) used site-specific surrogate monitoring data from a year-long study and developed 
distributions using statistical methods to describe the performance of each unit process in a DPR 
treatment train. In some cases, point estimates of unit process performance have been used, 
particularly for processes whose performance cannot be easily measured or credited with existing 
frameworks, such as secondary treatment (Amoueyan et al. 2017).  

To estimate the performance of the entire treatment train, Monte Carlo simulations are typically used 
to sample and aggregate the performance of the individual unit processes into distributions of the 
overall pathogen log reduction (Olivieri et al. 1999; Amoueyan et al. 2017; Pecson et al. 2017). The 
distribution of overall pathogen log reduction is then used in conjunction with raw wastewater 
distributions to create a distribution of treated water pathogen concentrations.  

A.4.2.1 TWG Recommendation 
The TWG recommends developing performance distributions based on the collection of high-frequency 
surrogate monitoring data that has been filtered appropriately to include the true variation in 
performance. The performance data should be equivalent to those specified under existing crediting 
frameworks to assign pathogen reduction credits (i.e., LRVs). For example, the translation from 
surrogate data (e.g., free chlorine CT) to pathogen reduction (e.g., virus inactivation) should be based on 
existing frameworks utilized in California (e.g., EPA free chlorine CT tables for virus inactivation). Once 
developed, the distribution of pathogen log reductions should be parameterized (i.e., modeled) based 
on vetted statistical methods. The distribution of treatment train performance should be developed 
using a Monte Carlo approach to sample from each of the individual unit processes making up the 
overall train.  

The use of performance distributions based on site-specific surrogate monitoring will provide DDW with 
examples that can be used to develop treatment requirements. It will also allow DDW to begin to 
understand typical variability that may be seen in each unit process and develop an understanding of 
how much variability is acceptable while still being protective of public health. 

A.4.3 Quantifying Failures 
Multiple QMRA studies have shown that even short-duration failures can lead to a significant impact on 
the overall profile of risk (Haas and Trussell 1998; Pecson et al. 2017; Soller et al. 2018a). Given the 
importance of failures, it is perhaps surprising that there are few studies that have characterized the 
frequency, magnitude, and duration of failure events at wastewater and advanced treatment facilities 
(Ander and Forss 2011; Tng et al. 2015; Pecson et al. 2018).  

Ander and Forss (2011) utilized a fault-tree analysis framework to describe the different types of failures 
that occur with common unit processes. The benefit of this framework is that it can be used in 
conjunction with a site-specific dataset to evaluate the treatment and risk impacts from a well-
characterized set of failure assumptions. One of the limitations of this approach, however, is the raw 
data used to feed the assumptions in the fault tree. Amoueyan et al. (2017; 2019) utilized the Ander and 
Forss fault-tree analysis to model the failures in UF and pre-ozone processes. For other unit processes, 
such as UV, an arbitrary rate of failure was selected based on the lack of peer-reviewed literature 
information. In all cases, it was assumed that failures led to complete loss of treatment (i.e., failure led 
to 0-log inactivation). 

The study by Tng et al. (2015) looked at the mechanical reliability of advanced water treatment facilities 
and concluded that only a small fraction of total mechanical failures would have an adverse impact on 
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water quality. From the data aggregated, they determined that two critical failures (i.e., those impacting 
water quality) would occur for every three unit processes in a treatment train per year. 

Pecson et al. (2017) observed no failures impacting pathogen removal performance of the unit 
processes in their treatment train over a 12-month testing period. To account for rare failures (i.e., ones 
occurring at intervals longer than 12-months) and to add an extra layer of conservatism to the analysis, 
they also artificially introduced failure scenarios into the analysis. They assumed one critical failure per 
unit process per year (in line with other operating facilities and demonstration studies), and that all of 
the failures would result in full loss of pathogen reduction (i.e., 0-log LRV credit). The authors admitted 
that this catastrophic mode of failure is not likely to occur, but selected this assumption to be 
conservative. Finally, the duration of failure was varied to allow different assumptions about failure 
detection and response. The shortest period of failure was 15 minutes, i.e., the maximum amount of 
time in between measurements for a “continuously” monitored system. Failure assumptions extended 
up to 8 hours (one operational shift) and 24 hours. Soller et al. (2018b) also defined the probability, 
duration, and impact of various unit process failures based on actual performance data and then 
characterized public health risk. They noted that these short-duration (e.g., <15 minutes), off-
specification events could drive annual risk in some instances. 

Characterizing unit process interdependence is also important for understanding the impact of failures. 
Systems with a high degree of interdependence may experience cascading failures where a failure in one 
upstream unit process leads to the failure of downstream unit processes. Knowing whether a treatment 
train has high or low interdependence is critical for accurately modeling failure impacts. Pecson et al. 
(2017) showed that one DPR treatment train did not exhibit interdependence, allowing them to model 
failures as independent events. This is line with other studies as well (Haas and Trussell 1998; Olivieri et 
al. 1999). Other studies have modeled interdependence and the possibility of cascading failures. For 
example, Amoueyan et al. (2017; 2019) evaluated the impact of UF failures—and the resulting increase 
in TOC and UV absorbance—on downstream O3 and UV processes. 

A.4.3.1 TWG Recommendation 
Based on the literature review, there is a general consensus that an understanding of process failures is 
an important knowledge gap for potable reuse. New information that becomes available to better 
characterize failures in terms of frequency, duration, and magnitude and the corresponding implications 
for pathogen reduction performance, should be evaluated and incorporated. In the meantime, failures 
should be introduced into the performance datasets, particularly if it was known that failures did not 
occur over the period which the data were collected. The absence of failures during shorter monitoring 
periods does not guarantee that rare failures will not occur over longer timescales.  

The TWG also recommends further investigation into the possibility of cascading failures. While they 
were not observed in Pecson et al. (2017), they were modeled as a possibility in Amoueyan et al. (2017). 
Given the high degree of monitoring required for advanced treatment facilities, how likely is it that the 
failure of one unit process will not be detected before it impacts the next downstream process? For 
example, a failure in RO may impact the effectiveness of a downstream UV/AOP system by raising the 
UV absorbance of the RO product water. If the UV system is equipped with a continuous UVT meter that 
shuts the system down once the water quality drops below a minimum UVT, however, then how likely is 
it that the upstream failure would not trigger a failure response feature? This question should be 
addressed in conjunction with regulators at the State Board to determine whether this scenario should 
be modeled, or whether it can be addressed through existing data or future monitoring requirements.  
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A.5 QMRA Approach 
Once the raw wastewater reference pathogens are selected, pathogen concentrations established, and 
treatment train performance modeled, a distribution of pathogen concentration in the effluent can be 
developed to characterize the exposure dose. Next, each reference pathogen’s dose-response 
relationship is combined with the dose estimate to provide a distribution of risk to compare to the 
selected health-based risk target. This section will discuss each of these steps, as well as any other 
assumptions or decisions that are made in the QMRA process. 

A.5.1 Pathogen Exposure  
A.5.1.1 Exposure Pathways 
Most studies have utilized ‘static models’ that focus on primary pathways of exposure, in particular the 
ingestion of pathogens in drinking water, and not on secondary exposure that may result by passing on 
infections by person-to-person or contaminated surfaces (fomites) (Pecson et al. 2017). Nonetheless, 
dynamic models have also been employed (Barker et al. 2013; Amoueyan et al. 2017). Further discussion 
on static versus dynamic models is given in Section 5.4. 

TWG Recommendation 
The TWG recommends that a static model focused on the primary pathway of exposure be used to 
develop treatment requirements. Secondary exposure to infected individuals will vary for different 
sectors of the public, and stricter treatment requirements would not protect against the secondary 
exposure pathways. Furthermore, secondary exposure has not been previously considered in the 
development of treatment requirements. 

A.5.1.2 Drinking Water Pathogen Concentrations 
In a treated water augmentation DPR scenario, the drinking water pathogen concentration would be 
equivalent to that of the DPR product water, or effluent (Ceff) of the advanced water treatment facility 
(AWTF). For the PATTP/QMRA evaluation, it is assumed that treated water augmentation will be the 
default scenario, i.e., modeling will not account for additional barriers in between the AWTF and 
consumers. Ceff can be estimated by adjusting the raw wastewater, or influent, concentration of the 
target pathogen(s) (Cinf) based on the overall treatment LRV, per the following equation:  

𝐶௘௙௙ = 𝐶௜௡௙10௅ோ௏ 

Monte Carlo simulations can be used to generate both Cinf values (i.e., raw wastewater concentrations) 
and the overall LRV of the treatment train (from the aggregation of the individual unit process 
performance distributions) to develop a distribution for Ceff, the concentration in the final effluent.  

TWG Recommendation 
The TWG recommends that the approach discussed above be used to develop a distribution of effluent 
concentrations from the modeled AWTFs.  

A.5.1.3 Drinking Water Consumption 
QMRA studies have to make assumptions about the amount of water a person consumes each day in 
order to determine the exposure to a particular pathogen. There are two common approaches for 
modeling drinking water consumption: 

• Modeling consumption based on a distribution: 
o Roseberry and Burmaster (1992);  
o EPA exposure factors handbook (EPA, 2011) 
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• Modeling consumption based on a point estimate: 
o 1 L per person per day (Olivieri et al. 2016) 
o 2 L per person per day (Amoueyan et al. 2017; Amoueyan et al. 2019) 
o 2.5 L per person per day, which represents the 90th percentile per capita water ingestion for 

adults based on the 2011 EPA distribution. 

Other studies have conducted a sensitivity analysis to look at the impact of varying assumptions about 
drinking water exposure (Mons et al. 2007). Based on Pecson et al. (2017), the assumptions about 
drinking water exposure led to an approximate two- to three-fold difference in the overall risk 
estimates.  

Different assumptions for drinking water consumption assumptions have been utilized in other risk 
assessments (Ander and Forss 2011). In a review of studies regarding drinking water consumption, Mons 
et al. (2007) concluded that in the absence of country-specific data, a Poisson distribution with an 
average of 3.49 glasses/day (with one glass being 250 mL) should be used as a conservative estimate. 
However, these more conservative estimates of drinking water consumption have been associated with 
more extreme conditions that are not representative of the municipal scale potable reuse envisioned for 
California (e.g., Barker et al. 2013) assumed 3 L per person per day in an Antarctic field station). 

TWG Recommendation 
The TWG recommends that the PATTP/QMRA tools developed by the Research Team include the ability 
to utilize different assumptions about drinking water consumption. At a minimum, the tool should 
include the ability to toggle between a distribution-based approach (Roseberry and Burmaster 1992; 
EPA, 2011) and a point-estimate approach (e.g., 1 L per day to up to 2.5 L per day in multiple aliquots 
per day).  

A.5.1.4 Quantifying Exposure 
The distribution of pathogens in Ceff can be converted to a distribution of doses based on the following 
equation: 𝐷𝑜𝑠𝑒௜௡௧௘௥௩௔௟ =  𝐶௘௙௙ ×  𝑉𝑜𝑙𝑢𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

Where Ceff is calculated as described above and “volume consumed” is based on the assumptions about 
consumption rate and the frequency of consumption events per day. 

This approach was followed in Pecson et al. (2017) using a 15-min interval, and used in Soller et al. 
(2017a) based on a daily interval. Typically, this interval will be dependent on the frequency of the data 
available for treatment train performance. 

Another consideration for drinking water consumption is the number of consumption events per day. 
Van Abel et al. (2014) showed that the risk of infection increased with the number of consumption 
events per day even if the daily intake volume remains consistent. However, given that in a distribution 
system, pulses of water will be delivered to different areas of the distribution system and each pulse 
may be diluted by a different pulse of water delivered at a different time, it is difficult to characterize 
the number of consumption events per pulse of water that leaves the treatment system and enters the 
distribution system. 

TWG Recommendation 
The TWG recommends that the dose be calculated at the same interval as the performance data are 
collected (e.g., every 15 minutes). In this way, the model will be consistently using the same time 
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interval throughout. The TWG recommends assuming that consumers are uniformly exposed to each 
interval of water produced by the treatment facility. For example, if the performance of the unit process 
was calculated hourly, and the total volume of water consumed per day was 2 liters, then each 
consumer would be exposed to 2 L / 24 intervals or 0.083 L each hour of the day. 

A.5.1.5 Blending 
Finally, an assumption must be made about the make-up of the overall drinking water supply. In 
evaluating the risk from DPR, it is important to note that many systems will continue to rely on existing 
and historical supplies (e.g., surface water), and will be supplemented with potable reuse supplies. 
Consequently, DPR supplies will frequently be blended with other water sources that will dilute the 
fraction of the potable reuse supply. Nonetheless, previous studies have assumed that the DPR water 
will be consumed unblended—i.e., without dilution from other supplies—since this provides the most 
conservative estimate of potable reuse exposure (Pecson et al. 2017; Soller et al. 2017a).  

TWG Recommendation 
The TWG recommends that DDW consider the impact of blending from a traditional water source (e.g., 
surface water) when developing treatment requirements. Raw water augmentation and treated water 
augmentation may have different blending scenarios that impact risk, and this should be taken into 
consideration. 

A.5.2 Dose-Response Analysis 
Dose-response relationships provide the link between exposure (e.g., from the consumption of an 
advanced treated effluent) and the probability of infection. Multiple dose-response functions are 
available for the pathogens of interest (Section 3.1), and multiple have been used in past QMRAs. The 
selection of the dose-response function can have a significant impact on the risk estimates (Messner et 
al. 2014; Schmidt 2015; Pecson et al. 2017; Soller et al. 2017a; Nappier et al 2018). Table A-3 
summarizes some of the dose-response relationships used in recent studies.  
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Table A-3. Dose-Response Relationships Used for Various Pathogens in Recent QMRAs. 
Pathogen Dose-Response 

Model 
Equation Parameter 

Values 
Used by 

Adenovirus  
 

Exponential (Crabtree 
et al. 1997) 

1 − 𝑒ି௥ௗ r =0.4172 Soller et al. 
2018a; 
Soller et al. 
2017a; Soller et 
al. 2017b 

Hypergeometric 
(Teunis et al. 2016) 

1− 𝐹ଵଵ ሺ𝛼,𝛼 + 𝛽,−𝑑ሻ α = 5.11 
β = 2.8 

Soller et al. 
2018a; Soller et 
al. 2018b 

Campylobacter 
jejuni  

Hypergeometric 
(Teunis et al. 2005) 

1− 𝐹ଵଵ ሺ𝛼,𝛼 + 𝛽,−𝑑ሻ α = 0.024 
β = 0.011 

Soller et al. 
2018a; Soller et 
al. 2018b; Soller 
et al. 2017a; 
Barker et al. 2013 

Beta-Poisson 
(Medema et al. 1996) 1 − ൬1 + 𝑑𝛽൰ିఈ 

α = 0.145 
β = 7.59 

Van Abel et al. 
2014; Soller et al. 
2017b 

Cryptosporidium 
spp.  

Exponential  
(EPA, 2006) 

1 − 𝑒ି௥ௗ r = 0.09 Soller et al. 
2018a; Soller et 
al. 2018b; Pecson 
et al. 2017; Soller 
et al. 2017a 

Exponential (Barbeau 
et al. 2000; Zhang et 
al. 2012) 

1 − 𝑒ି௥ௗ r = 0.00419 Amoueyan et al. 
2017; Chaudhry et 
al. 2017, 

Fractional Poisson 
(Messner and Berger 
2016) 

𝑃 ×  ൬1 − 𝑒ିௗఈ ൰ P = 0.737 
a = 1 

Soller et al. 
2018a; Soller et 
al. 2017a; Pecson 
et al. 2017 

Beta-Poisson 
(Messner and Berger 
2016) 

𝑃 = 1 −  ൤1 + 𝑑𝛽൨ିఈ 
α = 0.116 
β = 0.121 

Pecson et al. 2017 

Exponential with 
Immunity (Messner 
and Berger 2016) 

 Values 
provided 
by M. 
Messner1 

Soller et al. 2018a 

Giardia lamblia  

Exponential  
(Teunis et al. 1997) 

1 − 𝑒ି௥ௗ r = 0.0199 Soller et al. 
2018a; Soller et 
al. 2018b; Soller 
et al. 2017a; 
Barker et al. 2013 

Norovirus  
 

Hypergeometric 
(Teunis et al. 2008) 

1− 𝐹ଵଵ ሺ𝛼,𝛼 + 𝛽,−𝑑ሻ α = 0.04 
β =0.055 

Soller et al. 
2018a; Soller et 
al. 2018b; Soller 
et al. 2017a; 
Soller et al. 
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Pathogen Dose-Response 
Model 

Equation Parameter 
Values 

Used by 

2017b; Barker et 
al. 2013 

Fractional Poisson 
(Messner et al. 2014) 𝑃 ×  ൬1 − 𝑒ିௗఈ ൰ P = 0.72 

a = 1106 
Soller et al. 
2018a; Soller et 
al. 2017a; Soller 
et al. 2017b; 
Chaudhry et al. 
2017 

Weighted model (Soller et al. 2017b) 

Soller et al. 
2018a; Soller et 
al. 2017b 

Upper Bound – 
Hypergeometric 
(Teunis et al. 2008) 

1− 𝐹ଵଵ ሺ𝛼,𝛼 + 𝛽,−𝑑ሻ α = 0.04 
β =0.055 

Lower Bound – 
Fractional Poisson 
(Atmar et al. 2008; 
Atmar et al. 2014; 
Messner et al. 
2014) 

𝑃 ×  ൬1 − 𝑒ିௗఈ ൰ P = 0.72 
a = 1106 

Rotavirus  
Beta-Poisson  
(Ward et al. 1986) 𝑃 = 1 −  ൤1 + 𝑑𝛽൨ିఈ 

α = 0.253 
β = 0.426 

Pecson et al. 2017 

Salmonella 
enterica  

Beta-Poisson  
(Haas et al. 1999) 1 − ൬1 + 𝑑𝛽൰ିఈ 

α =0.3126 
β =2884 

Soller et al. 
2018a; Soller et 
al. 2018b; Soller 
et al. 2017a; 
Soller et al. 
2017b; Chaudhry 
et al. 2017 

d = dose 
1 30,000 Markov Chain Monte Carlo parameter pairs were provided and used in the analyses  

A.5.2.1 TWG Recommendation 
The TWG recommends that the PATTP/QMRA tools developed by the Research Team include the ability 
to toggle between different dose-response functions and have the ability to enter user-defined 
functions. Specific recommendations for norovirus are provided in the next section. 

A.5.2.2 Norovirus Dose-Response 
Given its important public health burden, Norovirus is of great interest for both drinking water and 
potable reuse applications. One of the main challenges incorporating norovirus into risk assessments 
(and therefore into regulatory frameworks) stems from the fact that methods to assess norovirus 
infectivity remain elusive. While new human Norovirus culture methods show promise, they have not 
been developed sufficiently to assess infectivity of human noroviruses in wastewater and drinking water 
(Jones et al. 2014; Ettayebi et al. 2016). Consequently, Norovirus enumeration is currently limited to 
total viral estimations using molecular methods that provide quantification based on the number of 
genomic targets present in a sample5. The lack of correlation between genome copies and infectious 
units has been well-documented in the literature and is generally the largest impediment to the 

 
5 Different norovirus genogroups can be distinguished based on the selection of the primer and probe set. 
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application of molecular results into QMRA (Haas 2020). This issue is particularly problematic for the 
development of relevant dose-response functions for noroviruses. 

Given norovirus’ importance to public health, efforts have been made to work around the genome copy-
to-infectious units (GC:IU) issue. For example, various challenge studies have been undertaken by 
exposing human volunteers to known doses of Norovirus genome copies. The data are then used to 
develop relationships between the probability of infection for exposure to known numbers of norovirus 
genome copies. In this framework, it is not necessary to characterize the ratio of genome copies to 
infectious units—as long as that ratio is constant, then characterizing the genome copies along in a 
sample is sufficient to predict the probability of infection.  

One of the major limitations of this assumption, however, is that it remains unknown whether or not the 
GC:IU ratio that existed during the human challenge studies is identical to, similar to, or significantly 
altered in environmental matrices like wastewater and subsequent treatments. The human challenge 
studies have used either purified noroviruses that have been suspended in conditions amenable for 
archiving (high-protein veal infusion broth with bovine serum albumin), or freshly prepared stocks 
purified from the feces of infected individuals (Teunis et al. 2008; Seitz et al. 2011; Frenck et al. 2012; 
Atmar et al. 2014; Messner et al. 2014). To use the GC-based dose-response curves in potable reuse 
QMRAs, the GC:IU present during these feeding studies must be similar to the GC:IU ratios present in 
the raw wastewater. Confirming that this assumption is accurate is not straightforward.  

The numerous conditions that can inactivate viruses have varying impact on the structure and integrity 
of the genome. Multiple studies have reported that the loss of infectivity does not correspond in a 1:1 
manner with the loss in qPCR signals. In other words, intact genome copies remain enumerable by qPCR 
even after the viruses have been inactivated by treatment (Sobsey et al. 1998; Shin and Sobsey 2003; 
Duizer et al. 2004; Baert et al. 2008). This finding is predictable given that an intact genome is not the 
only requirement for virus infectivity – the virus must also maintain its ability to bind to its host cell and 
insert its genetic material within the host. These latter functions are not dependent on the genome, but 
on other viral components including the capsid and supporting protein infrastructure (Wigginton et al. 
2012). Treatments that impair these non-genomic regions can also render viruses inactivated. 

Consequently, it is not possible to confirm whether viruses that have been shed by infected human 
hosts and traveled to and throughout the wastewater treatment facility retain the same functionality 
than was present during the challenge studies. Some researchers have posited that most viruses 
detected by qPCR should be infective if they were recently excreted in feces (Gerba et al. 2017). In the 
absence of evidence, it appears likely that their exposure to the wastewater environment may also lead 
to the inactivation of at least a sub-population of viruses. Other studies have shown that virus survival 
may be impacted the presence of organic debris and the formation of viral aggregates. The impact of 
this inactivation on the GC:IU ratio remains a knowledge gap that is critical for correctly utilizing GC-
based dose-response curves in QMRAs. 

In the absence of such knowledge, QMRAs utilizing GC-based dose-response curves should evaluate a 
range of possible scenarios, ideally bookended by findings from the scientific literature (an example of 
this approach can be found in Haas et al. 2017). At one end, the most conservative assumption is that 
every genome copy represents an infectious virus. Studies that have assayed both GC and IU have 
shown that GC:IU ratios much greater than 1:1 can exist, which would ostensibly contradict this 
assumption. Some authors note, however, that this may be due to the fact that the culture assays are 
not enumerating all of the infectious virus (Gerba et al. 2017). A recent study of enteroviruses in the raw 
wastewater feeding the North City Water Reclamation Plant— assayed with both culture and molecular 
methods using EPA Method 1615—provides the most recent data on potential GC:IU ratios (Figure A-3). 
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Two notable points emerge: 1) the GC:IU ratio was consistently greater than 10,000:1 over the 21 raw 
wastewater samples collected during the yearlong campaign, and 2) significant variability of 
approximately four orders of magnitude was observed in this ratio, which ranged from 104:1 to 108:1. 
Even if the culture method were only detecting a fraction of the enteroviruses (e.g., 1-10%), the large 
magnitude of this ratio suggests that the GC:IU would still be significantly greater than 1:1. This suggests 
that the use of molecular data for raw wastewater concentrations in a QMRA may overestimate the 
concentration of pathogens in final drinking water and the public health risk, thereby leading to overly 
conservative treatment targets. 

 
Figure A-3. Ratios of Genome Copies to Infectious Enteroviruses in the Raw Wastewater (Blue) and 

Secondary Effluent (Red) of the City of San Diego’s North City Water Reclamation Plant. 

TWG Recommendation 
After evaluating the recent literature on this topic, Gerba et al. (2017) stated that “estimating ratios of 
infectious virus to genome copies detected by qPCR will probably never be known with certainty in the 
foreseeable future.” Given the current state of the science, the TWG recommends that noroviruses (and 
other non-culturable pathogens, as needed) be included in potable reuse QMRAs using the GC-based 
dose-response curves. However, analyses must incorporate estimates of the uncertainty in the 
assumptions underlying its use. Recommendations from Van Abel et al. (2017) provide guidance to the 
use of the GC-based dose-response relationships regarding a) aggregation, b) susceptible populations, c) 
genogroup differences, and d) the use of multiple dose-response functions as part of the sensitivity 
analysis. The TWG also endorses the approach laid out by Van Abel et al. (2017) related to assumptions 
about infectious and noninfectious particles, namely, that this assumption be explicit in the reporting, 
and that a wide range of possible values be used when assessing risk based on GC-derived dose-
response values. While the DPRisk tool does not include the ability to specify different GC:IU ratios, the 
impact can be evaluated by simply adjusting the raw wastewater concentration inputs. For example, if 
the unmodified dataset spans from 102 to 106 GC/L, adjusting this whole distribution down by an order 
of magnitude (i.e., to 101 to 105 GC/L) would account for a 10-fold increase in the ratio of GC:IU ratios. In 
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line with Van Abel et al. (2017), the TWG recommends that a range of assumptions from 1:1 to 
>10,000:1 be evaluated as part of the sensitivity analysis.  

A.5.3 Risk Characterization 
The two main risk targets used in the literature are a) the 10-4 infections per person per year and b) the 
10-6 disability adjusted life years (DALYs) per person per year (Regli et al. 1991; World Health 
Organization, 1996; World Health Organization, 2006). Many studies undertaken in the US have used 
the 10-4 infections per person per year as the benchmark risk target (Chaudhry et al. 2017; Pecson et al. 
2017; Soller et al. 2017a), whereas the DALY framework is more frequently used outside of the US 
(Barker et al. 2013). For acute gastrointestinal infections, the 10-6 DALYs represents a similar annual risk 
of infection (10-3) as the 10-4 goal, particularly for organisms such as rotavirus and Cryptosporidium 
(World Health Organization, 1996; World Health Organization, 2006; Natural Resource Management 
Ministerial Council et al. 2008). Many studies report both values (Amoueyan et al. 2017; Pecson et al. 
2017; Schoen et al. 2017). The study by Amoueyan et al. (2017) noted that the EPA LT2ESWTR does not 
achieve a single risk threshold (e.g., 10-4 annual risk) for Cryptosporidium, but instead a range of risks 
based on the concentration of oocysts in the source water and the required level of treatment for each 
bin classification. 

Risk may be reported over several time periods including both annual risk and daily risk. Many studies 
will calculate the annual risk in order to compare to the common annual risk targets of 10-4 infections 
per person per year or 10-6 DALYs per person per year. Various starting points/timescales are used to 
annualize risk, although the overall approach is essentially the same. For example, one can develop risk 
estimates for intermediate time periods (e.g., daily, hourly, or 15-minute risk), and then aggregate those 
periods to account for the number of days, hours, or 15-minute periods in a year. Studies that annualize 
risk based on daily risk calculations frequently use the following equation: 

𝑃௔௡௡௨௔௟ = 1 −  ෑ(1 − 𝑃ௗ௔௜௟௬)ଷ଺ହ
௡ୀଵ  

This methodology assumes that each exposure period results in a statistically independent risk of 
infection (Haas and Eisenberg 2001). 

Shorter time periods—including 15-minute intervals—can also be used to aggregate 15-minute risk 
values into a single annual risk via the following equation: 

𝑃௔௡௡௨௔௟ = 1 −  ෑ (1 − 𝑃௡)ଷହ,଴ସ଴
௡ୀଵ  

Where Pannual is a single annual probability of infection and Pn is a single 15-minute risk of infection. This 
approach was followed by Pecson et al. (2017). 

Some studies also look at the cumulative risk of infection by simultaneously accounting for the risk of 
infection from all reference pathogens (Soller et al. 2017a; Soller et al. 2018a). This approach can 
provide greater accuracy if the risk from multiple pathogens is of the same order of magnitude. The 
cumulative risk can then be adjusted for the relevant timescale (e.g., converting from cumulative daily 
to cumulative annual risk). 
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𝑃௖௨௠௨௟௔௧௜௩௘ = 1 −  ෑ(1 − 𝑃௜)௜
௡ୀଵ  

Where Pcumulative is a cumulative probability of infection accounting for i reference pathogens 
simultaneously. 

A.5.3.1 TWG Recommendation 
To date, US regulations have utilized the “infections per person” framework over the DALY framework. 
The TWG recommends maintaining the use of the infections per person framework for consistency with 
previous drinking water and potable reuse regulations.  

Based on input from the State Board in their DPR Regulatory Framework, the TWG is aware that the 
State Board would like to reduce the potential variability that could occur using an annual risk target by 
specifying a maximum daily risk objective. The acceptable daily risk would be calculated as the annual 
risk target of 10-4 infections per person per year divided by 365 days to yield a daily risk target of 2.7x10-

7 infections per person per day. Meeting this daily risk target will ensure compliance with the annual risk 
target. The TWG recommends developing tools that allow for the evaluation of both the daily and 
annual risk values for comparison with their targets. 

A.5.4 QMRA Process Assumptions 
There are a few decisions regarding the mechanics of a QMRA that tend to vary between studies but are 
important to understand and keep consistent. 

A.5.4.1 Static vs Dynamic Models 
Many studies employ a static QMRA methodology (Olivieri et al. 1999; Pecson et al. 2017; Soller et al. 
2017a; Soller et al. 2018a), while other studies use dynamic models (Eisenberg et al. 1996; Barker et al. 
2013; Amoueyan et al. 2017). Static models are focused on the individual and assume there is a single 
exposure event (Soller et al. 2004). Dynamic models are non-linear, mathematical simulations of 
complex interrelated system elements, and one benefit of using them in potable reuse is that they allow 
modeling of temporal variability such as changes in population structure, water quality, and treatment 
performance. A dynamic model would also allow for direct system feedback linking disease prevalence 
within a community to pathogen concentrations in raw wastewater, for example. Table A-4, from Soller 
et al. (2004) below describes some of the key differences between a static and dynamic model. 
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Table A-4. Comparison of Static and Dynamic Risk Assessment. 
Source: Soller et al. 2004. 

Static Risk Assessment Model Dynamic Risk Assessment Model 
Static representation Dynamic representation 
Direct exposure (environment-to-person) Direct and indirect exposure (environment-to-

person and person-to-person) 
Individual-based risk Population-based risk 
Assumes that the potential for secondary 
transmission of infection or disease is negligible. 

Potential for secondary or person-to-person 
transmission of infection or disease exists. 

Assumes that immunity to infection from 
microbial agents is negligible. 

Exposed individuals may not be susceptible to 
infection or disease because they already may be 
infected or may be immune from infection due to 
prior exposure. 

Dose-response function is the critical health 
component. 

The dose-response function is important; 
however, factors specific to the transmission of 
infectious diseases may also be important. 

TWG Recommendation 
The TWG recommends the use of a static model. While a dynamic model is technically more rigorous, 
the number of assumptions required for a dynamic model is much greater than for a static model, and 
those assumptions might have greater uncertainty as well, potentially resulting in reduced accuracy of 
the QMRA. In some cases, static models can yield similar results to dynamic models (Soller and 
Eisenberg 2008). Furthermore, population dynamics and person-to-person exposures have historically 
not been considered when developing treatment requirements. 

A.5.4.2 Stochastic vs Deterministic Models 
Stochastic or probabilistic models incorporate probability distributions to provide an understanding of 
the full range of data that may be available. Deterministic models, such as the models originally used to 
develop the “12/10/10” framework, use point estimates and are restricted by the assumptions for each 
point estimate. However, sensitivity analyses can be used to inform the range of impact from each 
assumption.  

The Expert Panel recommended the use of a probabilistic model to determine treatment requirements 
for DPR, and the State Board committed to evaluating probabilistic QMRA as a potential tool (Olivieri et 
al. 2016; State Water Resources Control Board, 2018). 

TWG Recommendation 
The TWG recommends the use of a stochastic model based on the input from the State Board and their 
Expert Panel. Without a stochastic model, conservative assumptions would always be made, and 
treatment requirements would likely be overly conservative.  

A.5.4.3 Monte Carlo Simulations 
Studies often utilize the Monte Carlo simulation approach within the QMRA process to create 
distributions of risk. The number of simulations that are done to create the distributions can affect the 
shape of these distributions, specifically the tail ends. Studies employing a Monte Carlo approach for 
QMRA have ranged from 1,000 simulations (Soller et al. 2017a; Soller et al. 2018a; Amoueyan et al. 
2019) to 10,000 (Amoueyan et al. 2017) to 100,000 simulations (Chaudhry et al. 2017). 



48 The Water Research Foundation 

TWG Recommendation 
The TWG recommends that the number of simulations done be numerous enough to capture rare 
events (over years). Without enough simulations, rare events may not get captured and will impact the 
tails of the distributions that are created—which are typically drivers in a QMRA (Pecson et al. 2017; 
Soller et al. 2018). 

A.5.4.4 Unit Time Increments 
QMRA will also require that assumptions be made about the time steps used for both the performance 
evaluation and the risk assessment. One option is to use 15-minute time-steps for the performance 
monitoring interval given the fact that potable drinking water applications are frequently required to 
provide “continuous” monitoring of process performance, where “continuous” is defined as no less than 
once every 15 minutes. Most surrogate monitoring systems are capable of measuring values at least 
every 15 minutes (e.g., disinfectant residual meters, turbidimeters, TOC and conductivity meters, etc.). A 
15-minute interval has been used in previous QMRA studies (Pecson et al. 2017).  

Another option is to use a daily interval. This time increment is used in numerous studies (Barker et al. 
2013; Soller et al. 2017a; Soller et al. 2018a; Amoueyan et al. 2019). Daily values for treatment 
performance and water consumption are often more commonplace than shorter time intervals, 
although that trend is shifting with broad implementation of advanced treatment and online 
monitoring. One shortcoming of using a daily increment is the inability to understand the impact of 
short duration (15-min) failures on risk. On the other hand, some scenarios may not require the 
resolution of a 15-min timescale, so it is important to understand the implications of timescale on the 
specific scenario being modeled.  

TWG Recommendation 
The TWG recommends using a 15-min time increment for both the treatment train performance and risk 
assessment. Using a 15-min time increment will allow DDW to understand the impacts of short-duration 
failures and will be able to set treatment requirements and base regulations on the impact these failures 
may have on risk.  

A.6 Linking Performance and QMRA Results  
Ultimately, the goal of this research project (DPR-1) is to provide DDW with the necessary tools to 
implement a probabilistic method (QMRA) to evaluate and confirm the treatment requirements for DPR 
(Figure A-4). In this literature review, the TWG has discussed the multiple steps that are required to 
develop such tools and explored the various assumptions and decisions that can be made at each step. 
However, there are still decisions to be made by DDW about treatment requirements, surrogate 
monitoring for awarding LRVs, and acceptable levels of risk for DPR. The relationship between treatment 
performance and resulting risk is obvious; yet there are subtleties that DDW should consider when using 
these probabilistic methods to confirm acceptable levels of treatment. 
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Figure A-4. Relationship Between Probabilistic Analysis of Treatment Train Performance and 

Quantitative Microbial Risk Assessment. 

The nature of probabilistic methods is that they provide distributions. DDW will need to consider 
distributions of performance, either per unit process or per treatment train. These treatment 
performance distributions may have different variability depending on how they are operated. DDW 
should consider what amount of variability in treatment performance is acceptable. For example, if an 
MF process should be providing 4-log removal of Cryptosporidium, DDW might consider the following 
questions: 

• Should the process be required to meet the 4-log requirement at the 95th percentile value or the 
50th percentile (median) value or some other percentile? 

• How wide can the distribution be? Or in other words, should there be multiple thresholds for 
performance (at the 5th percentile, 25th percentile, etc.)? 

• What are the implications of off-specification conditions (e.g., LRV = 0)? 

When evaluating the impacts of treatment performance, DDW should consider and understand how 
variability in treatment performance impacts risk. 

In addition, DDW should consider the impact of treatment failures on risk. Considerations here include 
the magnitude, duration, and frequency of failures. By either imparting some failure into the model, or 
back-calculating the tolerance for failure in modeled scenarios, DDW can begin to understand the 
tolerance for treatment failures given different treatment requirements (Soller et al. 2017a; Amoueyan 
et al. 2019). Not only should treatment failures be considered, but DDW should take note of the number 
of treatment processes that should be required to meet the risk threshold during failure events. It has 
been demonstrated that an increase in the number of processes reduces the probability that a critical 
failure will occur (Pecson et al. 2015).  

The tools developed from this research project should provide DDW with the ability to develop 
distributions of risk (either daily risk or annual risk or both). These distributions of risk will show at what 
percentage of the time the risk is below the selected risk threshold. DDW should evaluate the 
distributions of risk and understand how changes in treatment performance impact these distributions. 
Failures will have impacts on risk; as will the variability in treatment performance without failures. DDW 
will need to consider the following questions, and more, when developing treatment requirements: 
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• What is the tolerance for risk?  
• Does the risk threshold need to be met at all times? Or at some percentile value? 
• Should the risk compliance goal be some order of magnitude below the risk threshold to account for 

failures in treatment? In other words, should there be a safety factor incorporated to account for 
potential failures? 

• Are the risk thresholds achievable with the selected treatment requirements? 

The TWG suggests that DDW look closely at the risk curves for each pathogen as treatment 
requirements are developed. It is likely that for certain treatment trains, one pathogen will clearly drive 
the need for additional treatment either because it is present at higher concentrations in raw 
wastewater, or because it is harder to treat using the selected treatment processes. However, DDW 
should have standards for treatment for each pathogen that correspond to the associated risks for that 
pathogen. If a certain pathogen ultimately drives the risk for a particular treatment train, possibly 
requiring additional treatment, the QMRA for that combination of pathogen and treatment should be 
carefully reviewed to ensure that all assumptions are reasonable and that an appropriate level of 
conservatism has been considered. 

Finally, as DDW begins to understand how treatment performance and failures impact risk, they will 
need to determine how to incorporate any conclusions into regulations. The tools provided here will 
provide more granularity than may be necessary to include in regulations. Rather than specify 
acceptable performance variability for each treatment process, DDW could choose to include a safety 
factor of some degree that would account for any variability that may occur in treatment.  

A.7 Conclusions 
This literature review has evaluated each step of the QMRA process and the TWG has provided 
recommendations at each of these steps for how to proceed. In some instances, the TWG has 
recommended one clear path (Section 3.1); however, for other steps of the QMRA, the TWG has 
recommended that DDW explore how different choices may impact the results of a risk assessment 
(Section 5.2). The goal is to develop a method that is consistent and uniform and appropriate for 
development of regulations on DPR in California. This literature review will aid the development of 
QMRA and PATTP tools that can ultimately be used by DDW and other stakeholders to inform the DPR 
decision-making and regulatory processes. 
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APPENDIX B 
 

Guidance Document for DPRisk  
 
B.1 Project Definition and Background 
In 2010, California Senate Bill 918 tasked the California State Water Resources Control Board (State 
Board) with evaluating the feasibility of developing water recycling criteria for direct potable reuse 
(DPR). The legislation subsequently launched a series of coordinated efforts:  

• a DPR Expert Panel with 12 members from academia, industry, and government; 
• a $6-million DPR Research Initiative (2012-2016); 
• publication of a comprehensive summary report (Olivieri et al. 2016); 
• legislation (Assembly Bill 574) seeking final DPR regulations by 2023; and 
• an additional $1.4-million research initiative into remaining knowledge gaps for DPR. 

As part of the $1.4-million initiative, the State Board commissioned a Technical Working Group and 
Research Team to develop a computer-based tool that could be used to quantify and characterize 
pathogen risk in DPR applications. This project became known as DPR-1 and culminated in the 
development of DPRisk—the focus of this Guidance Document. This tool was expected to encompass 
quantitative microbial risk assessment (QMRA) and probabilistic assessment of treatment train 
performance (PATTP). These processes are critically important in identifying the log reduction values 
(LRVs) necessary for adequate protection of public health from waterborne pathogens. This tool could 
ultimately be used by anyone interested in characterizing the performance of a DPR system, but it was 
specifically envisioned for regulators and other stakeholders to use this tool to inform the development 
of risk-based criteria for the design and operation of DPR systems in California. 

B.2 Historical Context 
The primary goal of municipal drinking water treatment is to design, maintain, and operate drinking 
water systems that are redundant, robust, and resilient, thereby ensuring reliable protection of public 
health (Pecson et al. 2015). The two main groups of contaminants of public health concern are toxic 
chemicals and pathogenic microorganisms. Even in municipal wastewaters, typical concentrations of 
most chemicals will not exert an immediate health effect, but long-term exposure may result in adverse 
health outcomes. In other words, brief exposures to toxic chemicals may be less relevant for 
understanding health impacts than average lifetime concentrations, or chronic exposures. In contrast, 
pathogens can initiate an infection after a single exposure event—even when someone is exposed to 
only a single microorganism—and therefore represent an acute threat to public health. Scallan et al. 
(2011) identified the top 10 pathogens contributing to the public health burden in the United States in 
2011 (see following table). This collection of bacteria, viruses, and protozoa provides a starting point for 
identifying priority pathogens in drinking water applications. 

In the U.S., existing drinking water regulations target a small group of pathogens (Giardia and 
Cryptosporidium), broader pathogen groups (enteric viruses), and microbial indicators (e.g., total 
coliform and E. coli). Although routine monitoring of total coliform and E. coli in finished drinking water 
is feasible, the concentrations of bacterial, viral, and protozoan pathogens are often so low that routine 
monitoring is insufficiently sensitive to ensure adequate protection of public health (Macler and Regli, 
1993; Regli et al. 1991; Trussell et al. 2013). Instead, mitigating pathogen risk requires an LRV approach, 
essentially establishing the minimum degree of pathogen reduction that must be demonstrated through 
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an engineered treatment train. For example, the U.S. Environmental Protection Agency’s Surface Water 
Treatment Rules established baseline LRVs of 4/3/2 for viruses, Giardia, and Cryptosporidium, 
respectively (EPA, 2006a, 1998, 1989). More recently, the California Division of Drinking Water 
established baseline LRVs of 12/10/10 for viruses, Giardia, and Cryptosporidium in potable reuse 
applications employing groundwater augmentation.  

No. Pathogen Episodes Hospitalizations Deaths 
1 Norovirus 20,796,079 55,825 569 
2 Giardia intestinalis 1,121,864 3,289 31 
3 Salmonella spp. (non-

typhoid) 
1,095,079 20,608 403 

4 Campylobacter spp. 1,058,387 10,599 95 
5 Clostridium perfringens 966,120 438 26 
6 Cryptosporidium spp. 678,828 2,473 42 
7 Shigella spp. 421,048 4,672 32 
8 Staphylococcus aureus 241,188 1,063 6 
9 Toxoplasma gondii 173,415 8,859 654 

10 STEC non-O157 138,063 331 0 

Pathogen LRV targets are often determined 
as part of a QMRA, in which experimental 
data are combined with mathematical 
models and relevant assumptions to 
estimate the required reduction of a 
particular microbial hazard (Haas et al. 1999; 
WHO, 2016). QMRA is often described as a 
4-step process involving (1) hazard 
identification, (2) exposure assessment, (3) 
dose response assessment, and (4) risk 
characterization. In part because of the 
water industry’s focus on broad 
implementation of potable reuse, the recent 
literature has made significant 
advancements in each step of the QMRA 
process, including integration of PATTP. 

QMRA can be used to estimate risk for a 
specific scenario, or if a target risk is 
predetermined, QMRA can be used to identify the desired water quality or level of treatment (e.g., the 
overall LRV for a treatment train). QMRAs that involve fixed inputs are deterministic, but more 
sophisticated, stochastic QMRAs incorporate statistical probabilities (or distributions) to capture 
variability in datasets. This is often accomplished using a ‘Monte Carlo’ approach in which the 
distributions are sampled numerous times (e.g., 10,000 simulations) to capture a wide range of possible 
scenarios. These differences are illustrated in the following figure, which also shows how a deterministic 
QMRA was used to develop California’s pathogen LRV targets for indirect potable reuse via groundwater 
augmentation. The basis for these regulations was an annual risk of 1 in 10,000 (or 10-4)—a benchmark 
that has been used extensively in the drinking water industry and is now the foundation of many 
potable reuse regulatory frameworks. One objective of DPRisk was to provide California regulators with 
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an opportunity to consider stochastic, or probabilistic, scenarios (e.g., PATTP) in the development of the 
DPR regulations. 

 

Another QMRA consideration is the appropriateness of a static vs. dynamic model. Static models are 
focused on the individual and calculate the probability of infection as a single exposure event with 
minimal (if any) time dependence or system feedback (Soller & Eisenberg, 2008). Dynamic models are 
non-linear, mathematical simulations of complex interrelated system elements and often consider 
multiple epidemiological states (e.g., susceptible, exposed, infected, diseased, recovered) and exposure 
pathways (e.g., person-to-
person and person-to-
environment-to-person) 
(Amoueyan et al. 2020). One 
benefit of using a dynamic 
QMRA in potable reuse is the 
ability to model temporal 
variability in population 
structure, water quality, and 
treatment operations and 
performance. Specifically, a 
dynamic model allows for 
direct system feedback 
linking infections and disease 
prevalence within a 
community to pathogen 
concentrations in raw wastewater (Amoueyan et al. 2020). There are situations in which dynamic 
modeling might be preferred (Soller & Eisenberg, 2008), but because dynamic models often require 
complex epidemiological inputs that may not be fully defined in the literature, static models are often 
assumed to be suitable and even preferred in many instances. Accordingly, static models dominate the 
literature (Amoueyan et al. 2017, 2019; Olivieri et al. 2016; Pecson et al. 2017; Soller et al. 2017, 2018a) 
and have been the primary source of information for the development of treatment requirements and 
regulations. 

Even when focusing exclusively on static modeling, the process of performing a QMRA incorporating 
PATTP still involves multiple steps that can be approached in different ways and for unlimited scenarios. 
Moreover, the public can be exposed to a number of pathogens simultaneously, and the potable reuse 
industry includes an ever-expanding suite of treatment trains operating under various conditions. This 
results in countless modeling frameworks and, more importantly, wide-ranging conclusions that could 
potentially affect policy and regulatory and engineering decision-making. Therefore, it is often prudent 
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for stakeholders to adapt QMRA models to their own systems to account for site-specific factors that 
cannot be captured with a more generalized approach (Amoueyan et al. 2019). 

 

A benefit of DPRisk is that it can be accessed by a wide range of users (e.g., students, researchers, 
consultants, regulators, and utility personnel) to generate direct QMRA comparisons using a single easy-
to-use framework. But as noted earlier, the original intent of DPRisk and this Guidance Document was to 
facilitate the QMRA and PATTP processes so that critical stakeholders could evaluate various policy, 
regulatory, and treatment alternatives, either for generalized systems or more specific applications. For 
example, DPRisk could be used to answer any of the following questions: 

• Are the specified risk thresholds achievable with a specific treatment train? 
• What are the risk implications of a treatment process meeting a specified performance target at the 

95th, 50th (median), or 5th percentile—or some other percentile? 
• What are the risk implications of a treatment process operating with stringent oversight and tight 

tolerance vs. a treatment process operating with limited oversight and greater fluctuations in 
performance? 

• What are the implications of an off-specification or failure condition with varying magnitude (e.g., 
100% vs. 50% reduction in LRV), frequency (e.g., 3 times per year vs. 1 time per year), and/or 
duration (e.g., 24-hr event vs. 15-min event)? 

• What is the tolerance for a certain operational condition (e.g., failure duration) before a risk 
benchmark is exceeded (e.g., annual risk of 10-4 or daily risk of 2.7×10-7), and can this information 
help establish the required monitoring frequency for a critical control point (CCP)?  
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B.3 Overview of DPRisk 
DPRisk was developed with significant flexibility to allow for its 
adaptation to a wide variety of modeling scenarios. The source 
code can be used as-is, either through the established web-based 
platform or on a local computer, or updated over time to reflect 
the industry’s evolving understanding of pathogen concentrations, 
treatment reliability, epidemiological considerations, etc. The 
original version of the tool was developed using RStudio’s freely 
available, web-based Shiny platform. RStudio provides open 
source software that allows the user to leverage the R statistical 
language (https://www.r-project.org/), which is increasingly being 
used for QMRA and the analysis of complex microbiological data 
(e.g., metagenomics applications). The free Shiny add-on 
(https://shiny.rstudio.com/) allows for interactive web-based user 
interfaces. The underlying code can be run on a variety of Unix 
platforms, Windows, and MacOS machines, or hosted on fee-
based cloud services such as Shinyapps.io (https://www.shinyapps.io/). Additional details on how to 
access DPRisk can be found in the DPR Research section of the California State Water Resource Control 
Board’s website at 
https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/direct_potable_reuse.html.  

This DPRisk Guidance Document is divided into 10 key components of a QMRA/PATTP. These are 
summarized in the following sections, followed by a series of case studies to demonstrate use of the tool 
and how examples from the QMRA literature can be reproduced in DPRisk. For successful utilization of 
DPRisk, it is expected that the user has a general understanding of the QMRA process and is somewhat 
familiar with probability distributions. For more detailed information on the various aspects of 
QMRA/PATTP, the user should also refer to the literature cited throughout the Guidance Document.  

B.4 Step 1: Target Pathogens (Hazard Identification) 
B.4.1 Background 
The first task in undertaking a PATTP/QMRA is known as hazard identification and involves identifying 
the pathogen(s) of greatest relevance to the application in question. Past studies have addressed a wide 
range of applications and pathogens, including recreational exposure to Giardia (Eisenberg et al. 1996); 
comparisons of norovirus exposure via drinking water, food, and person-to-person transmission 
(Amoueyan et al. 2020); and inhalation of aerosolized Legionella (Hamilton et al. 2019), among many 
other examples. In identifying target pathogens, one option is to focus on those with prescribed LRVs 
mandated by existing regulations. Under the U.S. EPA’s Surface Water Treatment Rules, LRVs are 
specified for three groups of pathogens: 4-log enteric virus, 3-log Giardia, and 2-log Cryptosporidium 
removal and/or inactivation (EPA, 2006a, 1999, 1998). These same three pathogen groups were 
targeted by the original Groundwater Replenishment Reuse Regulations in the State of California (DDW, 
2014)—commonly described as the 12/10/10 framework. Hence, many past PATTP and QMRA studies 
have focused on one or more of these pathogens (Amoueyan et al. 2017, 2019; Ander and Forss, 2011; 
Barker et al. 2013; Chaudhry et al. 2017; NRC, 1998; Pecson et al. 2017). Other studies have expanded 
the list to also include bacterial pathogens such as Salmonella and Campylobacter (Amoueyan et al. 
2019; Soller et al. 2017; 2018a, 2018b). 
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It should be noted that strategic selection of a smaller group of reference pathogens can obviate the 
need to consider a broader range of targets. For example, Cryptosporidium oocysts are both smaller (4-5 
µm) and more resistant to chemical disinfectants than many other protozoan parasites. Consequently, 
Cryptosporidium can be used as a conservative reference pathogen when estimating LRVs for a broad 
range of protozoan parasites in the context of physical separation (e.g., granular media filtration, low 
pressure membrane filtration) and oxidative disinfection processes (e.g., free chlorine, chloramine, and 
ozone) (NWRI, 2013; Olivieri et al. 2016; Pecson et al. 2017). This was the approach recommended by a 
panel of public health experts who proposed an alternative 12/10/9 LRV framework for enteric viruses, 
Cryptosporidium, and total coliform bacteria (as a surrogate for bacterial pathogens) (NWRI, 2013). In 
effect, it was assumed that achieving 10-log removal/inactivation of 
Cryptosporidium would adequately address risks associated with 
Giardia. 

B.4.2 Integration into DPRisk 
DPRisk focuses solely on primary transmission of waterborne 
enteric pathogens through oral ingestion of contaminated drinking 
water. The tool may have sufficient flexibility to consider other 
pathogens and exposure routes (e.g., incidental recreational 
ingestion), but the tool was designed with a specific focus on DPR 
applications. The Raw Wastewater Pathogen Concentration input 
(under Model Specification) includes Cryptosporidium, Giardia, and 
three enteric viruses (enterovirus, adenovirus, and norovirus) as the 
default target pathogens. This was intended to maintain consistency 
with California’s potable reuse regulations and to allow the user to leverage newly developed datasets 
characterizing raw wastewater pathogen concentrations. Specifically, in conjunction with DPR-1, the 
State Board also sponsored a separate research team to conduct a comprehensive raw wastewater 
monitoring campaign. That project became known as DPR-2 (Pecson et al. 2021), and the results from 
that study are summarized in this Guidance Document (described in the next two sections). Finally, to 
provide greater flexibility, DPRisk also allows for a user-defined target pathogen.  

B.5 Step 2: Raw Wastewater Pathogen Datasets  
B.5.1 Background  
For the exposure assessment in a potable reuse QMRA, it is common to use raw wastewater pathogen 
concentrations as the starting point. Due to difficulties in enumerating pathogens in raw wastewater or 
in an effort to dampen concentration variability, alternative reference points such as primary effluent, 
secondary effluent, or even the finished effluent from a conventional wastewater treatment plant have 
also been used (TWDB, 2015). Regardless of the starting point, if the pathogen concentration is not 
accurately represented (e.g., in terms of observed variability and magnitude), the resulting model 
output will not be representative of real-world conditions and may lead to erroneous conclusions. For 
example, overly conservative assumptions might result in unnecessary treatment requirements and 
costly infrastructure. On the other hand, underestimating pathogen concentrations (e.g., failing to 
consider seasonal spikes) might lead to engineering and regulatory decisions that do not adequately 
protect public health.  

In the absence of a trusted and exhaustive dataset or an accepted process to select such data, it is 
difficult to know what data should be used. Recent literature reviews and QMRAs have developed or 
identified a number of viable datasets (Amoueyan et al. 2017, 2019; Chaudhry et al. 2017; Eftim et al. 
2017; Hamilton et al. 2018; Soller et al. 2017, 2018a), but the available literature still fails to completely 



Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 65 

capture inherent spatiotemporal variability. This is in part because pathogen monitoring is difficult and 
costly, particularly at the scale and frequency required to develop a full and accurate characterization of 
raw wastewater pathogen concentrations. Therefore, QMRAs often rely on limited datasets and/or 
simplifying assumptions, but the results can be highly sensitive to the assumptions made at this stage 
(Nappier et al. 2018). 

Occurrence data are affected by myriad factors, including the methods used to enumerate pathogens 
and characteristics of the sample itself (e.g., sample type, geographic location, and sampling time). 
Variables linked to geographic location include the size of the sewershed, the types of flows into the 
system (e.g., industrial, commercial, residential), and even the degree of water conservation within the 
community. Pathogen concentrations in small communities or more isolated settings (e.g., building-scale 
reuse) are expected to show greater variability, while concentrations in larger communities likely 
experience a dampening effect due to the blending of diverse flows (Barker et al. 2013; Olivieri et al. 
2016). With respect to temporal factors, pathogen concentrations might exhibit intraday, day-to-day, 
and seasonal variability, all of which are affected by use patterns, changes in the level of endemic 
disease within a community, and outbreak conditions.  

Rose et al. (2004) reported concentrations of multiple pathogens (enteroviruses, Giardia, and 
Cryptosporidium) and indicators (total/fecal coliform, enterococci, Clostridium perfringens, and 
coliphages) in the raw and treated wastewater of U.S. facilities. This dataset has been used as the basis 
for crediting pathogen reduction through wastewater treatment, as an important resource in evaluating 
DPR feasibility in California (Olivieri et al. 2016), and as part of numerous QMRA studies (Amoueyan et 
al. 2017; Amoueyan et al. 2019; Pecson et al. 2017). Realizing that a broader database of pathogen 
concentrations was necessary, the State Board commissioned a comprehensive wastewater sampling 
campaign over 14 months and in collaboration with the following agencies: San Francisco Public Utilities 
Commission, City of San Diego, City of Los Angeles Sanitation and Environment, Los Angeles County 
Sanitation Districts, and Orange County Sanitation/Water District. The targets, enumeration techniques, 
and methods are summarized below, and additional method details are included in Pecson et al. (2021). 
This study serves as the basis for the default pathogen data for DPRisk, as will be described later.  

Pathogen / Indicator Enumeration  Method1 
Enterovirus Culture; molecular EPA 1615 
Adenovirus Culture; molecular Ko et al. (2005); Rigotto et al. (2011) 
Norovirus Molecular EPA 1615 
Male-specific coliphages Culture; molecular EPA 1601 and 1602 
Giardia cysts Microscopy EPA 1693 
Cryptosporidium oocysts Microscopy EPA 1693 

1Methods were optimized as part of DPR-2; final method details are available in Pecson et al. (2021). 

Before using occurrence data, it is important to understand differences in enumeration approaches, 
specifically culture vs. microscopy vs. molecular assays. Because these assays vary in their approach to 
detection and quantification, it is important to understand the implications of using certain datasets to 
characterize raw wastewater pathogen concentrations or to model the performance of a particular 
treatment process (e.g., physical removal vs. inactivation) (Cangelosi and Meschke, 2014). It is also 
important to consider critical details such as equivalent sample volume and method recovery, and from 
a public health perspective, it is important to understand how the method endpoint correlates with the 
dose response model used later in the QMRA. 
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B.5.1.1 Culture Methods 
Classical virus enumeration techniques rely on cell culture to 
determine the number of infectious viral particles in a water sample. 
Cell culture assesses the ability of a viral particle to perform all steps 
necessary for an infection, including (1) initial binding to a host cell 
receptor, (2) entry of the virus or its genetic material into the host, (3) 
and use of the host cell metabolic machinery for viral replication. 
From a methods perspective, cell culture assays are designed so that 
viral replication within the population of host cells elicits an 
identifiable change in the growth or morphology of those cells (e.g., 
cell death, changes in morphology, or development of plaques). For 
these reasons, cell culture provides the most direct insight into the infectivity of a virus. This is an 
important criterion for QMRA because only infectious pathogens will generally impact public health. The 
major limitations of cell culture are that corresponding methods have only been developed for a subset 
of the known human pathogens, and the methods that do exist generally require expensive equipment, 
highly-trained laboratory technicians, and extensive incubation periods (Wigginton et al. 2018). 
Norovirus is a prime example of a target pathogen that cannot be cultured efficiently. There has been 
recent success in developing an infectivity method, but the required host cell system is highly complex 
and currently lacks reproducibility (Ettayebi et al. 2016; Jones et al. 2014). 

B.5.1.2 Microscopy Methods 
With respect to the protozoan parasites, Giardia has no established 
cell culture method (Barash et al. 2017), and while Cryptosporidium 
has a cell culture method, use of microscopy is a more common 
approach. Quantification of Giardia cysts and Cryptosporidium oocysts 
is typically accomplished with EPA Method 1623 for water and EPA 
Method 1693 for wastewater, both of which involve concentration by 
filtration or centrifugation, purification with immunomagnetic 
separation, and detection and quantification with 
immunofluorescence assay microscopy. Because microscopy methods 
do not require preparation and infection of host cells, they are able to provide more rapid results. 
However, microscopy is hindered by a general inability to examine pathogen infectivity, which ultimately 
adds further uncertainty when the corresponding data are incorporated into QMRAs. As a conservative 
approach, it can be assumed that 100% of the pathogens enumerated by microscopy are infectious. 

B.5.1.3 Molecular Methods 
The use of quantitative polymerase chain reaction (qPCR) and now droplet digital PCR (ddPCR) has led to 
an influx of pathogen concentration data 
for various water matrices, including raw 
wastewater. This has been compounded by 
the renewed focus on wastewater-based 
epidemiology during the COVID-19 
pandemic. Molecular methods provide 
rapid and specific pathogen detection—and even simultaneous detection of multiple pathogens—
without the need for culture assays or microscopy. This is accomplished by identifying specific target 
sequences within genetic material (i.e., RNA or DNA) and quantifying the number of target genomes 
present in a sample. Pathogen concentrations are then reported in units of ‘gene copies’ or ‘genome 
copies’ (gc) per volume. The primary limitation of standard molecular methods is the inability to 
differentiate infectious vs. inactivated target microorganisms. In fact, molecular methods are sometimes 
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even unable to differentiate intact cells or viral particles from extracellular or ‘free’ nucleic acid. This is a 
key consideration when performing a QMRA because molecular data might significantly overestimate 
the concentration of infectious pathogens, potentially leading to overly conservative risk 
characterizations. Multiple studies have documented the presence of intact genomes within inactivated 
organisms (Hamza and Bibby, 2019; Nuanualsuwan and Cliver, 2002; Pecson et al. 2011, 2009; 
Wigginton et al. 2018). The use of integrated cell culture PCR (ICC-PCR) or qPCR (ICC-qPCR) (Gerrity et al. 
2008; Ko et al. 2005) provides some indication of infectivity, and nucleic acid binding agents (e.g., 
propidium/ethidium monoazide) can also be used to differentiate genetic material in ‘live’ vs. ‘dead’ 
cells. However, the results from these methods are not always reliable (Leifels et al. 2019). For 
pathogens that have no established culture or microscopy methods (e.g., norovirus), molecular methods 
provide the only option for enumeration. But again, there remains uncertainty regarding how to 
appropriately use molecular data in a QMRA and whether certain dose response models should be used 
in conjunction with molecular data (NRC, 2012; Olivieri et al. 2016; Van Abel et al. 2017). 

B.5.1.4 Attempts to Link Viral Molecular Data to Infectivity 
Inactivation mechanisms have varying impact on genome structure and integrity. Studies have reported 
that loss of infectivity—or infectious units (IU)—during treatment does not necessarily correspond with 
a similar reduction in genome copy counts. In other words, genome copies may be enumerable by qPCR 
even after viruses have been inactivated (Baert et al. 2008; Duizer et al. 2004; Shin and Sobsey, 2003; 
Sobsey et al. 1998). This would theoretically result in higher GC:IU ratios with higher levels of treatment. 
This finding is predictable given that an intact genome is not the only requirement for virus infectivity. 
The virus must also maintain its ability to bind to a host cell and insert its genetic material—functions 
that are dependent on the integrity of the capsid, envelope (if applicable), and related proteins 
(Wigginton et al. 2012). Some researchers have suggested that viruses detected with molecular methods 
should be infectious if they were recently excreted in feces (Amoueyan et al. 2019; Gerba et al. 2017), 
though it appears likely that their exposure to the wastewater environment would lead to at least some 
level of rapid inactivation. 

Based on the discussion above, it 
might appear that GC:IU ratios 
might be sufficiently close to 1:1 
in raw wastewater to justify use 
of molecular data in QMRAs. 
However, there is historical 
evidence to the contrary. A recent 
study of enteroviruses in San 
Diego wastewater employed EPA 
Method 1615 and directly 
compared culture and molecular 
data. Two notable points 
emerged from the analysis: (1) 
GC:IU ratios were consistently 
higher for raw wastewater 
(>104:1) than secondary effluent (>102:1) and (2) wide ranges were observed for raw wastewater 
(ranging from 104:1 to 108:1) and secondary effluent (ranging from 102:1 to 107:1). Considering point (1), 
these findings contradict the earlier hypothesis that minimum GC:IU ratios occur in raw wastewater and 
then increase monotonically with treatment. Some authors note this may be due to systematic 
undercounting of infectious viruses when using culture methods (Gerba et al. 2017), but qPCR is also 
susceptible to interference and low recoveries, particularly in complex matrices such as raw wastewater. 
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Nevertheless, even if culture methods were only recovering a fraction of infectious enteroviruses (e.g., 
1-10%), the high GC:IU ratios in the San Diego study suggest the true ratio would still be significantly 
greater than 1:1. Therefore, without a GC:IU adjustment, the use of molecular data in a QMRA may 
significantly overestimate pathogen concentrations in the final drinking water, leading to 
conservative treatment targets. 

At this time, correlations between molecular and culture data and the implications for utilizing dose 
response curves based on molecular data remain a critical knowledge gap, and that will likely be true for 
the foreseeable future (Gerba et al. 2017). In the absence of such knowledge, QMRAs utilizing genome 
copy data should evaluate a range of possible scenarios, ideally bookended by findings from the 
scientific literature. A comprehensive example of this approach can be found in Haas et al. (2017), which 
assessed sewer worker risk from Ebola virus in untreated hospital wastewater assuming GC:IU ratios of 
1:1 (most conservative scenario) or a uniform distribution ranging from 103:1 to 104:1. Van Abel et al. 
(2017) also provides guidance on the use of molecular norovirus data in the context of pathogen 
aggregation, susceptibility within a population, genogroup differences, and the use of multiple dose 
response functions as part of the sensitivity analysis. Van Abel et al. (2017) notes that assumptions 
related to GC:IU ratios should be explicitly reported in a QMRA and that a wide range of possible values 
should be considered as part of a sensitivity analysis. 

B.5.2 Integration into DPRisk 
In the absence of system-specific data, it is recommended that DPRisk users rely on the raw wastewater 
pathogen datasets developed as part of DPR-2 (Pecson et al. 2021). The DPR-2 data were generated with 
methods that were specifically optimized for five California raw wastewaters, achieved a high detection 
frequency for all targets (94%), accounted for sample-specific recovery, and adhered to stringent QA/QC 
criteria. The resulting DPR-2 distributions also incorporated historical data from the literature that 
satisfied several criteria, namely inclusion of recovery adjustments and reported detection frequencies 
>50%. By directly comparing culture and molecular data for enterovirus and adenovirus, DPR-2 was also 
able to propose ranges and distributions for GC:IU ratios, which are summarized in the next section. 

There may still be instances in which the user would prefer to use alternative data. Therefore, DPRisk 
allows for raw data inputs or user-defined parameters for common statistical distributions. DPRisk does 
not restrict the user in any way so it is important to use caution when selecting and incorporating a 
particular dataset and drawing conclusions from the tool output.  

B.6 Step 3: Raw Wastewater Pathogen Distributions 
B.6.1 Background 
Once a pathogen concentration dataset is selected, it is 
important to understand how to incorporate the data 
into a QMRA. Potable reuse treatment requirements in 
the U.S. were historically based on what was believed to 
be peak pathogen concentrations in raw wastewater 
(Gerba et al. 2017; Hultquist, 2016). A similar approach 
was used in the development of the World Health 
Organization (WHO) and Australian guidelines for 
potable reuse and water recycling (see summary table 
below). At the time, this deterministic (i.e., point 
estimate) approach was believed to be the most 
protective of public health, particularly given the 
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uncertainty surrounding pathogen concentration data. However, some viewed this approach as overly 
conservative in that basing treatment requirements on peak concentrations might place an unnecessary 
burden on treatment systems. The odds of a peak concentration occurring are rare, yet under this 
framework, systems must provide a very conservative level of protection at all times. Other point 
estimates, such as the median or average, are often avoided because they do not adequately capture 
the variability in concentrations commonly observed (Gerba et al. 2017).   

Framework Virus Conc. 
(log10 per L) 

Giardia Conc. 
(log10 per L) 

Crypto Conc. 
(log10 per L) 

Bacteria Conc. 
(log10 per L) 

California1 5 5 4 N/A 
WHO 4.3 (norovirus) N/A 3.4 3.8 

(Campylobacter) 

Australia2 3.9 (rotavirus) N/A 3.3 3.8 
(Campylobacter) 

1 maximum observed; 2 95th percentile 

An alternative that is commonly applied in QMRAs involves the use of statistical distributions that have 
been fit to pathogen concentration datasets. This stochastic approach is more effective at capturing the 
entire range of possible outcomes for a particular estimate (Olivieri et al. 2016; Schoen et al. 2017). The 
distribution might be as simple as a uniform (or log10uniform) distribution, which exhibits an equal 
probability for all values between a defined minimum and maximum. More complex distributions can be 
fit using maximum likelihood estimation (MLE), which can be accomplished with common 
mathematical/statistical software programs. With MLE, the parameters used to describe a dataset are 
obtained by maximizing a likelihood function—analogous to determining the slope and vertical intercept 
for a best-fit linear regression. In the QMRA literature, pathogen concentrations have often been 
represented by uniform distributions (Amoueyan et al. 2019; Soller et al. 2017), lognormal distributions 
(Barker et al. 2013; Chaudhry et al. 2017; Eftim et al. 2017; Koivunen et al. 2003; Lemarchand and 
Lebaron, 2003; Rose et al. 1996), and gamma distributions (Ander and Forss, 2011; Petterson and 
Ashbolt, 2016).  

‘Non-detects’—or left-censored data—are a common feature of many pathogen concentration datasets, 
with their frequency being dependent on a range of factors including the source water, equivalent 
sample volume, and analytical recovery (Chik et al. 2018). In some cases, non-detects are discarded or 
replaced with other values, such as the method detection limit (MDL), but such assumptions can result 
in bias affecting the conclusions drawn from a QMRA (Parkhurst and Stern, 1998). Non-detects provide 
important information about the dataset and should be used to inform the selection of an appropriate 
probability distribution (Helsel and Hirsch, 2002; Helsel, 2005). Chik et al. (2018) summarized several 
common practices for dealing with non-detects: 

• Omit the non-detects entirely; 
• Use an appropriate substitute (e.g., MDL, MDL/2, MDL/√2); 
• Assume the non-detects are zeros with random sampling error; or 
• Use censored data techniques. 

Canales et al. (2018) tested several of the approaches listed above and also considered MLE, Kaplan-
Meier (KM) estimation, and two forms of multiple imputation (MI). Each method was evaluated against 
varying degrees of censoring. For the MI approach, the study assumed (1) the entire dataset, including 
the left-censored data, followed a lognormal distribution or (2) the left-censored data followed a 
uniform distribution. After comparing against a known dataset, Canales et al. (2018) found that the two 
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MI approaches were superior in terms of estimating censored data and also resulted in slightly 
conservative risk estimates, which might be preferred for the development of potable reuse regulations.  

B.6.2 Integration into DPRisk 
The user first selects a target pathogen in the Raw Wastewater Pathogen Concentration section of the 
tool interface. The user then selects an enumeration method (i.e., culture, molecular, microscopy) and 
defines the distribution for the raw wastewater concentration (in organisms per L). The selection of an 
enumeration method is simply provided for user reference and is noted in the tool output, but it does 
not have any specific functionality. 

As noted earlier, it is recommended that the user rely on the DPR-2 datasets, all of which were fit to 
lognormal distributions. For Cryptosporidium, Giardia, and enterovirus, data from DPR-2’s 14-month 
sampling campaign were supplemented with data from the literature. Imputation was also used to 
assign values to left-censored data points. The resulting distributions are characterized in the following 
table, and additional details are available in the final report for DPR-2 (Pecson et al. 2021). These 
distributions are assumed to be broadly representative of municipal systems receiving primarily 
domestic wastewater, although there are some differences in comparison with the recent literature. For 
example, the enterovirus culture, adenovirus culture, and Giardia microscopy concentrations are 
considerably higher than the literature, while the enterovirus and adenovirus molecular data are 
generally lower. Cryptosporidium concentrations are generally in alignment with the published 
literature, and the norovirus GII molecular data are very consistent with the reported distribution for 
North America in Eftim et al. (2017). However, some distributions in Eftim et al. (2017) were higher due 
to geographic or seasonal differences, and the maximum reported concentration was 9.17 log10 gc/L, 
which may not be captured when using the recommended DPR-2 distribution. 

Pathogen Method Units Lognormal 
Distribution 

Based on 10,000 Simulations 

   Base e μ Base e σ 50th  99th  max  
Enterovirus1 Culture MPN/L 7.4 2.3 1.6×103 3.3×105 1.0×107 
Enterovirus1 Molecular gc/L 11.7 2.5 1.2×105 3.8×107 1.7×109 
Adenovirus Culture MPN/L 6.4 2.3 5.8×102 1.2×105 3.9×106 
Adenovirus Molecular gc/L 9.9 3.7 1.9×104 9.9×107 2.6×1010 

Norovirus GIA Molecular gc/L 8.8 2.3 6.4×103 1.3×106 4.2×107 
Norovirus GIB Molecular gc/L 8.3 2.3 3.9×103 8.0×105 2.6×107 
Norovirus GII Molecular gc/L 9.2 2.8 9.5×103 6.2×106 4.3×108 

Giardia1 Microscopy cysts/L 9.2 0.9 9.8×103 7.8×104 3.1×105 
Cryptosporidium1 Microscopy oocysts/L 4.4 1.4 8.0×102 2.0×103 1.7×104 

Source: Pecson et al. 2021.  
1Parameters reflect combined distributions (DPR-2+literature).  

As explained on the next page, it is important to note that some datasets are described using a base e 
lognormal distribution, which is the DPRisk default, while others are described using a base 10 
lognormal distribution (DPR-2 final report). Therefore, the values reported in the table differ by a factor 
of 2.303 from the values reported in DPR-2. Using published parameters for a base 10 lognormal 
distribution in DPRisk will significantly underestimate raw wastewater pathogen concentrations and the 
corresponding risk estimates. It is recommended that the user always verify that the raw wastewater 
concentration outputs from DPRisk match expectations based on the input distribution and original 
literature or data source.  
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In DPRisk, there are three ways to define the raw wastewater distribution: 

1. Defining the parameters of a user-specified lognormal distribution. This is the approach when using 
the lognormal distributions from DPR-2 (i.e., the parameters summarized in the previous table). If a 
point estimate is desired—rather than a distribution—the user can specify μ as the natural 
logarithm of the point estimate concentration (or multiply a log10 concentration by 2.303) and 
specify σ as 0. For example, the maximum norovirus concentration reported in Eftim et al. (2017) 
was 9.17 log10 gc/L or 1.48×109 gc/L. The corresponding DPRisk input for μ would be 9.17×2.303 = 
21.2 or ln(1.48×109) = 21.1, and σ would be 0. 

2. Uploading a raw wastewater pathogen concentration dataset that is assumed to follow a lognormal 
fit. The tool will use MLE to identify the lognormal mean and lognormal standard deviation that best 
describe the dataset. The data file should be uploaded as a .csv file with a single column and column 
heading. Once the upload is complete, the tool will preview the first several rows of data to allow 
for user verification.  

3. Uploading a .csv file that has already been curated with 10,000 raw wastewater pathogen 
concentrations, which will be used ‘as-is’ by the tool. If the user is interested in modeling a 
distribution other than DPRisk’s default distribution (e.g., a uniform or gamma distribution), this 
option allows the user to generate a dataset outside of DPRisk and then upload the data into the 
tool (see Section B.17, Case Study 3). If fewer than 10,000 data points are provided, the tool will 
sample with replacement until 10,000 data points are generated.  

Again, DPRisk does not restrict the user in any way during parameter selection so it is important to use 
caution when characterizing raw wastewater pathogen concentrations. The final output from the tool 
will include a summary of descriptive statistics (e.g., mean, standard deviation, minimum/maximum, 
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critical percentiles) and a plot of the cumulative distribution. It is recommended that the user evaluate 
this output to ensure it matches expectations/realistic conditions and accurately describes the raw data 
(if available). 

B.6.2.1 Adjusting Molecular Data for Infectivity 
One final note is related to the use of molecular data, specifically in relation to the GC:IU ratio. For the 
aforementioned City of San Diego enterovirus study, the GC:IU ratios for raw sewage ranged from 104:1 
to 108:1. The values for DPR-2 were considerably lower, with enterovirus ranging from 100:1 to 104:1 and 
adenovirus ranging from 100:1 to 105:1. While DPRisk does not include a feature for specifying a GC:IU 
ratio, the impact can be evaluated by adjusting the raw wastewater concentration inputs across multiple 
scenarios (i.e., a sensitivity analysis on GC:IU ratio) or by integrating the GC:IU ratios into an LRV 
framework. Three potential approaches are described below. 

The first option is to run an initial modeling scenario with a baseline concentration distribution (e.g., a 
lognormal distribution with the default DPR-2 parameters). As will be described later, DPRisk’s QMRA 
output includes a downloadable parameter set file containing 10,000 raw wastewater concentrations. 
The user can then divide each concentration by the desired GC:IU ratio. For example, a GC:IU ratio of 
102:1 means that for every 100 genomes detected by molecular methods, only 1 represents an 
infectious virus. After dividing each concentration by 100, the 10,000 data points could be transferred to 
a new .csv file, which could then be used as a raw wastewater concentration input file for a subsequent 
modeling scenario. This process could be repeated, each time dividing the original concentrations by a 
new GC:IU ratio, until a sufficient range had been captured.  

 

Examples of this iterative approach for norovirus are shown in the preceding figure, with the left side 
representing adjustments to a lognormal distribution (Eftim et al. 2017) and the right side representing 
adjustments to a log10 uniform distribution (Soller et al. 2018b). More details about log10uniform 
distributions are provided in Section B.17. One important note is that concentrations in the DPRisk input 
file should not be log-transformed; the data should be actual concentrations in gc/L. The preceding 
graphs only show log10-transformed data for clarity.  

The second option allows the user to bypass manual adjustments to the raw wastewater concentrations. 
Instead of dividing each concentration in the DPRisk output file, the user can simply incorporate the 
GC:IU adjustment as a ‘Management Barrier’ LRV (management barriers are described later in Section 
7). In DPRisk, simulated failures are not applied to management barriers so the GC:IU adjustment would 
occur regardless of the user inputs for the failure framework. With this approach, the user could select 
any of the management barriers and input (a) a point estimate LRV, (b) a uniform distribution for the 
LRVs spanning a desired GC:IU range, or (c) even a normal distribution for the LRVs describing observed 
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GC:IU ratios (e.g., from DPR-2). For any of these options, the values should be base 10, or log10 
reductions. For (a), a GC:IU ratio of 100 would correspond with a point estimate LRV of log10(100) or 2.0. 
For (b), the user could define the range for the uniform distribution to align with the adenovirus data 
from DPR-2 (i.e., 100:1 to 105:1), which would correspond with LRVs ranging from 0 to 5. For (c), the user 
could select a “zero-truncated normal distribution” for the management barrier LRV and define the 
mean and standard deviation with parameters derived from DPR-2, which are summarized in following 
table.  

Management 
Barrier LRVs for 

GC:IU Ratio 

Pathogen Distribution Min Max Distribution Mean St. Dev. 
Enterovirus Uniform 0 4 Normal 2.12 1.02 
Adenovirus Uniform 0 5 Normal 2.44 1.28 

Source: Pecson et al. 2021.  
All values are log10. 

The third option is to simply adjust the input parameters defining the raw wastewater pathogen 
concentration. For example, when using a lognormal distribution, the μ, or lognormal mean, should be 
reduced by ln(GC:IU). So, for a μ of 9.2 (i.e., norovirus from DPR-2), a GC:IU ratio of 10 would require the 
input to be reduced by ln(10) or 2.3, resulting in a revised μ of 9.2 – 2.3 = 6.9. A GC:IU ratio of 100 would 
require the input to be reduced by ln(100) or 4.6, resulting in a revised μ of 9.2- 4.6 = 4.6, and so on. No 
change is required for the lognormal standard deviation (or σ). Again, the user should verify that the 
DPRisk output for raw wastewater pathogen concentrations matches expectations based on the 
simulated GC:IU ratio(s). 

B.7 Step 4: Identifying Unit Processes for the Treatment Train 
B.7.1 Background 
The first step in developing the PATTP is to identify the unit processes comprising the treatment train of 
the advanced water purification facility (AWPF). To date, very few systems have been tested, permitted, 
and/or operated in a DPR configuration, although future DPR systems will likely be similar (perhaps with 
additional engineered barriers) or even identical to existing IPR treatment trains. Two hypothetical 
examples are shown below: 

 

Once the unit processes are identified, the next step is to determine how the performance, or more 
specifically the LRV, of each unit process can be modeled. In some instances, unit processes have been 
modeled as point estimates, but several recent papers have incorporated PATTP into the QMRA 
(Amoueyan et al. 2017, 2019; Chaudhry et al. 2017; Olivieri et al. 2016; Pecson et al. 2017; Soller et al. 
2017). The different approaches range from using uniform or normal distributions for observed 
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pathogen reduction (Amoueyan et al. 2019; Chaudhry et al. 2017; Soller et al. 2017) to statistical 
distributions based on surrogate metrics of treatment process performance (Pecson et al. 2017).  

Directly measuring pathogen reduction by a unit process would provide the best estimate of actual 
treatment performance, but this is impractical due to method limitations. Instead, treatment 
performance is often estimated based on widely accepted correlations (e.g., disinfectant CT 
relationships) or the results of challenge tests with surrogate microorganisms. For example, spiking of 
MS2 bacteriophage is commonly used to estimate enteric virus reduction during disinfection or by 
media/membrane filtration. However, it is not currently practical to adapt this challenge study approach 
to operational monitoring, so other surrogate parameters that are conducive to online monitoring have 
been identified, validated, and implemented. 

The literature provides a wealth of data that can be used to develop correlations between microbial 
challenge studies and a wide range of surrogate water quality parameters (Zimmerman et al. 2016). 
Surrogate metrics include turbidity removal or pressure decay tests for microfiltration (MF) and 
ultrafiltration (UF); reductions in electrical conductivity (EC), total organic carbon (TOC) concentration, 
fluorescence, sulfate, and strontium for nanofiltration (NF) and reverse osmosis (RO); and disinfectant 
‘CT’ to quantify microbial inactivation. These surrogates often have lower sensitivity (i.e., greater 
conservatism) than direct microbial methods and thus underestimate the actual level of public health 
protection that could otherwise be demonstrated in a microbial challenge study. Nevertheless, 
surrogates offer rapid demonstration of performance, which is often required for crediting LRVs for 
pathogen barriers. DPR systems in particular are expected to be equipped with high-frequency 
monitoring of surrogate constituents, preferably in an on-line configuration, so that LRV credits can be 
tracked and awarded in near real-time (Olivieri et al. 2016). 

B.7.2 Integration into DPRisk 
The following table summarizes the unit processes available to the user in DPRisk and the default 
performance metrics for estimating pathogen reduction. The default performance metrics are provided 
for user reference and do not have any specific functionality in the tool. Specific relationships between 
the default performance metrics/surrogates and the final LRV point estimate/statistical distribution are 
described in greater detail in the next section. These defaults are not meant to comprise an exhaustive 
list of all treatment processes ever integrated into an AWPF; instead, the defaults focus primarily on 
treatment processes awarded LRVs under California’s regulatory framework for potable reuse. Also, the 
descriptions/titles of the default treatment processes impart no specific functionality in the tool. They 
are simply provided for convenience in terms of treatment train characterization and LRV accounting. To 
allow for greater flexibility, the user has the option of specifying up to two custom treatment processes. 
Because IPR and future DPR systems will likely include some degree of blending and storage or travel 
time, the tool also allows for integration of an environmental or engineered storage buffer that can be 
used to simulate blending, dilution, and pathogen die-off. This will be discussed in greater detail in Step 
7: Management Barriers.   
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Unit Process Typical PATTP Approach or Metric 
Secondary Biological Treatment Point Estimate or Statistical Distribution 

Membrane Bioreactor (MBR) Statistical Distribution or WaterVal Framework 
Ozone (Pre-Ozone and Post-Ozone) Ozone CT 
Biological Activated Carbon (BAC) None 

Membrane Filtration (i.e., MF or UF) Surrogate-based LRV (e.g., PDT, Turbidity) 
Reverse Osmosis (RO) Surrogate-based LRV (e.g., EC, TOC, FI, Sr, 

Sulfate) 
UV/Advanced Oxidation Process (AOP) UV Dose 

Chlorine (Pipeline and Contactor) Free Chlorine CT 
Coagulation/Flocculation/Sedimentation/Filtration Turbidity 

Custom Process 1 N/A 
Custom Process 2 N/A 

CT = concentration × time, EC = electrical conductivity, FI = fluorescence intensity, HRT = hydraulic retention time, 
PDT = pressure decay test, Sr = strontium, TOC = total organic carbon.  

B.8 Step 5: Assigning Treatment Process Log Reduction Values 
B.8.1 Background 
To effectively estimate risk, it is important to accurately characterize the operational performance of the 
treatment train. This means capturing periods when the treatment train is performing at or above its 
design criteria, but also periods of sub-optimal performance or overt failure when treatment is failing to 
meet minimum requirements. The characterization of performance can be achieved in many ways, 
including through use of point estimates or distributions of unit process performance. The selection of 
an appropriate distribution or point estimate is one of the most critical pieces of a QMRA (Nappier et al. 
2018), and it is important to consider whether the PATTP should be based on site-specific data or 
aggregated data across a number of studies and/or sites.  

The use of site-specific data might not be appropriate when generalizing risk across a broad range of 
scenarios and locations, while the more generalized approach may not capture subtle differences in 
treatment train design, operations, and maintenance at a specific facility. This can lead to significant 
variations in performance and risk characterization (Smeets, 2010). In fact, jurisdictions often have 
different regulatory requirements that impact the design and operational criteria of a given treatment 
process. The use of site-specific data is warranted when seeking the most accurate depiction of 
performance and risk at a given location, particularly when the site adheres to strict operational 
performance criteria to maximize public health protection.  

B.8.2 Integration into DPRisk 
The user defines the LRV framework in the Treatment Train section of the DPRisk interface. DPRisk does 
not include any default performance data or LRV estimates because treatment processes are often 
operated under a wide range of conditions. In the absence of default settings, it is recommended that 
users rely on established disinfectant CT relationships or performance distributions based on high-
frequency surrogate monitoring data from pilot- and full-scale potable reuse systems. Many examples 
are provided in the QMRA literature (Amoueyan et al. 2019; Chaudhry et al. 2017; Soller et al. 2017, 
2018a, 2018b). In addition, published data from the North City Demonstration Pure Water Facility are 
publicly available and are also incorporated into Case Study 2 (Pecson et al. 2017). For the City of San 
Diego case study, translations from surrogate data (e.g., TOC reduction by RO) to pathogen reduction 
(e.g., virus LRV) were based on the existing potable reuse regulatory framework in California. Coupled 
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with a Monte Carlo approach, these relationships can be used to characterize expected variability in 
treatment process performance and pathogen LRV. 

DPRisk includes the following three options to characterize treatment performance: 

1. The user has the option of characterizing the performance of individual processes. 
2. The user can specify an overall LRV point estimate for the treatment train. 
3. The user can upload a data file curated with 10,000 LRVs for the overall treatment train, which will 

be used ‘as-is’ by the tool. If selected, the data file should be a single-column .csv file with a column 
header. This option is useful if the user would like the overall LRVs to follow a specific distribution or 
to sample the observed performance of a specific system. If fewer than 10,000 data points are 
provided, the tool will sample with replacement until 10,000 data points are generated. 

For option (1), each of the following is available for individual treatment processes: 

1. The user has the option of specifying the parameters of a uniform distribution (i.e., minimum and 
maximum), zero-truncated normal distribution (i.e., mean and standard deviation), or inverse 
Gaussian distribution (i.e., μ and λ). These were selected as defaults in part because they were some 
of the more common distributions reported in the QMRA literature. For alternative distributions, 
see option (3).  

2. The user can specify an LRV point estimate for the treatment process in question. 
3. The user can upload a data file curated with 10,000 LRVs for the treatment process in question, 

which will be used ‘as-is’ by the tool. If selected, the data file should be a single-column .csv file with 
a column header. This option is useful if the user would like the LRVs to follow a statistical 
distribution that is not included in DPRisk’s default settings or to sample the observed performance 
of a specific treatment process. If fewer than 10,000 data points are provided, the tool will sample 
with replacement until 10,000 data points are generated. 

To generalize the underlying code for DPRisk, it was necessary to limit 
user input to LRVs rather than trying to incorporate the myriad 
process-specific surrogate parameters. In some cases, the user may 
only have surrogate performance data available, such as free chlorine 
CTs, UV doses, or influent and effluent TOC concentrations from an 
RO process. To facilitate use of DPRisk, the table on the following 
page provides guidance on how to convert common surrogate 
performance data to LRVs. These conversions are generally consistent 
with California’s regulatory framework. Once the corresponding LRVs 
are determined, the LRV data can be fit to a statistical distribution 
outside of DPRisk, and the best-fit distribution and associated 
parameters can be specified in the tool. Alternatively, the LRVs can 
be uploaded into DPRisk as a .csv file with 10,000 data points. Again, 
if fewer than 10,000 data points are provided, DPRisk will randomly 
sample with replacement from the data provided. The figure above 
shows an example in which the user has decided to specify LRVs for 
individual treatment processes. In this example, secondary biological 
treatment is modeled as a uniform distribution with a minimum LRV 
of 1.0 and a maximum LRV of 2.0, and the MBR is modeled with an LRV of 0 because it is not included in 
the hypothetical treatment train. Additional examples will be shown in the case studies at the end of the 
Guidance Document. For treatment processes that should be excluded from the analysis, the 
corresponding LRV must be specified as a point estimate of 0 (i.e., the default setting for all treatment 
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processes). Consistent with the California regulatory framework, DPRisk limits all LRVs determined from 
a statistical distribution to a maximum of 6.0. This LRV cap does not apply to user input files or to point 
estimates. For each underlying data point, DPRisk calculates the pathogen concentration in the AWPF 
product water according to the following equation, where Craw_sewage is the raw wastewater pathogen 
concentration (as determined from Step 3: Raw Wastewater Pathogen Distributions) and LRVTotal is the 
sum of the LRVs for the individual treatment processes (when applicable). 

CAWPF_effluent = Craw_sewage × 10-LRVTotal  

Unit Process Common LRV Frameworks1 Source 
Secondary Point Estimate or Probability Distribution N/A 
MBR Virus: LRV = 1.5 

Giardia/Cryptosporidium: LRV = 2.0  
Bacteria: LRV = 4.0 

WaterVal 
(2017a) 

Ozone2 Virus: LRV = 2.1744 × (1.0726)Temp × CT 
Giardia: LRV = 1.038 × (1.0741)Temp × CT 
Cryptosporidium: LRV = 0.0397 × (1.09757)Temp × CT 

EPA (2010) 

Free Chlorine3 Virus: LRV = See CT Table on following page 
Giardia: LRV = CT

0.361×ቀ-2.261 + e൫2.69 - ሺ0.065×Tempሻ + ሺ0.111×Cሻ + ሺ0.361×pHሻ൯ቁ 
Cryptosporidium: LRV = 0 

WaterVal 
(2017b) 
EPA (1999) 

UV/AOP4 Virus: LRV = (0.0238 × UV Dose) – 0.3905 (based on 
adenovirus) 
Giardia: LRV = (0.1617 × UV Dose) + 0.8853 
Cryptosporidium: LRV = (0.1671 × UV Dose) + 0.7603 

EPA (2006b) 
 

BAC LRV = 0 Assumed for CA 
Coag/Floc/Sed/Filt LRV = 0 Assumed for CA 
Membrane 
Filtration5 

Virus: LRV = 0 

Giardia/Cryptosporidium: LRV = log ൬ Qp×ALCR×Patm

∆Ptest×Vsys×VCF
൰ 

Assumed for CA 
 
EPA (2005) 

RO LRV (all pathogens) = -log ቀSurrogateout
Surrogatein

ቁ  
Assumed for CA 

DWTP (not 
specifically included 
in DPRisk) 

Virus: LRV = 4 
Giardia: LRV = 3  
Cryptosporidium: LRV = 2 

EPA Surface 
Water 
Treatment Rules 

Total LRV LRVTotal = LRV1 + LRV2 + … + LRVN N/A 
1LRV is assumed to be the same for adenovirus, enterovirus, and norovirus; 2Temperature in °C and ozone CT in 
mg-min/L; 3Free chlorine CT in mg-min/L, temperature in °C, and chlorine residual C in mg/L; 4UV dose in mJ/cm2; 
5Qp = filtrate flow rate (gpm), ALCR = air liquid conversion ratio, Patm = atmospheric pressure (psia), ΔPtest = 
measured decay rate (psi/min), Vsys = volume of pressurized air in the system (gallons), VCF = volumetric 
concentration factor (dimensionless). 
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pH Log10 
inactivation 

≤ 0.2 NTU ≤ 2 NTU ≤ 5 NTU 
5˚C 10˚C 15˚C 20˚C 25˚C 5˚C 10˚C 15˚C 20˚C 25˚C 5˚C 10˚C 15˚C 20˚C 25˚C 

≤7 

1 4 3 2 2 1 4 3 2 2 1 4 3 2 2 1 
2 5 4 3 2 2 5 4 3 2 2 6 4 3 2 2 
3 7 5 4 3 2 7 5 4 3 2 7 5 4 3 2 
4 8 6 4 3 2 9 6 4 3 2 9 7 5 3 3 

≤7.5 

1 7 5 4 3 2 7 5 4 3 2 8 6 4 3 2 
2 10 7 5 4 3 10 7 5 4 3 13 9 6 5 4 
3 13 9 7 5 4 13 9 7 5 4 16 12 9 6 5 
4 16 11 8 6 4 16 11 8 6 4 21 15 11 7 6 

≤8 

1 9 7 5 3 3 10 7 5 4 3 12 9 6 4 3 
2 14 10 7 5 4 15 10 7 5 4 19 13 9 7 5 
3 18 13 9 7 5 19 13 10 7 5 25 18 13 9 7 
4 23 16 12 8 6 23 16 12 8 6 32 23 16 11 8 

≤8.5 

1 11 8 6 4 3 12 9 6 5 4 14 10 7 5 4 
2 17 12 9 6 5 19 13 9 7 5 21 15 11 8 6 
3 23 16 12 9 6 25 17 13 9 7 29 21 15 10 8 
4 29 21 15 10 8 31 22 16 11 8 37 26 18 13 9 

≤9 

1 13 9 6 5 3 14 10 7 5 4 15 10 7 5 4 
2 20 14 10 7 5 22 16 11 8 6 23 16 12 8 6 
3 28 19 14 10 7 30 21 15 11 8 32 23 16 11 8 
4 35 25 17 12 9 38 27 19 13 10 41 29 20 14 10 

B.9 Step 6: Treatment Process Failure Framework 
B.9.1 Background 
Deviations in treatment process performance might include (1) typical operational variability, (2) 
periodic off-specification events, and (3) low-probability failures. Depending on the extent of 
monitoring, the treatment performance datasets described in the previous section might only capture a 
subset of these possibilities. So, it is important to consider how to handle failure conditions—specifically 
their magnitude, duration, and frequency—as part of the QMRA/PATTP. By either imparting some 
failure into the model, or characterizing the tolerance for failure in modeled scenarios (i.e., observed 
LRV redundancy), stakeholders can begin to characterize the resiliency of a given system. 

Multiple QMRAs have shown that even short-duration failures can lead to a significant impact on the 
overall risk profile (Amoueyan et al. 2019; Haas and Trussell, 1998; Pecson et al. 2017; Soller et al. 
2018b). Although recent studies have begun to characterize the frequency and duration of off-
specification or failure events (Ander and Forss, 2011; Pecson et al. 2018; Soller et al. 2018b; Tng et al. 
2015), it is still difficult to quantify the true magnitude of a failure. Some studies show that pathogen 
LRVs are still relatively high even during simulated failures. In fact, Pecson et al. (2018) noted that the 
probability of a UV failure of sufficient magnitude to cause a change in pathogen LRV might be on the 
order of 10-11, and a similar conclusion was reached in Tng et al. (2015). Therefore, including 
catastrophic failures in a QMRA, such as those resulting in an LRV of 0, may overestimate the risk for a 
given system. Moreover, such catastrophic failures are unlikely to occur because DPR systems will likely 
require fail-safe protocols to mitigate or eliminate the impacts of such events. Nevertheless, these rare 
events that might be as short as 15 minutes can drive annual risk estimates for drinking water systems 
(Soller et al. 2018b). This underscores the importance of treatment process verification (e.g., monitoring 
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surrogate parameters at critical control points) to rapidly identify and respond to off-specification or 
failure conditions (Amoueyan et al. 2019). 

In addition to catastrophic failures, engineered processes never achieve ideal hydraulic conditions. This 
means that treated water can experience a wide range of hydraulic residence or exposure times, which 
has implications for disinfectant CT, UV dose, storage/travel time, etc. This highlights the importance of 
fully characterizing the hydraulics of natural and engineered systems. In the absence of this information, 
one can assess the sensitivity of risk to normal operational variability by ‘experimenting’ with the 
statistical distributions used to model certain parameters (e.g., increasing the standard deviation of a 
normally-distributed LRV). This concept is incorporated into Case Study 1 (Section B.15).  

Characterizing unit process interdependence is also important for understanding the impact of failures. 
Systems with a high degree of interdependence may experience cascading failures, or ‘domino effects,’ 
where a failure in an upstream unit process leads to the failure or diminished performance of 
downstream unit processes. Knowing whether a treatment train has high or low interdependence is 
critical for accurately modeling failure impacts. Amoueyan et al. (2017; 2019) incorporated cascading 
failures into the QMRA by simulating changes in water quality resulting from an upstream failure that 
would adversely impact downstream treatment performance. However, the final risk calculations were 
more sensitive to individual and compound failures (i.e., simultaneous catastrophic failures) rather than 
simulated interdependence. Pecson et al. (2017) also showed that FAT trains exhibited minimal 
interdependence, allowing modeling of failures as independent events. Similar conclusions were 
reached in Haas and Trussell (1998) and Olivieri et al. (1999). 

There is a general consensus that an understanding of process failures is an important knowledge gap 
for potable reuse. New information that becomes available to better characterize failures in terms of 
magnitude, duration, and frequency and the corresponding implications for pathogen reduction should 
be evaluated and incorporated into QMRAs/PATTPs. In addition to capturing typical variability in 
treatment process performance, off-specification events or failures should be considered in stochastic 
modeling, regardless of whether they were actually observed during a particular monitoring period. This 
is because the absence of failures during shorter monitoring periods does not guarantee the absence of 
rare failures over longer timescales. Moreover, by considering off-specification events and failures, it is 
then possible to quantify the resilience of a system and demonstrate the importance of on-line 
surrogate monitoring and response protocols. 

B.9.2 Integration into DPRisk 
The user defines the failure framework in the Treatment Failure section of the DPRisk interface. DPRisk 
allows the user to define global failure characteristics, define failures for individual or multiple 
engineered treatment processes, or to exclude failures entirely. Under the global setting (see figure 
below), failure characteristics are applied similarly across all of the engineered treatment processes 
included in the model scenario, although process-specific failures are still ‘sampled’ independently. 
Failures are not applied to management barriers (see next section on description of management 
barriers). The user has the option of defining up to 6 failure types based on their magnitude, duration, 
and frequency: 

• Magnitude: percent reduction in LRV (0-100%). 
o Example: The user specifies a failure magnitude of 70%, which means a treatment process will 

operate at 30% of normal conditions during a simulated failure. If that treatment process is 
typically awarded an LRV of 6.0, the corresponding failure LRV would be (100-70)/100×6.0 = 
0.3×6.0 = 1.8.  
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• Duration: number of hours over which a failure occurs (specified as a consecutive block of 15-min 
intervals, with the block being assigned randomly within the failure day). 
o Example: 30-min failure duration = setting of 0.5 hours. 
o Example: 1-hour failure duration = setting of 1 hour (see figure). 
o Example: 24-hour failure duration = setting of 24 hours. 

• Frequency: the user can specify a deterministic frequency or daily probability. The failures may 
occur independently (i.e., single failure) or concurrently (i.e., compound failure), as determined by 
Monte Carlo simulations of 15-minute time intervals.  
o Deterministic: every treatment process will fail “X” number of times per year. 
o Probabilistic: each process has “X” daily probability (between 0 and 1) of failure. 

For deterministic failure frequencies, the tool selects a random 
day (or days) to assign a failure, and for stochastic failure 
frequencies, the tool assigns failures based on probabilistic 
sampling of all days in the simulation. A user might select a 
stochastic probability of failure of 0.01, which means each 
process has a 1% probability of failure on any given day. This 
equates to a probable failure frequency of approximately 3-4 
times per year (i.e., 0.01 failures/day×365 days/year = 3.65 
failures/year). With the deterministic approach, the tool forces 
failures to occur at the specified frequency. The probabilistic 
approach might provide a better representation of actual 
conditions, assuming failures are adequately characterized to 
identify reasonable probabilities, while the deterministic 
approach might be a better option to understand the 
implications of a specific failure scenario by forcing it to occur 
(i.e., eliminating the confounding factor of probability). 
Additional discussion on the link between failure probability and 
the recommended number of failure simulations is provided in 
Step 10: Risk Characterization. 

When failures are identified, the specified magnitude (i.e., reduction in LRV) and duration are also 
assigned to that day. As will be discussed later, DPRisk’s underlying model structure is based on 15-
minute time intervals. For failure durations less than 24 hours, the reduction in LRV is applied to a 
random block of 15-minute intervals corresponding with the specified failure duration. If the treatment 
train involves multiple unit processes, failures for the various unit processes are sampled independently, 
which may lead to compound (or simultaneous) failures. Moreover, if multiple failure types are 
specified, each failure type is sampled independently. In the event of a compound (or simultaneous) 
failure of different types for the same unit process, the LRV is adjusted for both failures unless the LRV 
has already been reduced to 0. 

As will be discussed later [see Step 8: Drinking Water Ingestion (Exposure Assessment)], users have the 
ability to specify the number of ingestion/consumption events per day, with the default setting being 96 
(i.e., every 15 minutes) for consistency with DPRisk’s 15-minute calculation framework. When fewer 
than 96 ingestions are specified, there will be certain periods of the simulated day (i.e., certain 15-
minute time intervals) for which there are no exposures. Due to the random nature of the failure 
assignments, it might be possible for a failure to occur—even with a deterministic frequency—but be 
allocated to a ‘no-exposure’ time interval. These failures will have no impact on risk unless the duration 
is sufficiently long so that it aligns with a subsequent ingestion event. Therefore, in establishing input 
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parameters, the user must consider the potential interrelatedness of failure duration, failure frequency, 
and ingestion frequency, perhaps by conducting relevant sensitivity analyses. 

It is unlikely that all unit processes are characterized by the same 
magnitude, duration, and frequency of failure, so there may be a 
preference to model process-specific failure characteristics rather than 
using a global failure approach. This is useful for distinguishing a process 
that might have a low probability of failure versus one with a high 
probability of failure, or perhaps a process with a high probability of low 
magnitude failures versus one with a low probability of high magnitude 
failures. When individual unit processes are defined (Treatment Train 
tab) and the “Conduct failure analysis” option is selected (Treatment 
Failure tab), the tool will automatically provide the option of applying a 
failure type to all processes (i.e., global failure approach) or only to 
selected unit processes (see ozone example in figure). All other 
parameter options remain the same for the process-specific failure 
option.  

The industry has not yet developed a comprehensive understanding of 
how failure magnitude, duration, and frequency vary by process. There 
are some data in the literature describing failure frequencies and durations, but it is not yet clear how 
pathogen LRVs (i.e., failure magnitudes) are impacted during those low probability events (if at all). In 
the absence of more comprehensive datasets, failure characterization and subsequent data 
interpretation and/or policy decision-making should be done with caution. The following table provides 
some guidance on modeling process variability versus failure for individual treatment processes. As 
noted earlier, process variability is unavoidable but should be minimized in full-scale treatment to 
adequately manage public health risk. The effects of variability are primarily addressed through the 
statistical distribution used to award LRVs to a particular treatment process. On the other hand, off-
specification conditions and/or failures represent discrete events that might result in a significant 
change in process performance over varying lengths of time. In the literature, off-specification events 
are sometimes described as short-term conditions resulting in sub-optimal performance (i.e., partial 
reductions in LRVs) (Soller et al. 2018b), while failures are often described as complete (i.e., 100%) 
reductions in LRV. The values in this table can be used as a starting point for specifying global or process-
specific failures in DPRisk.  
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Unit Process Failure Type and Probability Failure Duration Source 
Secondary  Variability: distribution on LRV N/A N/A 
MBR Variability: distribution on LRV N/A N/A 
Ozone Variability: ozone CT/LRV distribution 

Off-spec: P = 0.025  
Failure: P = 0.000325  
Failure: P = 0.0022 

N/A 
15 min 
24 hr 
30 min 

N/A 
Soller et al. (2018b) 
Amoueyan et al. 
(2019) 
Ander and Forss 
(2011) 

Free Chlorine Variability: chlorine CT/LRV 
distribution 
Failure: P = 0.0021  

N/A 
90 min 

N/A 
Ander and Forss 
(2011) 

UV/AOP Variability: UV dose/LRV distribution 
Failure: P = 0.002 
Failure: P = 0.0001 or 0.0005 

N/A 
15 min 
30 min 

N/A 
Soller et al. (2018b) 
Pecson et al. (2018) 

Membrane 
Filtration (MF and 
UF) 

Variability: PDT/LRV distribution 
Off-spec: P = 0.021 
Failure: P = 0.0029 

N/A 
15 min 
45 min 

N/A 
Soller et al. (2018b) 
Ander and Forss 
(2011) 

RO Variability: surrogate distribution 
Failure: P = 0.018 

N/A 
15 min 

N/A 
Soller et al. (2018b) 

B.10 Step 7: Management Barriers (Blending, Dilution, and Die-off) 
B.10.1 Background 
In some contexts, blending and dilution can be used interchangeably, but for this Guidance Document 
and for the DPRisk tool, ‘blending’ refers to complete and instantaneous mixing with a pathogen-free 
water supply, while ‘dilution’ refers to more complicated mixing regimes. Dilution is often characterized 
through hydraulic modeling of engineered treatment systems (e.g., computational fluid dynamics in a 
UV reactor) or hydrodynamic modeling of reservoirs under variable meteorological conditions.  

 

Potable reuse can theoretically span an endless range of blending/dilution scenarios, although existing 
regulatory frameworks include some degree of specificity regarding these requirements. In California, 
the recycled water contribution (RWC) in a groundwater augmentation project is essentially an 
allowable blending ratio determined by TOC concentration (TOCmax = 0.5/RWC). On the other hand, 
reservoir augmentation applications must demonstrate compliance with certain dilution requirements 
(>10:1 or 100:1), generally through use of hydrodynamic modeling informed by tracer studies. Future 
DPR applications will likely involve raw water augmentation (i.e., blending prior to drinking water 
treatment) or treated water augmentation, either by blending with finished drinking water or direct 
distribution to a consumer. Typically, pathogen LRVs are not awarded for blending or dilution in IPR 
systems so dilution-related LRVs may not be awarded in future DPR systems. However, accounting for 



Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 83 

blending or dilution as part of a QMRA might provide value in terms of estimating potential 
conservatism.  

Pathogen reduction through blending/dilution can be supplemented with estimates of pathogen die-off 
in an environmental buffer (Amoueyan et al. 2019; Lim et al. 2017), but again, environmental die-off is 
rarely recognized in regulatory frameworks. No pathogen credit is awarded for the storage of purified 
water in reservoir augmentation projects in California, but 1-log virus reduction is credited for every 
month of travel time in groundwater augmentation projects. Pathogen die-off is still not well 
understood, which leads to considerable uncertainty in a QMRA, but there is a growing knowledgebase 
on this topic (Boehm et al. 2018; 2019). In general, this is less significant for DPR applications because of 
the limited interaction with the environment and reduced time between treatment and distribution, but 
there may be exceptions. In California, reservoir augmentation requires a minimum theoretical 
retention time (VEndOfMonth/QTotal) of 2 months, and systems with retention times shorter than 2 months 
would likely require permitting under DPR regulations. Therefore, die-off might still contribute a 
significant LRV in some raw water augmentation scenarios, but for treated water augmentation, it might 
be more appropriate to consider blending in the absence of die-off. In any case, this offers another 
opportunity to characterize a potential degree of conservatism by incorporating die-off into a QMRA. 

B.10.2 Integration into DPRisk 
Pathogen LRVs for blending, dilution, and die-off are not commonly included in potable reuse regulatory 
frameworks, but DPRisk allows for their implementation through the Management Barriers tab. Similar 
to the engineered treatment processes, these management barriers are integrated in an LRV format to 
ensure consistency with the QMRA framework and to allow for maximum flexibility. However, DPRisk 
does not apply an LRV cap nor failures to the management barriers. 

As noted earlier, blending can be described as complete and instantaneous mixing with a secondary 
water supply, such as source water upstream of a drinking water treatment facility, finished drinking 
water, or groundwater. This secondary water supply is often assumed to be free of pathogens, although 
this may not always be accurate as some source waters are known to contain pathogens (Amoueyan et 
al. 2019). As with the aforementioned engineered treatment processes, blending can be characterized in 
DPRisk as (1) a point estimate, (2) a statistical distribution, or (3) an input file curated with 10,000 data 
points. For compatibility with the DPRisk framework, the blending ratio should be described as an LRV. 
As shown in the following example, a recycled water contribution (RWC) of 10% (or 0.10) would 
correspond with an LRV of 1.0.  

 

Hydrodynamic or hydraulic modeling coupled with tracer studies may be needed to accurately 
characterize dilution in a particular potable reuse scenario. This type of data can be transformed into an 
LRV distribution and uploaded into DPRisk (see Section B.16, Case Study 2). In the absence of these data, 
estimating dilution assuming an ideal completely stirred tank reactor (CSTR) may be an adequate 
alternative. If desired, response retention time (RRT) can be integrated into the CSTR approach to 
consider the implications of treatment process failure and monitoring frequencies at critical control 
points. A theoretical dilution ratio can be calculated for a CSTR using the following equation: 

Theoretical Extent of Dilution (X) = 
C0

C
 = 

1
1 - e -t/τ 
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where t = duration of ‘critical’ recycled water input, τ = 
theoretical hydraulic residence time (HRT) in the 
environmental buffer or engineered storage buffer 
(i.e., V/Q), and X = the ‘X’-fold dilution achieved in the 
scenario. One way of defining the duration of ‘critical’ 
recycled water input could be the longest time 
between measurements at the critical control points. 
When considering failures, the duration of ‘critical’ 
recycled water input could alternatively be described 
as the failure duration. Longer failures correspond 
with inputs of off-specification recycled water over 
longer durations, which should decrease the LRV 
awarded for dilution. The preceding figure shows 
examples of theoretical dilution ratios for HRTs 
ranging from 1 hour (engineered storage buffer) to 30 
days (environmental buffer) and failure durations ranging from 15 minutes to 24 hours. In the absence 
of site-specific data, 15 minutes might be a reasonable default for the duration of the ‘critical’ recycled 
water input. The dilution LRV can be calculated according to the equation below when using this CSTR 
approach. The dilution LRV can then be integrated into DPRisk as (1) a point estimate, (2) a statistical 
distribution, or (3) an input file curated with 10,000 data points. 

Dilution LRV = -log10(1/X) = -log10൫1 - e-t/τ൯ 

Die-off is generally modeled as first order decay (base e) using rate constants from the literature 
(Boehm et al. 2018; Boehm et al. 2019) and the following equation: 

-ln ൬Nt

N0
൰  or -ln ൬Ct

C0
൰ = kit 

where Nt = number of organisms at time t, N0 = number of organisms at time 0, Ct = concentration of 
organisms at time t, C0 = concentration of organisms at time 0, ki = base e first order rate constant for 
die-off of pathogen i (units = time-1), and t = time. For consistency with typical QMRA frameworks, it is 
necessary to convert the base e pathogen reduction to base 10, which can be accomplished as follows: 

LRV = -log10 ൬Nt

N0
൰  or  -log10 ൬Ct

C0
൰  = 

kit
2.303

 

Die-off is technically a function of a number of variables, including salinity, temperature, pH, and 
sunlight exposure, although exact relationships are often uncertain. Boehm et al. (2019) provides a 
comprehensive review of pathogen die-off and presents empirical regression models to quantitatively 
describe some of these relationships. But even when controlling for a certain variable, such as 
temperature, the die-off rate constants often span multiple orders of magnitude, calling into question 
whether there is a sufficient number of high-quality datasets available for complete and accurate 
characterization. The following table provides a summary of the die-off rate constants from Boehm et al. 
(2018; 2019), in addition to identifying statistical distributions that can potentially be integrated into a 
Monte Carlo simulation to capture some of the inherent uncertainty/variability. Using the identified 
base e means/medians in conjunction with the aforementioned equations, the corresponding figure 
illustrates the LRVs that might be expected for a range of DPR scenarios. The figure demonstrates that 
the expected LRVs for the target pathogens might be insufficient to warrant inclusion in a QMRA when 
assuming an engineered storage buffer with a theoretical hydraulic retention time of up to 24 hours. On 
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the other hand, reservoirs with storage times up to 2 months might warrant inclusion of a die-off LRV or 
at least recognition of additional conservatism if die-off is excluded. 

 Pathogen N Base e Mean1 
(d-1)  

Lognormal Dist. (d-1) Source 
μ σ 

Giardia 14 0.044 -3.132 2.211 Boehm et al. 
(2018) 

Cryptosporidium 22 0.041 -3.201 1.842 Boehm et al. 
(2018) 

Virus (all) 8 0.155 -1.865 1.152 Boehm et al. 
(2018) 

Enterovirus2,3 96 0.640 -0.446 1.054 Boehm et al. 
(2019) 

Pathogen N Base e 
Median 

(d-1) 

Range (d-1) Source 
 Min Max 

Adenovirus2 8 0.063 0.021 0.288 Boehm et al. 
(2019) 

Norovirus2,4 5 0.205 0.020 0.368 Boehm et al. 
(2019) 

1Calculated as eμ with μ from reported lognormal distribution; 2Includes reported values for experiments 
performed with culture methods and in freshwater (no distinction for temperature); 3Determined from 
maximum likelihood estimation in Matlab; 4Based on experiments with murine norovirus. 

 

The die-off LRV can ultimately be integrated into DPRisk as (1) a point estimate, (2) a statistical 
distribution, or (3) an input file curated with 10,000 data points. The point estimate would be the most 
straightforward approach but would only incorporate a single die-off rate constant and a single storage 
time. The statistical distribution or input file would allow for a Monte Carlo-type approach by capturing 
the variability in reported die-off rate constants and/or storage time for a given DPR scenario.  

Assuming inclusion of management barriers, DPRisk calculates the pathogen concentration in the 
finished drinking water as follows: 

Cdrinking_water = CAWPF_effluent × 10-(LRVblending + LRVdilution + LRVdie-off) 
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B.11 Step 8: Drinking Water Ingestion (Exposure Assessment) 
B.11.1 Background 
QMRAs must include assumptions about the amount of water a person consumes each day in order to 
determine the exposure to a particular pathogen. There are two common approaches for modeling 
drinking water consumption: (1) modeling consumption based on a distribution (EPA, 2011; Roseberry 
and Burmaster, 1992) or (2) modeling consumption based on a point estimate. Common point estimate 
assumptions include 1 L per person per day (Olivieri et al. 2016); 2 L per person per day (Amoueyan et al. 
2019); 2.5 L per person per day, which represents the 90th percentile value for adults based on EPA 
(2011); and even 3 L per person per day at an Antarctic field station (Barker et al. 2013). 

As an artifact of probability-based calculations, the frequency of ingestion can also have a significant 
impact on the final risk characterization, even when the total volume remains constant (Van Abel, N. et 
al. , 2014). For example, Amoueyan et al. (2019) calculated daily risk based on a single 2-L ingestion, 
Soller et al. (2018b) calculated daily risk based on a 2-L volume ingested as eight 250-mL aliquots 
throughout the day, and Pecson et al. (2017) calculated risk based on a lognormally distributed daily 
ingestion volume divided evenly across 96 time intervals (i.e., every 15 minutes). The implications of 
different ingestion frequencies are illustrated in the following hypothetical example. By filling up a 
pitcher of water multiple times throughout the day, there is a higher probability of capturing the effects 
of a failure condition, assuming that condition is not detected and diverted at the treatment facility. 
That being said, it is still possible for the single aliquot to align with a failure condition, which would then 
impart a higher risk due to the greater ingestion volume. A failure condition aligning with only one of 
four (or more) aliquots might impart a lower risk because it is partially mitigated by the dilution effect. 
In any case, ingestion frequency can potentially have significant implications for risk estimates.  
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B.11.2 Integration into DPRisk 
DPRisk allows the user to specify ingestion volume as a lognormal 
distribution, a point estimate, or an input file curated with 10,000 
data points (e.g., to consider an alternative statistical 
distribution). All non-default inputs should be based on units of 
mL per day. Alternatively, the user has the option of selecting 
from a list of four default ingestion volumes, specifically the 
lognormal distribution from Roseberry and Burmaster (1992), a 
point estimate of 1 L/day, a point estimate of 2 L/day, or a point 
estimate of 2.5 L/day. The lognormal distribution from Roseberry 
and Burmaster (1992) was also used in Pecson et al. (2017) and is 
characterized by μ = 7.492 and σ = 0.407; the mean of this 
lognormal distribution corresponds with an ingestion volume of 
e7.492 = 1,794 mL/day. In addition to defining the daily ingestion 
volume, the user can select the number of ingestion (or 
consumption) events per day, from 1 to 96 (or every 15 minutes). The daily ingestion volume is then 
divided by the specified number of daily ingestion events and coupled with the estimated drinking water 
pathogen concentration to determine the interval-specific pathogen dose (see equation below). 
Additional details related to the tool calculation methodology are described in Step 10: Risk 
Characterization. Theoretically, this flexibility in defining ingestion volume and frequency allows for 
QMRAs targeting a wide range of exposures and applications, including large-volume drinking water 
ingestion versus small-volume (incidental) ingestion of recreational water. Coupled with a user-defined 
dose response model (see next section), it might even be possible to model aerosol inhalation of 
respiratory pathogens, although this application is not addressed in the Guidance Document and may 
require further tool development for specific applications.  

Dose (# of pathogens) = Cdrinking_water (pathogens/L) × Daily Ingestion Volume (mL/day)
1000 (mL/L) × N (ingestions/day)

 

B.12 Step 9: Pathogen Dose Response Models (Dose Response 
Assessment) 

B.12.1 Background 
Dose response relationships provide the link between exposure to a pathogen (i.e., dose) and the 
probability of infection. These relationships can be developed directly through animal studies and 
human clinical studies or indirectly through epidemiological/outbreak studies (EPA, 2014). Dose 
response models rarely distinguish for susceptible subpopulations (e.g., demographic differences such 
as age and immunocompromised status), although some QMRAs adjust the ingestion volume as a 
function of age. Also, the severity of the response (i.e., illness) is often addressed independently of the 
dose response (i.e., probability of infection) and is generally assumed to be independent of dose, 
although this is not always the case in reality (EPA, 2014). The severity of the response, which is linked 
to pathogen virulence and accounts for differences in morbidity and mortality, is discussed in greater 
detail in Step 10: Risk Characterization. Additional information on common dose response models, 
including the critical details that should be provided to justify use of a certain dose response model, is 
available in EPA (2014). This Guidance Document focuses only on commonly accepted dose response 
models for waterborne pathogens in drinking water applications.  

Dose response functions sometimes vary widely within the same pathogen group (e.g., different 
bacteria or viruses), and even a single pathogen can be described by multiple functions, sometimes with 

2017)
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significant implications for risk estimates (Messner et al. 2014; Nappier et al. 2018; Schmidt, 2015; Soller 
et al. 2017). For example, Soller et al. (2017) and Amoueyan et al. (2019) showed that certain dose 
response models cause the final risk calculation to increase by up to several orders of magnitude. For a 
simple exponential model, even the value selected for the dose response parameter can cause risk to 
change by orders of magnitude (Amoueyan et al. 2017). Therefore, the dose response model can be a 
significant source of uncertainty in a QMRA. Examples for two different bacterial pathogens and three 
different dose response models for Cryptosporidium are shown in the table below. For a hypothetical 
concentration of 1×10-5 cells or oocysts per L (or 1 per 100,000 L) and a one-time ingestion volume of 2 
L, the corresponding probability of infection would be 4×10-7 for Campylobacter; 2×10-9 for Salmonella; 
and 2×10-5, 2×10-6, or 8×10-8 for Cryptosporidium, respectively. This shows that the selection of a certain 
dose response model or parameter can lead to significantly different risk estimates for different types of 
pathogens, or even for the same pathogen.  

Pathogen Model Probability of Infection1 Parameter References 

Campylobacter jejuni Beta-Poisson 1 − ൬1 + 𝑑𝛽൰ିఈ 
α = 0.1450 
β = 7.59 

Medema et al. 
(1996) 

Salmonella enterica Beta-Poisson 1 − ൬1 + 𝑑𝛽൰ିఈ 
α =0.3126 
β =2884 Haas et al. (1999) 

Cryptosporidium 
Beta-Poisson 1 −  ൤1 + 𝑑𝛽൨ିఈ 

α = 0.116 
β = 0.121 

Messner & Berger 
(2016) 

Exponential 1 − 𝑒ି௥ௗ r = 0.09 Haas et al. (1999) 
Exponential 1 − 𝑒ି௥ௗ r = 0.00419 Haas et al. (1999) 

1 d = dose (number of pathogens) 

For QMRAs, it is important to consider a range of available dose response functions, particularly for final 
risk characterization and decision-making. It is also important to consider whether certain dose response 
models are compatible with early QMRA assumptions—norovirus being a prime example. As mentioned 
earlier, one of the challenges with incorporating norovirus into a QMRA (and into regulatory 
frameworks) stems from the difficulty in assessing its infectivity. Although some culture methods are 
emerging, norovirus enumeration is currently limited to molecular methods based on quantification of 
genome copies. The lack of a standard correlation between genome copies and infectious units is 
generally the greatest impediment to integrating molecular data into QMRAs, and also in the 
development of dose response functions. 

Efforts have been made to work around the GC:IU issue. For example, various challenge studies have 
been undertaken by exposing human volunteers to known doses of norovirus genome copies, thereby 
facilitating development of genome copy-based dose response models. In this framework, it is not 
necessary to characterize the GC:IU ratio as long as that ratio is constant. One of the major limitations of 
this assumption, however, is that it remains unknown whether the GC:IU ratio from a human challenge 
study is similar to the ratio for an environmental matrix, such as a raw sewage or treated water. Human 
challenge studies often employ purified virus stocks that have been suspended in conditions amenable 
for archiving, or freshly prepared from the feces of infected individuals (Atmar et al. 2014; Frenck et al. 
2012; Messner et al. 2014; Seitz et al. 2011; Teunis et al. 2008). Therefore, there may be significant 
differences in GC:IU ratio at various stages of treatment and ultimately exposure. 

B.12.2 Integration into DPRisk 
The following table summarizes the dose response models and parameters that are integrated into 
DPRisk’s default configuration. When a particular pathogen is selected in Step 1: Target Pathogens, 
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these defaults auto-populate in the dose response tab. For adenovirus, norovirus, and Cryptosporidium, 
the user must select one of the default dose response options. There are also two options for user-
defined dose response models: (1) selecting one of the default dose response models listed in the table 
below and specifying a point estimate for each dose response parameter or (2) selecting one of the 
default dose response models and providing an input file curated with 10,000 values for each dose 
response parameter.  

Pathogen Dose Response Model Equationa Parameter References 

Adenovirus 
Exponential 1 − 𝑒ି௥ௗ r =0.4172 Crabtree et al. (1997) 

Exact Beta-Poissonb 1− 𝐹ଵଵ ሺ𝛼,𝛼 + 𝛽,−𝑑ሻ α = 5.11 
β = 2.8 Teunis et al. (2016) 

Enterovirus Beta-Poissonc 1 −  ൤1 + 𝑑𝛽൨ିఈ 
α = 0.253 
β = 0.426 Ward et al. (1986) 

Norovirus 

Exact Beta-Poissonb 
(Upper Bound; 
disaggregated) 

1− 𝐹ଵଵ ሺ𝛼,𝛼 + 𝛽,−𝑑ሻ α = 0.04 
β =0.055 Teunis et al. (2008) 

Fractional Poisson 
(Lower Bound; 
aggregated) 

𝑃 × ൬1 − 𝑒ିௗఈ ൰ 
P = 0.72 
α = 1106 Messner et al. (2014) 

Cryptosporidium 

Exponential 1 − 𝑒ି௥ௗ r = 0.09 EPA (2006a) 

Exponential 1 − 𝑒ି௥ௗ r = 
0.00419 Haas et al. (1999) 

Fractional Poisson  𝑃 × ൬1 − 𝑒ିௗఈ ൰ 
P = 0.737 

α = 1 
Messner & Berger 

(2016) 

Beta-Poisson 1 −  ൤1 + 𝑑𝛽൨ିఈ 
α = 0.116 
β = 0.121 

Messner & Berger 
(2016) 

Exponential with 
Immunity  𝑃 × ൫1 − 𝑒ି௥ௗ൯ P = 0.737 

r = 0.608 
Messner & Berger 

(2016) 
Giardia lamblia Exponential  1 − 𝑒ି௥ௗ r = 0.0199 Teunis et al. (1997) 

ad = dose; bAlso described as Hypergeometric; cBased on rotavirus for consistency with U.S. EPA’s Surface Water 
Treatment Rule and California regulations. 

B.13 Step 10: Risk Characterization 
B.13.1 Background 
Risk characterization involves the integration of the preceding steps and assumptions into a final risk 
estimate that can then be evaluated against various benchmarks. The first step in this process is to 
calculate the probability of infection for a given condition. To calculate the pathogen dose that should 
be incorporated into a dose response model, one must multiply the pathogen concentration in the 
finished/blended drinking water and the volume of water consumed at a given time. As noted earlier, 
the pathogen concentration in the finished drinking water (Cdrinking_water) depends on the assumed 
distribution of the raw wastewater pathogen concentration (Craw_sewage); the degree of attenuation 
achieved by the engineered treatment barriers (i.e., the overall LRV or LRVT); and the degree of 
blending, dilution, and/or die-off. The resulting distribution of Cdrinking_water is then converted to a 
distribution of doses by accounting for the volume of water consumed and the frequency of ingestion. 
Once the dose is known, the final risk estimate (or probability of infection) for the specified time interval 
can be determined from the aforementioned dose response model. 
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In a QMRA, these data combinations are determined from ‘Monte Carlo’ simulations—a phrase 
describing the repeated sampling of data from assumed statistical distributions or underlying datasets. 
The number of data points in the underlying parameter set or the number of simulations might range 
from 1,000 (Amoueyan et al. 2019, 2020; Soller et al. 2017, 2018a, 2018b) to 10,000 (Amoueyan et al. 
2017) to 100,000 (Chaudhry et al. 2017) to 1,000,000 (Pecson et al. 2017). However, the number of 
simulations alone does not fully characterize the resolution of a QMRA. For example, when trying to 
capture rare or extreme events with low probabilities, a QMRA that focuses on daily risk might require 
1,000,000 simulated days. On the other hand, a QMRA that focuses on 15-minute risks might still 
require 1,000,000 data points to capture the low probability events, but that would equate to ~10,000 
days because of the 96 time intervals per day. Therefore, it is important to consider the structure of the 
model to fully understand whether sufficient data sampling has occurred to have confidence in the final 
risk estimates.  

Risk can actually be calculated for any time interval, including annual, daily, hourly, or even 15-minute 
intervals. One of the most common benchmarks for risk characterization is the annual risk of infection of 
10-4, which requires an adjustment from shorter time intervals to annual risk. For example, many 
QMRAs use daily risk as the foundation of the simulation, which subsequently requires converting daily 
risk to annual risk as follows: 

Pannual = 1 – ෑ (1 – Pdaily,n)
365

n=1

 

This methodology assumes that each exposure period results in a statistically independent risk of 
infection (Haas and Eisenberg, 2001). Risks calculated for shorter time periods (e.g., 15 minutes) can also 
be converted to daily or annual risks. The equations for 15-minute time intervals, for which there are 96 
intervals in a day and 35,040 intervals in a year, are shown below. In this equation, Pannual is a single 
annual probability of infection, Pdaily is a single daily probability of infection, and P15 is a single 15-minute 
risk of infection (Pecson et al. 2017). 

Pdaily = 1 – ෑ (1 – P15,n)
96

n=1

 

Pannual = 1 – ෑ (1 – P15,n)
35,040

n=1

 

Some studies even look at the cumulative risk of infection by simultaneously accounting for the risk of 
infection from all reference pathogens (Amoueyan et al. 2019; Soller et al. 2017, 2018b). In the equation 
below, Pcumulative,n is the cumulative probability of infection for a given time interval accounting for N 
reference pathogens simultaneously. 

Pcumulative,n = 1 –  ෑ (1 – Pi,n)
N

i=1

 

The cumulative approach provides greater accuracy if the risks from two or more pathogens are of the 
same order of magnitude. In cases where a single pathogen dominates the risk calculation, the 
cumulative risk and pathogen-specific risk will generally be indistinguishable. If cumulative risk is 
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desired, the cumulative risk should first be calculated for the smaller time interval and then extrapolated 
to any time interval of interest. 

The two main risk targets noted in the literature are 10-4 infections per person per year and 10-6 
disability adjusted life years (DALYs) per person per year (Regli et al. 1991; WHO, 1996, 2006). For some 
enteric pathogens (e.g., rotavirus and Cryptosporidium), the 10-6 DALY target yields an equivalent annual 
risk of ~10-3 infections per person per year (NRMMC, 2008; WHO, 1996, 2006). The DALY framework 
simultaneously accounts for risk of infection and the health burden associated with the infection, 
including years lived with disability and life years lost. In other words, the DALY framework 
acknowledges that not all infections are created equal, with more virulent pathogens imparting a 
greater health burden than others. Many studies in the U.S. focus on 10-4 infections per person per year 
as the benchmark or target risk (Chaudhry et al. 2017; Pecson et al. 2017; Soller et al. 2017), whereas 
the DALY framework is more frequently used outside of the U.S. (Barker et al.  2013). 

These approaches have resulted in varying LRV frameworks for potable reuse, as summarized in the 
following table. With revised assumptions for raw sewage concentration, dose response model, etc., 
Soller et al. (2018a) suggested that the LRVs required to achieve the 10-4 annual risk benchmark might 
actually be higher than 12/10/10—perhaps as high as 15/11/11.  

Source Basis Reference Virus 
LRV 

Crypto 
LRV 

Giardia 
LRV 

Bacteria 
LRV 

CAa 10-4 annual risk Raw WW 12 10 10 -- 
NWRIb 10-4 annual risk Raw WW 12 10 -- 9f 

TXc 10-4 annual risk WWTP Effluent 8 5.5 6 N/A 
WHOd 10-6 DALYs/year Raw WW 9.5 8.5 -- 8.5g 

Australiae 10-6 DALYs/year Raw WW 9.5 8 -- 8.1g 
aDDW (2014); bNWRI (2013); cTWDB (2015); dWHO (2017); eNRMMC (2008); fTotal coliform; gCampylobacter 

Another metric that is becoming common in the U.S. is a daily risk benchmark of 2.7×10-7, which equates 
to the annual risk benchmark of 10-4 divided evenly across 365 days. However, it is important to note 
the following nuance in shifting from annual risk to daily risk, or even when comparing daily risk to 15-
minute risk. The purified water from a well-operated DPR system that meets expected regulatory 
requirements will likely achieve risk levels that are orders of magnitude below the annual risk 
benchmark. Compliance will then be driven by low probability conditions that might occur only on a 
small number of days throughout the year (Soller et al. 2018b). In contrast, the aforementioned daily 
risk benchmark assumes the risk remains relatively flat at ~2.7×10-7 every day of the year. In this case, 
the daily risk (~10-7) and annual risk (~10-4) differ by nearly 3 orders of magnitude. But with rare events, 
the highest daily risk and the corresponding annual risk may actually be quite similar in magnitude 
because of the manner in which annual risk is calculated (see preceding equations). In other words, 
when extrapolating daily to annual risk, the final value generally does not reflect the vast majority of 
daily risk estimates and is instead driven by only a few data points—or possibly even a single data point. 
In a practical sense, this means that when low probability events are driving risk estimates, full 
compliance with a daily risk benchmark may not be necessary to achieve compliance with the 
corresponding annual risk benchmark. Figure 2 in Soller et al. (2017) illustrates this concept, along with a 
related observation for combined daily risk: 

• The highest daily risk estimate essentially drives the annual risk estimate, which is why there is little 
visual separation between that data point and the horizontal red line. If the daily risks were shifted 
vertically so that the highest daily risk was just above 2.7×10-7, the system would technically be in 
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non-compliance with the daily risk benchmark. However, that system would still be providing a 
safety factor spanning nearly 3 orders of magnitude when compared against the annual risk 
benchmark of 10-4.  

• The combined daily risk for this treatment scenario essentially follows a single pathogen (norovirus) 
because the contributions from other pathogens are negligible in comparison. This is an artifact of 
the equation/approach used to calculate the combined pathogen risk. Results may differ when 
evaluating other treatment trains or when incorporating different QMRA conditions/parameters, 
but in this case, calculating a cumulative (or combined) risk of all pathogens would be unnecessary.  

The preceding example demonstrates that there may be scenarios in which daily versus annual risk 
benchmarks lead to differing conclusions regarding regulatory compliance. This possibility should be 
considered as part of future decision-making efforts. This is explored in greater detail in the following 
graphic. 

 

B.13.2 Integration into DPRisk 
For consistency with U.S. drinking water regulations and specifically potable reuse regulations in 
California, DPRisk focuses on the more general ‘probability of infection’ framework, rather than the 
‘disability adjusted life year’ (DALY) framework. The tool specifically focuses on the 10-4 annual risk 
benchmark and the corresponding daily risk benchmark of 2.7×10-7 infections per person per day. As 
noted earlier, the daily and annual risks are computed by the tool as follows, with N representing the 
number of daily ingestion events: 
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Pdaily = 1 – ෑ (1 – Pn)
N

n=1

 

Pannual = 1 – ෑ (1 – Pn)
365×N

n=1

 

By default, the tool outputs these data relative to various statistical/percentile values (e.g., mean, 
standard deviation, minimum/maximum, 99th percentile) in tabular and graphical form to aid in 
identifying critical compliance thresholds. Because the tool focuses on only one pathogen at a time, 
there is no estimate of combined pathogen risk. However, the raw data output from the tool can be 
downloaded by the user, paired with model runs targeting other pathogens, and used to compute 
combined pathogen risks for various time intervals.  

The tool also generates a benchmark profile of treatment train performance using the equations below. 
The resulting distribution is meant to represent the LRVs needed to achieve an annual risk of exactly 10-

4. The tool actually calculates the benchmark LRV for each combination of raw wastewater pathogen 
concentration and ingestion volume in an underlying 10,000-point parameter set (this parameter set is 
described in greater detail below). For each combination in the underlying parameter set, the tool 
assumes the raw wastewater pathogen concentration and ingestion volume are constant across all time 
intervals in the year (i.e., 365×N ingestion events per day) and then calculates the required LRV for that 
combination to achieve the 10-4 annual risk. In effect, the LRVs are calculated based on the interval-
specific benchmark risk [i.e., 10-4/(365×N)], so the benchmark LRVs are actually independent of the 
ingestion frequency selected by the user. Because the interval-specific risk is assumed to be constant 
across the entire year, while an actual simulation includes different data combinations for the various 
intervals, the benchmark may overestimate or underestimate the LRVs that are actually required in 
some instances. Therefore, the LRV benchmark curve should only be interpreted as an approximation of 
treatment requirements.  

Pannual benchmark = 10-4 = 1 - ෑ ൤1 – Dr ൬ V
N

 × 10Log ஼೔ - LRVBenchmark൰൨ଷ଺ହ×N

௜ୀଵ  

or simplified as follows based on the DPRisk calculation approach: 

Pannual benchmark

365×N
 = 

10-4

365×N
 = Dr ൬ V

N
 × 10Log ஼೔ - LRVBenchmark൰ 

where, Pannual benchmark = annualized tolerable infection risk, 

Dr = dose response function, 
V = daily ingestion volume from underlying parameter set, 
N = number of daily ingestion events, 
C = pathogen concentration in raw wastewater from underlying parameter set, 
LRVBenchmark = required overall LRV to achieve tolerable infection risk. 

Note: The benchmark LRV feature is only available when using a default dose response relationship. 
This is because the inverse of the dose response relationship for the benchmark annual risk has been 
solved off-line for each of the dose response defaults, and the resulting data array has been uploaded 
into the tool to reduce computer processing time. The tool then uses that array to solve for the 
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benchmark LRVs using the concentration/ingestion combinations generated for a given scenario. 
Therefore, benchmark LRVs are not calculated when a user-defined dose response relationship is 
selected. 

The overall algorithm is illustrated in the following figure. The computations of the benchmark profile of 
treatment train performance and the daily and annual risks are all based on an underlying 10,000-point 
parameter set. In other words, the tool generates a combination of 10,000 raw wastewater pathogen 
concentrations, 10,000 LRVs for each unit process and management barrier (summed together to 
develop 10,000 overall LRVs), and 10,000 water ingestion volumes (accounting for daily ingestion 
volume and frequency). Together, these ‘triplets’ are used to compute 10,000 pathogen doses, which 
are then coupled with the specified dose-response function to arrive at 10,000 probabilities of infection. 
Each probability of infection represents the interval-specific risk, as determined by the ingestion 
frequency. In other words, for 96 ingestion events per day (i.e., every 15 minutes), each probability of 
infection represents a 15-minute risk, and for 1 ingestion event per day, each probability of infection 
actually represents a daily risk. 

 

In some cases (e.g., benchmark profile of treatment train performance), the results generated by the 
tool are pulled directly from these 10,000 data combinations. But for the daily and annual risk 
calculations, additional Monte Carlo samplings are performed. Specifically, the tool randomly samples N 
probabilities of infection from this underlying parameter set to calculate the daily risk according to the 
aforementioned equation, with N representing the number of ingestion events per day. This process is 
repeated an additional 10,000 times to generate a distribution of daily risks. This same process is used to 
generate a distribution of annual risks, except that each annual risk is based on a bootstrapped Monte 
Carlo sampling (i.e., sampling with replacement) of 365×N probabilities of infection from the underlying 
parameter set. Again, this process is repeated 10,000 times to generate a distribution of annual risks. 
The use of 10,000 data points is a common target in the QMRA/PATTP literature and is expected to 
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capture an adequate number of data combinations to fully characterize the no-failure scenarios—out to 
99.99%. 

The failure framework also follows the same general approach, except that the tool samples 35,040 
probabilities of infection for each failure simulation (i.e., 15-min time intervals spanning an entire year). 
The 35,040 data points are then subdivided into 365 days to generate corresponding daily risks. 
Therefore, each failure simulation represents 365 days, or 1 year. In contrast, the annual and daily risk 
samplings in the ‘no-failure’ framework are completely independent; this has no significant impact on 
risk characterization, however. In the failure framework, the tool then zeroes out the exposure in 
random time intervals for consistency with the daily ingestion rate. For example, if there is only one 
ingestion event per day, then a random selection of 95 (out of 96) exposures will be changed to zero for 
each day’s worth of data. If there are 96 ingestion events per day, then no data are modified. The tool 
then randomly assigns failures (consistent with the specified failure magnitude and frequency) to 
individual intervals or contiguous intervals (consistent with the specified failure duration), with each 
interval representing a 15-minute block of time. As noted earlier, this may result in ingestions and 
failures that do not align with each other, although this depends on how the ingestion frequency and 
failure duration are defined (see Section B.17). The interval-specific, daily, and annual risks are then 
recalculated to reflect these changes. 

In contrast with the ‘no-failure’ framework (fixed at 10,000 samplings), the user can specify the number 
of Monte Carlo simulations (or years) used to develop the risk distributions for failure conditions. This 
setting can be modified in the Configure section of the tool interface. By default, the tool is set to 100 
failure simulations, which should achieve adequate risk characterization for most applications while also 
requiring reasonable computer processing time. However, this setting may need to be increased to 
capture low probability events (e.g., low probability failure of a single unit process or a simultaneous 
failure of multiple unit processes), depending on the characteristics of the user-defined scenario.  

If the frequency of treatment failure is specified as probabilistic, and assuming an average frequency of 
one day per year, the daily probability of failure in DPRisk would be specified as 0.00274 (i.e., 1/365). 
Since each Monte Carlo simulation represents a year (i.e., 35,040 15-min time points allocated to 365 
days), then each Monte Carlo simulation would capture one failure per treatment process on average. 
Although each treatment process in the treatment train would likely fail at some point within the 
simulated year, the probability of two treatment processes failing simultaneously would be very low. For 
a treatment train with two independent unit processes, each with a daily failure probability of 0.00274, 
the probability of both processes failing on the same day would be 7.51×10-6 (i.e., 0.00274×0.00274). 
Capturing that kind of compound failure would require ~133,198 simulated days (i.e., 1/7.51×10-6) or 
~365 Monte Carlo simulations (i.e., 133,198 days/365 days per simulation). Following this same 
approach, capturing the simultaneous failure of three independent unit processes on the same day 
would require ~49 million days or ~133,000 Monte Carlo simulations. 

However, the failure duration and ingestion frequency also factor into this discussion. If the ingestion 
frequency is every 15 minutes and the failure duration is 24 hours, then the estimates above would 
likely be sufficient to observe at least one simultaneous failure. But if the failure duration is only 15 
minutes, then the failures might occur on the same day but not during the same 15-minute time 
interval. The probability of a treatment process failing in a given 15-minute time interval would be 
2.85×10-5 (i.e., 1/35,040), and the probability of two independent treatment processes failing in the 
same 15-min time interval would be 8.14×10-10 (i.e., 2.85×10-5 × 2.85×10-5), or approximately once every 
1.2 billion time intervals. Considering that each simulation includes 35,040 time intervals, a 
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simultaneous failure of two independent treatment processes in the same 15-minute time interval 
would require ~35,040 simulations—and a significant amount of computer processing time. 

An important question then arises: How important/realistic is this type of extreme low probability event, 
particularly when considering that surrogate monitoring would be required at critical control points in 
DPR systems? As noted in the following table, 100 failure simulations captures greater than 99.99% of 
the variability within a given scenario and can also capture rare failures that might occur once every 
36,500 days (24-hr failure duration) or once every 3 million time intervals (15-min failure duration and 
96 ingestions per day).  

No. of 
Failure 

Simulations 

Max 
Percentile 

for 
Daily Risk 

Max 
Percentile 

for 
Annual Risk 

Min. Failure Frequency Captured Min. Daily Failure   
Probability to 

Observe a Single 
Failureb,c 

24-hr 
Duration 

15-min 
Durationb 

1 99.7% N/A ~1 failure per  
365 days 

~30 failures per  
million intervals 2.7×10-3 

10 99.97% 90% ~1 failure per 
3,650 days 

~3 failures per 
million intervals 2.7×10-4 

100a 99.997% 99% ~1 failure per  
36,500 days 

~0.3 failures per  
million intervals 2.7×10-5 

1,000 99.9997% 99.9% ~1 failure per 
365,000 days 

~0.03 failures 
per million 
intervals 

2.7×10-6 

aRecommended setting to achieve adequate risk characterization (>99.99%) within reasonable computer 
processing time 
bAssumes 96 ingestions per day (i.e., every 15 minutes) to ensure failure and ingestion event are aligned 

cDaily failure probability that should be entered into the tool to achieve the specified conditions  
Deterministic failures are a more efficient way of observing risk results for a specific numbers of failures 
rather than relying on probabilistic frequencies that may or may not occur in a given simulation. 
Coupling deterministic failures with high failure frequencies (e.g., 3 failures per treatment process per 
year) artificially increases the probability of observing rare compound/simultaneous events in the tool 
output, which artificially increases the frequency of high-risk scenarios. This deterministic approach 
could be the first step in characterizing the risk implications of a compound failure. If the risk is deemed 
to be potentially significant, then a probabilistic assessment with a greater number of failure simulations 
might be warranted. That final assessment might provide a more reasonable characterization of how the 
rare event actually affects the overall distribution of risk, rather than forcing it to occur in every 
simulation.  

Even if compound failures are assumed to be unlikely, it is still important to understand the implications 
of coupling single-process failures with extreme values for other model parameters, such as raw 
wastewater pathogen concentration. For example, a failure that occurs in conjunction with a very low 
pathogen concentration may not be as impactful as a failure that occurs with a very high pathogen 
concentration. In the earlier example, each model simulation would likely result in a single failure per 
treatment process. By increasing the failure setting to 1,000 Monte Carlo simulations, each treatment 
process would experience ~1,000 failures, thereby reflecting a much broader range of parameter 
combinations and perhaps even coupling more extreme parameter values with compound failures. This 
may require a substantial increase in computer processing requirements and may not be warranted in 
many instances.  
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As noted earlier, the default for the DPRisk failure framework is set at 100 Monte Carlo simulations to 
expedite computer processing and to allow for a preliminary evaluation of failure significance. This is 
likely adequate for most modeling scenarios, but it is recommended that the user assess model 
sensitivity to the number of Monte Carlo simulations by changing the setting in the Configure section of 
the tool. With the examples above as a guide, a probabilistic approach can be used to evaluate whether 
a sufficient number of simulations has been selected to (1) adequately capture rare events and (2) 
adequately sample the various combinations that might result from the parameter distributions.  

B.14 Final Tool Considerations 
B.14.1 Tool Output 
After establishing all of the inputs for a particular scenario, the user initiates the calculations by clicking 
on the PATTP Output section of the tool interface. The tool will then display the following treatment 
performance plots and statistical summaries: 

• Combined plot of benchmark and simulated treatment train performances; 
• Plot of benchmark treatment train performance and statistical summary of raw data; 
• Plot of simulated treatment train performance with failures considered; 
• Plot of simulated treatment train performance in the absence of failures; 
• Summary table of raw data and related statistics for non-failure LRVs; 
• Summary table of raw data and related statistics for failure LRVs. 

After clicking the QMRA Output section of the interface, the tool will initiate Monte Carlo simulations for 
the risk and failure calculations. A status bar should appear to show the tool’s progress on the (1) risk 
calculations and then the (2) the failure analysis calculations. The tool will then display the following 
output: 

• Plot of annual risk (shows 10-4 benchmark) and statistical summary of raw data; 
o Differentiates non-failure and failure data (when applicable); 

• Raw data for non-failure and failure annual risks (.csv available for download); 
o Used for Comparison of Risk Curves feature with failures considered;  
o Parameter set for first 5 failure simulations (.csv available for download); 

• Plot of daily risk (shows 2.7×10-7 benchmark) and statistical summary of raw data; 
o Differentiates non-failure and failure data (when applicable); 

• Raw data for non-failure and failure daily risks (.csv available for download); 
o Used for Comparison of Risk Curves feature with failures considered;  

• Hazard identification summary; 
• Plot of raw wastewater pathogen concentrations and statistical summary of raw data; 
• Exposure assessment summary; 
• Plot of ingestion volumes and statistical summary of raw data; 
• Dose response summary; 
• Plot of pathogen doses and statistical summary of raw data; 
• Plot of 15-min risk estimates; 
• Parameter set for the 10,000 Monte Carlo simulations (.csv available for download); 

o Used for Comparison of Risk Curves feature with failures omitted.  

After clicking the Summary of PATTP and QMRA Output section of the interface, the tool will display the 
following output: 
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• Combined plot of benchmark and simulated treatment train performances; 
• Plot of annual risk (shows 10-4 benchmark) with and without failures (when applicable); 
• Plot of daily risk (shows 2.7×10-7 benchmark) with and without failures (when applicable). 

Each downloadable .csv file includes a number of data columns with unique column headers. Definitions 
and descriptions are provided in Section B.19.  

After clicking the Comparison of Risk Curves section of the dashboard, the user can upload up to three 
.csv files to generate combined plots of (1) daily and annual risk for a no-failure scenario, (2) annual risk 
for a failure scenario, or (3) daily risk for a failure scenario. The user can click the upload button and 
navigate to the directory containing each file or drag and drop each file into one of the “Browse” bars. 
For (1), the required input files can be downloaded from the QMRA Output page by clicking on 
Download Parameter Set Data at the bottom of the page. For (2), the required input files can be 
downloaded from the QMRA Output page by clicking on Download Failure Analysis Pannual Data. For 
(3), the required input files can be downloaded from the QMRA Output page by clicking on Download 
Failure Analysis Pdaily Data. When conducting a failure analysis, the no-failure data are extracted from 
the first file uploaded into the comparison feature. Therefore, the annual or daily comparison can show 
up to four plots simultaneously (no-failure scenario 1, failure scenario 1, failure scenario 2, failure 
scenario 3). If the tool returns an error when using the Comparison of Risk Curves feature, the user 
should first verify that the .csv files are uploaded to the correct section of this feature (i.e., no failure 
vs. annual risk with failures vs. daily risk with failures).  

B.14.2 Tool Precision 
For some PATTP/QMRA scenarios, the resulting risks will be incredibly low, particularly for the default 
15-minute time intervals in DPRisk. Similar to other software platforms, R has a default limit on precision 
that prevents it from reporting extremely low values (i.e., when the response computed from the dose-
response function is <10-16). At that point, R replaces the value with 0. This issue has been observed for 
highly conservative treatment scenarios in other QMRAs (Amoueyan et al. 2019). However, because this 
issue is specific to very low risk scenarios, it will not impact decision making, which typically focuses on 
scenarios in which the modeled risk approaches regulatory benchmarks. Moreover, this precision issue 
was found to have no appreciable impact on daily and annual risk estimates for DPRisk. Therefore, the 
increase in computing time that would be required for implementation of high precision computing was 
found to be unwarranted.  

B.14.3 Random Number Seed 
Another important setting in the Configure section of the tool is the random seed input. This is a model 
input that ‘seeds’ the random number generator involved in developing distributions for the various 
model inputs. The default setting for the seed is 1, although there is no single ‘correct’ value to use. 
With sufficient Monte Carlo simulations, the seed setting should not impact the overall results and 
conclusions drawn from the PATTP/QMRA. When the default seed setting is used in conjunction with a 
consistent set of model inputs, the output should be identical every time the tool is reloaded and used, 
even though the underlying data are randomly determined to account for the variability of model 
inputs. In other words, two users simulating the exact same model scenario should obtain the same tool 
output when they initially launch the tool and use the same seed. This is also important for the case 
studies described in the following sections (i.e., the default seed of 1 should be used to generate the 
exact same output shown in the case studies). If the user purposefully wants to generate different 
random number sequences, the user can specify a different random number seed (usually set to a large 
integer). By modifying the seed, the output will change because of the change in the random number 
algorithm, but this should have no impact on the overall results assuming a sufficient number of Monte 
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Carlo simulations are performed. This is irrelevant for the ‘no failure’ scenarios because of the default 
setting of 10,000 Monte Carlo simulations, but this could theoretically be an issue for failure scenarios 
when only a small number of simulations is specified in the Configure section. For more information on 
random number generation in R, please see: https://stat.ethz.ch/R-manual/R-
devel/library/base/html/Random.html. 

B.15 Case Study 1: QMRA for Enterovirus in a Default DPR Scenario 
Case Study 1 demonstrates use of the tool to model enterovirus and Cryptosporidium risk using 
recommended default settings, including the raw wastewater pathogen data from DPR-2. This case 
study also demonstrates how settings can be changed to evaluate sensitivity on the dose response 
model and also differential performance between AWPFs. For example, this case study considers 
differences in overall redundancy and also evaluates tight tolerances on critical control points vs. 
situations with less stringent monitoring of operational performance. 

1. Access the tool via the DPRisk website link. The code can also be downloaded and run locally using 
R. Input files are available for download under the How to use this tool option in the menu bar. 

2. Select Raw Wastewater Pathogen Concentrations on the left 
menu bar. This will bring the user to an input screen where 
(1) the target pathogen can be selected, (2) additional 
information related to the pathogen enumeration method 
can be identified, and (3) the distribution of raw wastewater 
concentrations can be characterized. The concentrations can 
be described by a lognormal distribution with user-defined 
parameters (current scenario), a user-provided data file that 
follows a lognormal fit (tool will use MLE to identify 
lognormal parameters), or a user-provided data file that has 
already been curated with 10,000 data points. Note that the 
information for enumeration method does not impact the 
QMRA and is only stored for user reference. Based on the 
data from DPR-2, the raw wastewater concentration for 
enterovirus can be described with a lognormal mean of 7.4 
and lognormal standard deviation of 2.3 based on culture 
methods. This lognormal mean equates to a concentration of e7.4 = 1.6×103 most probable number 
(MPN) per L of raw sewage. 

3. Select Treatment Train on the left menu bar. This will bring the 
user to an input screen where the treatment train can be selected 
and characterized. Treatment can be characterized as (1) a single 
LRV point estimate for the entire treatment train (current 
scenario), (2) a user-provided data file that has already been 
curated with 10,000 LRVs for the overall treatment train, or (3) 
individual log removals for each process. This case study will initially assume a point estimate LRV of 
12, which is consistent with the California potable reuse regulatory framework for groundwater 
augmentation when targeting viruses. When specifying the point estimate LRV, the user can select 
an integer by adjusting the arrows up/down or by directly typing a value (including decimals) into 
the entry box.  

4. Select Treatment Failure on the left menu bar. This case study does not incorporate treatment 
failures so “Do not conduct failure analysis” should be selected.  
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5. Select Management Barriers on the left menu bar. This case study does not incorporate blending, 
dilution, or die-off so the default LRV of 0 can remain unchanged.  

6. Select Exposure on the left menu bar. This will bring the user 
to an input screen where the daily ingestion rate and 
frequency can be specified and characterized. The ingestion 
rate can be described by one of the default 
distributions/point estimates or specified by the user. The 
user-specified option allows for (1) an input file with 10,000 
data points, (2) a point estimate, or (3) a lognormal 
distribution with user-defined mean and standard deviation. 
For the user-specified options, ingestion volume should be 
based on units of mL/day. For this case study, the default 
lognormal distribution from Roseberry and Burmaster (1992) 
should be selected: lognormal mean of 7.492 and lognormal 
standard deviation of 0.407. This lognormal mean equates to 
a daily ingestion volume of e7.492 = 1,794 mL/day. In DPRisk, 
the daily ingestion volume can be divided across any number 
of aliquots ranging from 1 to 96. For this case study, the 
default setting of 96 consumption events per day (i.e., every 
15 minutes) is selected.  

7. Select Dose-Response on the left menu bar. This will bring 
the user to an input screen where the pathogen dose-
response equation can be identified and characterized. The 
user can (1) select one of the default dose-response models 
specific to the target pathogen (enterovirus in this scenario) 
or (2) select and characterize one of several dose-response 
models commonly used in QMRAs. For this case study, the 
default dose response model is used (Beta-Poisson with 
alpha = 0.253 and beta = 0.426).  

8. Select PATTP Output on the left menu bar, which will trigger 
the tool to perform the Monte Carlo simulations and calculations related to treatment train 
performance. The following series of figures summarizes the PATTP output for Case Study 1. 
Assuming the ‘seed’ for random number generation under the Configure tab is set at 1, some of the 
output may appear exactly as shown. 

The first plot shown is the comparison of the ‘observed’ treatment train performance, which in this 
scenario is a point estimate of 12, and the benchmark treatment train performance required to 
achieve an annual risk of infection of 10-4. By cross-referencing with the summary statistics shown 
below the plots in the tool output, the benchmark LRVs exceed the 12-log point estimate (blue 
vertical line) beyond the 99th percentile. This apparent discrepancy with California’s IPR regulations 
occurs because the enterovirus concentrations from the DPR-2 distribution exceed the 105 MPN/L 
point estimate beyond the 95th percentile, reaching a maximum of 1.0×107 MPN/L (available in 
QMRA Output). The use of the lognormal distribution for ingestion volume—rather than a 2 L/day 
point estimate—may also contribute to the apparent discrepancy.  
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9. Select QMRA Output on the left menu bar, which will trigger the 
tool to perform the Monte Carlo simulation and calculations 
related to daily and annual risk. A box will likely appear in the 
bottom right corner of the screen to indicate the tool’s progress. 

The resulting output includes figures and summary statistics for raw wastewater pathogen 
concentration, ingestion volume, pathogen dose, 15-min risk of infection, and also the raw data 
available for download by the user. The output should also include the annual and daily risk 
statistics and cumulative distribution plots (shown in the following figures).  
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Interestingly, only the maximum daily risk exceeds the benchmark, despite the fact that the 
benchmark LRVs exceed 12 at the 99th percentile. The 96 ingestions per day likely attenuate the 
daily risk so that only the maximum value surpasses the benchmark. This ‘averaging effect’ is even 
more apparent in the annual risk distribution, which falls well below 10-4 and exhibits ~1 log of 
buffer relative to the benchmark even at the upper percentiles. This occurs because the high daily 
risks that occur ~1% of the time are coupled with lower daily risks that occur ~99% of the time, 
thereby resulting in a relatively flat annual risk curve. Repeating this scenario with the DPR-2 
enterovirus distribution, an ingestion volume of 2 L, and an ingestion frequency of once per day—
consistent with California’s original deterministic approach for IPR—results in a risk distribution that 
exceeds the daily benchmark at the 99th percentile, but the maximum annual risk (3.8×10-5) still falls 
well below the 10-4 annual risk benchmark.  

At the bottom of the QMRA Output screen, there is a table of raw data and a link to download the 
raw data (Download Parameter Set Data). Click on the link and note where the .csv file is saved. This 
file will be used in the subsequent sensitivity analysis.  

10. Select Summary of PATTP and QMRA Output on the left menu bar, which will bring the user to a 
screen summarizing only the critical outputs from the tool, specifically the LRV comparison and the 
daily and annual risks. The supporting data excluded from this summary are still accessible in the 
other tabs.  

B.15.1 Sensitivity Analysis on LRV Point Estimate 
To allow for a straightforward sensitivity analysis on treatment train performance, the preceding case 
study can be modified in the Treatment Train portion of the model. Instead of assuming a single point 
estimate of 12, this portion of the case study illustrates the impact of varying the point estimate from 11 
to 13. The user should follow the same step-by-step procedure outlined earlier in the case study, but in 
the Treatment Train tab, the user should select a single LRV point estimate for the entire treatment 
train and run additional scenarios with LRVs of 11 and 13. For each model run, the user should navigate 
to the QMRA Output screen and click the link at the bottom of the page to download the raw data 
(Download Parameter Set Data). Those .csv files can then be uploaded to the tool using the Comparison 
of Risk Curves option in the left menu bar. Up to three .csv files can be compared simultaneously by 
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clicking the upload button and navigating to the directory containing each file or by dragging and 
dropping each file into one of the “Browse” bars. The files should be uploaded to the Non-Failure 
Analyses section. 

The resulting comparisons for daily and annual risk are shown in the following figures. With a point 
estimate LRV of 13, the daily and annual risk distributions fall well below their respective benchmarks. 
As mentioned in the previous section, the point estimate LRV of 12 exceeds the daily risk benchmark at 
the maximum value, but the annual risk distribution satisfies the 10-4 benchmark at all times. However, 
with a point estimate LRV of 11, the daily risk benchmark is surpassed at the 70th percentile, and even 
the annual risk benchmark is surpassed near the 99.9th percentile. This comparison also illustrates how 
each additional LRV provides added redundancy that is ultimately reflected as an upward/downward 
shift in the risk curves. For example, the daily risks for the 50th percentiles are 1.9×10-7, 1.9×10-8, and 
1.9×10-9 for overall LRVs of 11, 12, and 13, respectively. When modeling more complex scenarios, these 
types of vertical shifts may not always provide straightforward estimates of LRV redundancy because the 
risk curves may exhibit unique profiles at the tails of the distributions, particularly when rare failures are 
simulated. 
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B.15.2 Sensitivity Analysis on Treatment Variability 
Instead of assuming point estimates for the LRV, this portion of the case study illustrates the impact of 
allowing the overall treatment train LRV to follow a normal distribution with a mean of 12 but standard 
deviations of 0.5, 1.0, or 1.5. From the definition of a normal distribution, this means the LRV would fall 
between +/- 1 standard deviation of the mean (11.5-12.5, 11.0-13.0, and 10.5-13.5, respectively) for 
approximately 68% of all simulations or +/- 2 standard deviations of the mean (11.0-13.0, 10.0-14.0, and 
9.0-15.0, respectively) for approximately 95% of all simulations. 

This option for the overall treatment train LRV is not explicitly available in DPRisk, but due to the 
flexibility in the tool, there are actually two ‘workarounds’ that can be exploited to build this scenario. 
This Guidance Document previously explained that the unit processes under the Treatment Train section 
of the user interface are capped at 6 logs (e.g., when defining a zero-truncated normal distribution), and 
the only exceptions include input files and point estimates. This would be a viable option for 
understanding process-specific tolerances for variability when the individual unit process is not expected 
to exceed 6 logs, but this would not work for the current scenario evaluating an overall treatment train 
LRV with a mean of 12 logs. However, the user could define the overall treatment train LRV with a point 
estimate of 0 and any of the Management Barrier LRVs with a zero-truncated normal distribution with 
a mean of 12 and standard deviations of 0.5, 1.0, or 1.5. Management barrier LRVs are not limited by 
the 6-log cap so this would allow the user to achieve the desired conditions.  

 Another approach is for the user to generate unique 
datasets outside of DPRisk (e.g., in Microsoft Excel) 
that can be incorporated into the QMRA/PATTP. As 
an example, three user input files are available for 
use in this scenario (LRVMean12StDevXX.csv). The 
input files are single-column .csv files with a column 
header and are curated with 10,000 data points that 
follow the aforementioned normal distributions. The 
user should follow the same step-by-step procedure 
outlined for the baseline Case Study 1 scenario, but 
in the Treatment Train tab, the user should select 
Input file with overall log removals and upload the 
files in separate model runs. For each model run, the 
user should navigate to the QMRA Output screen to download the raw data (Download Parameter Set 
Data). Similar to the previous sensitivity analyses, those .csv files can be uploaded to the tool using the 
Comparison of Risk Curves option in the left menu bar (Non-Failure Analyses section). 

This table summarizes the log removal values simulated by the tool for each scenario. As noted earlier, 
the definition of a normal 
distribution provides some 
insight into the expected 
output (e.g., 68% of all data 
falling within +/- 1 standard 
deviation of the mean). The 
LRVs at the lower 
percentiles drive the daily 
and annual risks, so 
although the treatment 
train LRV increases to >17.5 
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for σ = 1.5, those low risk data points are overshadowed by the minimum LRVs and corresponding high 
risk data points.  

The following plots summarize the daily and annual risks, respectively, for each standard deviation 
scenario. Recall that the point estimate LRV of 12 (i.e., standard deviation = 0) reached the daily risk 
benchmark at the far end of the distribution. With greater variability in treatment train performance, 
the daily risk benchmark was surpassed earlier—at the 15th, 75th, and 98th percentiles for standard 
deviations of 1.5, 1.0, and 0.5, respectively. In fact, the standard deviations of 1.0 and 1.5 reached daily 
risks of 10-5 and 10-4, respectively, at the upper percentiles. The standard deviation of 0.5 still complied 
with the 10-4 annual risk benchmark at all times. However, the standard deviation of 1.0 surpassed the 
annual risk benchmark at the 1st percentile, and the standard deviation of 1.5 reached an annual risk of 
nearly 10-3 or higher across the entire distribution.  

 

 

For scenarios with steep daily risk curves at the upper percentiles, the annual risk can be similar in 
magnitude to the highest daily risks, and for scenarios with flatter daily risk curves, the annual risk is 
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generally more than 2 orders of magnitude higher than the daily risk. Therefore, when the daily risk 
curve is steep only at the upper percentiles, indicating events with greater severity but low frequency, 
evaluating compliance using daily versus annual risk benchmarks may lead to differing regulatory 
conclusions. This is the case for the preceding scenarios with standard deviations of 0 (baseline) or 0.5, 
both of which exceeded the daily risk benchmark but always satisfied the 10-4 annual risk benchmark. 
This feature will also be discussed in Section B.16, where failure conditions cause significant increases in 
daily risk at the upper percentiles. 

These sensitivity analyses provide a general framework for evaluating the effects of treatment 
redundancy and assessing the tolerance of a given treatment train (or individual treatment process) to 
variability in performance. A system with adequate treatment (i.e., high mean LRV) and tight tolerances 
(i.e., low standard deviations) should consistently comply with acceptable risk thresholds. However, as 
variability in treatment train performance increases, deviations from nominal performance coupled with 
high raw wastewater pathogen concentrations may result in regulatory compliance issues. Sensitivity 
analyses can help identify the level of variability that can be tolerated before public health is potentially 
compromised. 

B.15.3 Sensitivity Analysis on Ingestion Frequency 
For consistency with some online monitoring approaches, the default ingestion frequency in DPRisk is 96 
consumption events per day (i.e., every 15 minutes). Although this may aid in capturing the range in 
water quality delivered throughout the day, it may not accurately reflect a typical daily exposure, as 
people are unlikely to fill up a glass of water 96 different times in a given day. Therefore, the tool also 
provides flexibility to allow any number of consumption events per day, ranging from 1 to 96. The daily 
ingestion volume for a given day remains the same, but that volume is divided into the specified number 
of aliquots, with each aliquot potentially being linked to a different pathogen concentration and 
treatment train LRV (when applicable). 

This sensitivity analysis illustrates the potential implications of selecting different ingestion 
frequencies—a topic that is also addressed later in Section B.17. Many of the baseline settings described 
earlier remain the same, including the DPR-2 distribution for raw wastewater enterovirus 
concentrations, the treatment train LRV point estimate of 12, and the distribution on ingestion volume, 
but instead of using the default setting of 96 consumption events per day in the Exposure tab, additional 
scenarios with 8 consumption events per day and 1 consumption event per day are simulated. The 
following figure shows the resulting QMRA Output after uploading the .csv files (Download Parameter 
Set Data) to the Comparison of Risk Curves tab. 

Increasing ingestion frequency causes a similar ‘averaging’ effect or curve flattening as when daily risks 
are converted to annual risks. Assuming the base data distribution is sampled sufficiently to capture the 
extremes, consuming the entire daily ingestion volume at a single time (i.e., when pathogen 
concentrations are at a maximum) will result in a higher daily risk than when that maximum pathogen 
concentration is only present in 1/8th or 1/96th of the daily ingestion volume. In general, this results in a 
steeper risk curve. In this comparison, the daily risk benchmark is only exceeded at the far end of the 
distribution for 96 aliquots per day, but the daily risk benchmark is exceeded at about the 98th percentile 
when consuming the entire daily volume in a single ingestion event. All scenarios still satisfy the 10-4 
annual risk benchmark at all times. When using the tool to aid in decision-making, it is therefore 
important to consider the scenario’s sensitivity to ingestion frequency, in addition to other critical model 
inputs and assumptions.  
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B.15.4 Alternative LRV Point Estimate Analysis on Cryptosporidium 
Another potential use of the overall treatment train LRV point estimate is an assessment of California’s 
10-log treatment requirement for Cryptosporidium in groundwater augmentation applications. For this 
sensitivity analysis, a user input file for raw wastewater Cryptosporidium concentration (point estimate 
of 104 oocysts/L) is available for download under How to use this tool in the left menu bar 
(CryptoRawWW.csv). This file can be uploaded in the Raw Wastewater Pathogen Concentrations tab 
with the Data file, use as is option. Alternatively, a lognormal distribution with μ = 9.21 (i.e., e9.21 ≈ 
10,000 oocysts/L) and σ = 0 can also be used, although output will differ slightly due to precision 
differences. This portion of the case study initially assumes a point estimate of 10 for the overall 
treatment train LRV and an exponential dose response function with r = 0.09. If a point estimate of 2 
L/day is selected under the Exposure tab, then there will be no distribution of risks because all critical 
inputs are point estimates, similar to the original approach used to develop the 12-10-10 framework. 
The corresponding daily and annual risks would be 1.8×10-7 and 6.6×10-5, respectively. Instead, this 
portion of the case study assumes the default lognormally distributed ingestion volumes (lognormal 
mean = 7.492 and lognormal standard deviation = 0.407) from Roseberry and Burmaster (1992) and the 
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default setting of 96 consumption events per day (i.e., every 15 minutes). For each model run, the user 
should navigate to the QMRA Output screen and click the link at the bottom of the page to download 
the raw data (Download Parameter Set Data). Similar to the previous sensitivity analyses, those .csv files 
can be uploaded to the tool using the Comparison of Risk Curves option in the left menu bar (Non-
Failure Analyses section). 

The first figures illustrates the point estimate LRV of 10 and the benchmark LRVs needed to achieve an 
annual risk of 10-4 exactly. The benchmark LRVs are only a function of the raw wastewater pathogen 
concentration and ingestion volume. Because the raw wastewater Cryptosporidium concentration was 
assumed to be constant at 104 oocysts/L, the observed distribution is driven entirely by the variability in 
ingestion volume.  

 

Because the ingestion volume from the default distribution sometimes exceeds 2 L/day, the benchmark 
LRV also exceeds 10 in approximately 10% of the simulations. However, this does not necessarily mean 
the corresponding daily and annual risks will exceed their respective benchmarks. The benchmark LRVs 
are actually calculated based on Pn, which is a function of the ingestion frequency. Specifically, the tool 
assumes the benchmark annual risk of 10-4 is divided equally across the number of intervals spanning 
one year, and each data point in the underlying distribution is forced to comply with this interval-
specific risk target. For example, an ingestion frequency of once per day corresponds with a Pdaily of 
2.7×10-7 [i.e., 10-4/(365×1)], and an ingestion frequency of 96 per day corresponds with a P15min of 
2.9×10-9 [i.e., 10-4/(365×96)]. As noted earlier, the change in Pn does not actually impact the benchmark 
LRVs—just the way they are calculated in the tool. But the fact that Pn is assumed to be constant across 
every interval may affect interpretation of the benchmark LRVs. 

In calculating the actual daily and annual risks from the simulations, a small number of Pn values from 
larger volumes of drinking water (i.e., higher risks) may be mitigated by many Pn values from smaller 
volumes of drinking water (i.e., lower risks). This is demonstrated in the daily risk plot below, in which 
increasing ingestion frequency provides additional ‘buffering capacity’ for when the benchmark LRV 
exceeds the treatment train LRV. The scenario with one ingestion per day does not provide this 
‘buffering capacity’ so the daily risk exceeds the daily risk benchmark 10% of the time, consistent with 
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the previous benchmark LRV curve. However, both ingestion frequencies comply with the annual risk 
benchmark because of the additional ‘averaging’ effect over 365 days. 

Therefore, the various outputs from the tool should be evaluated collectively before drawing broad 
conclusions. Stated a different way, one should not rely exclusively on compliance with the benchmark 
LRV when drawing broad conclusions or making policy decisions. Also, it is always advisable to review 
the outputs for each of the critical model parameters to better understand what might be driving risk 
and whether some of the more extreme scenarios are actually reasonable. For example, the output 
from the Roseberry and Burmaster (1992) distribution yields a 99th percentile ingestion volume of 4.6 
L/day and a maximum ingestion volume of 8.5 L/day (see QMRA Output tab). The 4.6-L volume might be 
reasonable, but it might not be justifiable to make policy decisions based on a daily ingestion volume of 
nearly 9 L, even if that value is possible based on the assumed distribution.  

 

Returning to the sensitivity analysis on treatment train LRV, California’s 10-log treatment requirement 
for Cryptosporidium is sufficient to satisfy the daily benchmark in all simulations (assuming 96 ingestions 
per day). However, reductions in treatment redundancy cause significant vertical shifts in the daily risk 
curve, and these LRV reductions (i.e., down to 8 or 9 logs) cause the daily risk to exceed the benchmark 
in all simulations.  

 

B.15.5 Alternative Dose Response Function for Cryptosporidium 
One final component of Case Study 1 demonstrates the potential impact of the dose response function 
on risk estimates. As an extension to the Cryptosporidium example assuming a point estimate of 10 logs 
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for the overall treatment train LRV and 96 ingestions per day, the following plot shows the differences 
in daily risk assuming an exponential dose response model with r = 0.09, an alternative exponential 
dose response model with r = 0.00419, and the Beta-Poisson dose response model from Messner and 
Berger (2016). The alternative exponential model reduces the daily risk by >1 log across all simulations, 
and the Beta-Poisson model increases the risk by ~1 log across all simulations, thereby exceeding the 
daily risk benchmark. This example shows that even the selection of the dose response model can have 
significant implications for policy decisions and should be evaluated as part of a sensitivity analysis.  

 

B.16 Case Study 2: QMRA for Cryptosporidium in a FAT-Based DPR 
Scenario 
Pecson et al. (2017) evaluated the reliability of pathogen control at the North City Demonstration Pure 
Water Facility. The QMRA used actual performance data collected over one year of operation of the 
AWPF to generate annual risk estimates for Cryptosporidium and enterovirus. The data summarized in 
that QMRA are incorporated into the case study below as a demonstration of the use of the DPRisk tool. 
The user can follow the specified approach to recreate the QMRA for Cryptosporidium in Pecson et al. 
(2017) or incorporate any desired changes to evaluate impacts on the results. 

1. Access the tool via the DPRisk website link. The code can also be downloaded and run locally using 
R. Input files are available for download under How to use this 
tool in the left menu bar. 

2. Select Raw Wastewater Pathogen Concentrations on the left 
menu bar. This will bring the user to an input screen where (1) 
the target pathogen can be selected, (2) additional information 
related to the pathogen enumeration method can be identified, 
and (3) the distribution of raw wastewater concentrations can be 
characterized. The concentrations can be described by a 
lognormal distribution with user-defined parameters (current 
scenario), a user-provided data file that follows a lognormal fit 
(tool will use MLE to identify lognormal parameters), or a user-
provided data file that has already been curated with 10,000 data 
points. Note that the information for enumeration method does 
not impact the QMRA and is only stored for user reference. The 
raw wastewater concentration for Cryptosporidium oocysts was 
defined in Pecson et al. (2017) as having a lognormal mean of 



Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 111 

2.72 and lognormal standard deviation of 1.85 based on microscopy (see figure). In developing 
inputs or datasets, concentrations should be based on units of target pathogen per liter, and all 
lognormal parameters are base e (natural logarithm).  

3. Select Treatment Train on the left menu bar. This will bring the user to an input screen where the 
treatment train can be selected and characterized. Treatment can be characterized as (1) a single 
LRV point estimate for the entire treatment train, (2) a user-provided data file that has already been 
curated with 10,000 LRVs for the overall treatment train, or (3) individual log removals for each 
process (current scenario). The treatment train and corresponding assumptions to be used as 
DPRisk inputs are shown in the following figure. All LRV estimates should be base 10 (i.e., log10 
reductions) and not base e (i.e., natural logarithm). 

 
Source: Data from Pecson et al. 2017. 

By default, DPRisk includes a number of unit processes that are common to advanced treatment for 
potable reuse but also provides flexibility to allow for user-defined processes (e.g., “Custom Process 
#1”). For any process that is not included in a particular treatment scenario, the corresponding LRV 
should be described as a point estimate of 0; the remaining processes should be characterized by 
the user. The inputs for Pecson et al. (2017) are shown in the following figure, including examples 
for processes that are not included in the treatment train (e.g., “Secondary Biological Treatment” 
and “Membrane Bioreactor”). The user input file for RO is available for download under How to use 
this tool in the left menu bar (ROLRV.csv).  
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In Pecson et al. (2017), pathogen reduction by secondary biological treatment was omitted from the 
analysis because an accepted surrogate had not been identified at that time. The Inverse Gaussian 
distribution for ozone was based on the T10 approach for determining CT at the City of San Diego’s 
demonstration-scale facility coupled with the U.S. EPA’s ozone CT equation for Cryptosporidium 
(shown previously in the discussion of Step 5 – Assigning Treatment Process Log Reduction Values). 
The Inverse Gaussian distribution for MF was based on the standard LRV crediting approach with 
pressure decay testing (shown previously in Step 5). The LRV assigned to RO was primarily based on 
online TOC analyzer data as a surrogate for pathogen removal (85% of the time), but EC was also 
used as a monitoring backup (15% of the time). Each RO surrogate was characterized by a unique 
inverse Gaussian distribution, resulting in a bimodal overall LRV distribution. Because the bimodal 
LRV distribution for RO represents a unique modeling scenario, this cannot be simulated directly 
with DPRisk. Instead, a corresponding LRV dataset that followed the assumptions above was 
generated independent of the tool. The user may encounter other situations in which a particular 
input is not available. Sufficient flexibility has been integrated into the tool to allow for data entry 
alternatives that still accurately represent the scenario in question. The user input file for RO 
includes 10,000 data points representing the bimodal LRV scenario. Finally, the point estimate for 
UV AOP assumed high-dose UV conditions consistent with California’s AOP framework for potable 
reuse, which would consistently achieve the maximum allowable 6-log inactivation of 
Cryptosporidium. 
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4. Select Treatment Failure on the left menu bar. 
This will bring the user to an input screen where 
“Conduct failure analysis” can be selected. 
Over 12 months of monitoring at the City of San 
Diego’s demonstration-scale facility, there were 
no observed failures affecting pathogen 
removal/inactivation performance, but for 
added conservatism, Pecson et al. (2017) 
assumed a global frequency, magnitude, and 
duration for hypothetical failures. For each 
engineered treatment process credited with a 
Cryptosporidium LRV (i.e., ozone, MF, RO, and 
UV AOP), the following assumptions were used: 
deterministic frequency = 1 failure per process 
per year, magnitude = 100% (i.e., LRV = 0 during 
failure), duration = 0.25 hours. Pecson et al. 
(2017) actually evaluated durations of 15 
minutes, 1 hour, 8 hours, and 24 hours, but only 
15-minute failures are considered for this initial 
phase of the case study. 

5. Select Management Barriers on the left menu bar. This portion of the case study does not 
incorporate blending, dilution, or die-off so the default LRV of 0 can remain unchanged.  

6. Select Exposure on the left menu bar. This will bring the user to an input screen where the daily 
ingestion rate can be specified and characterized. The ingestion rate in mL/day can be described by 
one of the default distributions/point estimates or specified by the user. The user-specified option 
allows for (1) an input file with 10,000 data points, (2) a point estimate, or (3) a lognormal 
distribution with user-defined mean and standard deviation. 
This case study uses the default lognormal distribution from 
Roseberry and Burmaster (1992) and the default setting of 96 
consumption events per day (i.e., every 15 minutes). The figure 
to the right shows how this same lognormal distribution can be 
specified manually with a lognormal mean of 7.492 and 
lognormal standard deviation of 0.407. This lognormal mean 
equates to a daily ingestion rate of e7.492 = 1,794 mL/day. 

7. Select Dose-Response on the left menu bar. This will bring the 
user to an input screen where the pathogen dose-response 
equation can be identified and characterized. The user can (1) 
select one of the default dose-response models specific to the 
target pathogen (Cryptosporidium in this scenario) or (2) select 
and characterize one of several dose-response models 
commonly used in QMRAs. Both approaches are shown in the 
figure below based on the assumptions in Pecson et al. (2017). 
For the user-defined dose-response models, the parameters can 
be described as (1) point estimates or (2) based on an input file with 10,000 data points for that 
particular parameter. Based on Pecson et al. (2017), the Beta-Poisson dose-response model (α = 
0.116 and β = 0.121) should be selected either with the default setting or with the user-specified 
option. Note: If the user-specified dose-response option is selected, the tool will not be able to 
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perform the benchmark LRV calculations in the next step, but the benchmark LRVs can be 
calculated for the default dose-response option.  

 

8. Select PATTP Output on the left menu bar, which will trigger the tool to perform the Monte Carlo 
simulation and calculations related to treatment train performance. The following series of figures 
summarizes the PATTP output for Case Study 2. Assuming the ‘seed’ for random number generation 
is set at 1 and the number of failure simulations is set to 100 under the Configure tab, some of the 
output should appear exactly as shown.  

The following plot (left side) shows the comparison of observed treatment train performance with 
and without failures vs. the benchmark treatment train performance required to achieve an annual 
risk of infection of 10-4. 

 

One important note is the distinction between the failure frequency and duration specified in the 
model (1 failure per process per year and 15 minutes per failure) vs. the percentile in the LRV 
cumulative distribution plots. On the left side of the plot, the LRVs for the failure scenario (green) 
and no-failure scenario (blue) are equivalent down to 0.01%. This is because the no-failure scenario 

Default Option: User-Defined Option:
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(and the benchmark treatment train) samples from exactly 10,000 LRVs, so the lowest possible 
percentile in the no-failure and benchmark plots is 0.01% (i.e., 1/10,000×100). For the failure 
scenario with 100 failure simulations (each simulation represents one year), the tool actually 
generates 3,504,000 LRVs [i.e., 35,040 time points per simulation (or year) × 100 simulations (or 
years)]. For this case study, there was exactly 1 failure per treatment process per year, 4 total 
treatment processes, and 100 total simulations, and each failure covered a duration of 15 minutes 
(or 1 time increment). Therefore, there were up to 400 unique LRVs associated with failures out of 
3,504,000 total LRVs, which equates to 0.01%: 

൤1 failure per process per year × 4 processes × 100 years × 1 time increment per failure
3,504,000 time increments

൨  × 100 = 0.01% 

Therefore, the no-failure and failure LRVs were essentially equivalent above 0.01%, but additional 
LRVs were generated for the failure scenario below 0.01%. This also relates to why the failure 
percentiles do not directly correspond with the specified daily frequency of failures (i.e., 1/365 = 
0.00274 or 2.74%). In order to see a more visually apparent separation between the no-failure and 
failure LRVs, the modeling scenario can be repeated with a greater deterministic failure frequency. 
For example, 5 failures per process per year would result in a deviation at 0.057% (see right side of 
figure above):  

൤5 failure per process per year × 4 processes × 100 years × 1 time increment per failure
3,504,000 time increments

൨  × 100 = 0.057% 

Although not shown here, the tool output also includes the distribution of LRVs for each treatment 
process, which should be consistent with the plots from Pecson et al. (2017) (shown below). The 
format of the plots in DPRisk is slightly different from Pecson et al. (2017), but it is still possible to 
compare notable features, either in the statistical summary table or cumulative distribution plot, to 
verify consistency. For example, the median LRV for ozone in DPRisk is 3.22, which is consistent with 
the Pecson et al. (2017) plot below. Also, the LRV for RO increases abruptly from ~1.4 to ~1.9 around 
the 15th percentile, which is consistent with the change in surrogate from EC to TOC. Recall that the 
input file for RO utilized the EC surrogate 15% of the time and the TOC surrogate 85% of the time. 
Finally, the LRV for the UV AOP should be 6.0 at all times in the absence of treatment process 
failure. With respect to the overall treatment train, the median observed LRV without failures was 
15.9, which is consistent with the plot from Pecson et al. (2017). 
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Source: Adapted from Pecson et al. 2017. 

9. Note: Ensure all inputs are returned to their original values (e.g., deterministic failure frequency = 
1 per process per year). Select QMRA Output on the left menu bar, which will trigger the tool to 
perform the Monte Carlo simulation and calculations related to daily and annual risk. A box should 
appear in the bottom right corner of the screen to 
indicate the tool’s progress. 

Before evaluating the risk plots, one interesting feature 
to note is the ability to download the 15-min data points 
for a subset of the failure simulations. The links to download the files are located under the Pannual 
Table for Failure Simulations and are listed as Download 15-min events for failure simulation X. 
While these files do not provide the entirety of the raw data used to develop the risk distributions, 
they still provide insight into the factors driving the risk estimates. For example, by using Microsoft 
Excel to sort the data from smallest to largest based on the “failure_lr” column (top half of following 
figure), it is possible to see how certain types of failures impact the overall treatment train LRV.  
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Here are some important notes about this data table example: 

• UV Failure: As might be expected, the reduction in LRV during a UV AOP failure (i.e., from 6 to 0) 
resulted in the lowest overall treatment train LRV of 8.3. It should be noted that the PATTP 
Output (bottom summary table in tool output) indicated that the lowest overall treatment train 
LRV across the 100 failure simulations was 7.8. This means that at least one other simulation 
combined a UV AOP failure with lower LRVs for the remaining treatment processes.  

• MF Failure: MF failure resulted in the second-lowest treatment train LRV (11.8).  
• Ozone Failure: Ozone failure resulted in the third-lowest treatment train LRV (12.9). 
• RO Failure: By looking only at the data sorted by the “failure_lr” column (i.e., top half of figure), 

it might appear as if the tool failed to simulate an RO failure. However, by resorting by 
“failure_ro_lr,” the RO failure can be seen. Because RO is awarded a relatively low LRV 
compared to the other treatment processes, even a complete RO failure is sometimes 
overshadowed by the general variability in other treatment processes. With greater failure 
frequencies, or perhaps in one of the other 99 simulations not shown, an RO failure might be 
coupled with low LRVs for other treatment processes, thereby having a more significant impact 
on the overall treatment train LRV and the final risk estimates. In this simulation, however, the 
RO failure was relatively inconsequential. 

• Simultaneous Failures: Because of the low failure frequency (i.e., one failure per treatment 
process per year) coupled with the short failure duration (i.e., 15 min), there were no 
simultaneous failures observed in this particular simulation. In other words, each treatment 
process failed on a different day and/or a different 15-min time interval. Capturing a 
simultaneous failure of two independent unit processes assuming a 15-min failure duration 
would require ~6,000 simulations (i.e., 1/6th of the 35,040 simulations noted in Step 10: Risk 
Characterization). This is because there are 4 independent treatment processes yielding 6 
possible combinations of dual-process failures, instead of the 2 independent treatment 
processes in the earlier example. In order to observe the effects of a simultaneous failure, the 
number of failure simulations could theoretically be increased to ~6,000, which would 
significantly increase processing time, or the failure duration could be increased to 24 hr with 
the number of failure simulations remaining unchanged at 100 (theoretically 61 simulations or 
365/6; see Step 10: Risk Characterization). With this change, the revised PATTP Output indicates 
a minimum overall LRV of 7.2 (actual value might differ due to random number generator), 
although it is not clear which combination of treatment process failures resulted in that LRV. To 
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increase the probability of capturing a simultaneous failure of UV AOP with some other 
treatment process (3 possible combinations), the failure duration could remain at 24 hr with 
the number of failure simulations increasing to ~150 (theoretically 122 simulations or 365/3). 
With that change, the minimum observed LRV is 3.4, which most likely represents a combined 
failure of UV AOP and ozone or MF, or the less likely combination of three simultaneous failures. 
Regardless, this represents an exceptionally rare event considering that the 1st percentile LRV 
increases to 13.4. Therefore, it is important to understand whether the failure specifications for 
a given scenario capture the full range of potential outcomes desired by the user (e.g., ‘black 
swan’ events), but it is also important to keep these events in context in terms of their likelihood 
of occurrence.  

If any changes have been made to the model inputs, it might be beneficial at this point to reload the 
baseline inputs for Case Study 2 before proceeding. The two plots on the following page illustrate 
the daily and annual risks, respectively, for the baseline model inputs under normal operational 
conditions and when accounting for at least one failure per treatment process per year. The effects 
of failures are readily apparent in both plots, although the treatment train still satisfies both the 
daily and annual benchmarks across the entire distribution. Because of the way daily risks are 
converted to annual risks, this failure scenario is a prime example of where the maximum daily and 
annual risks are nearly equivalent (1×10-7) because of the steep daily risk curve. So, depending on 
the regulatory benchmark, a treatment scenario might nearly exceed the target (i.e., daily risk 
benchmark) or actually provide a ~1,000-fold safety factor (i.e., annual risk benchmark).  

10. Select Summary of PATTP and QMRA Output on the left menu bar, which will bring the user to a 
screen summarizing only the critical outputs from the tool, specifically the LRV comparison and the 
daily and annual risks. The supporting data excluded from this summary are still accessible in the 
other tabs. 
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B.16.1 Sensitivity Analysis on Failure Duration 
The following plot was generated using the Comparison of Risk Curves functionality (Comparison of 
Pdaily Risk Curves – Failure Analyses section) in conjunction with the raw data generated from multiple 
failure scenarios. Each failure scenario assumed a magnitude of 100% and a deterministic frequency of 
1 failure per process per year, but the failure duration varied: green = 0.25 hr, blue = 1 hr, and purple = 
24 hr. By default, the tool automatically loads and plots the no-failure data from the first file uploaded. 
The required input files can be downloaded for each scenario from the QMRA Output page by clicking 
on Download Failure Analysis Pannual Data. This allows for a direct comparison with the summary data 
from Pecson et al. (2017) (right side of figure).  

   
Source: Adapted from Pecson et al. 2017. 

The following plots were also developed using the Comparison of Risk Curves functionality (Comparison 
of Pdaily Risk Curves – Failure Analyses section), but these plots illustrate how daily risk curves change in 
a general sense when evaluating changes in (top) failure magnitude, (middle) failure duration, and 
(bottom) failure frequency.  
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In Case Study 1, the sensitivity analysis on overall 
treatment train LRV demonstrated that changes in 
treatment redundancy cause vertical shifts in the risk 
plots across all percentiles. Changes in failure 
magnitude also cause vertical shifts in the risk plots, 
but these shifts are isolated to the ‘tail’ of the 
distribution that represents the low probability failure 
events. The shape of each daily risk curve is also 
dependent on which processes are failing because a 
33% reduction in UV AOP (2-log change) will have a 
more significant effect on daily risk than a 33% 
reduction in RO (<1-log change). These nuances are 
often reflected as inflection points in the daily risk 
curves. 

Changes in failure duration have similar impacts as 
changes in failure magnitude. Specifically, these 
changes result in daily risk curves that ‘bend’ in the 
same general percentile range, but risk increases as 
the duration of failure increases. In the example plot 
shown with a probit scale, the inflection points seem 
to occur at different locations, but they actually occur 
within ±0.5% of each other. 

Increasing failure frequency causes leftward shifts in 
the daily risk curve, which means higher risks will 
occur more frequently. Moreover, increasing failure 
frequency also increases the probability of 
simultaneous failures, including more severe 
simultaneous failures, as illustrated by the secondary inflection point in the 3x curve (purple data in 
bottom figure). 

B.16.2 Sensitivity Analysis on Treatment Redundancy 
The following plot was generated using the Comparison of Risk Curves functionality (Comparison of 
Pdaily Risk Curves – Failure Analyses section) using the baseline inputs for Case Study 2 but with a failure 
duration of 24 hr instead of 15 min. The three input files represent changes to the Inverse Gaussian 
parameters for ozone treatment, which were meant to simulate changes in treatment redundancy. The 
baseline daily risk (red data) represents the no-failure condition for μ = 3.38 for the ozone LRV. The 
other data include the effects of failure with μ = 3.38 (green), μ = 2.38 (blue), and μ = 1.38 (purple) for 
the ozone LRV. With the reduction in treatment redundancy caused by the stepwise reduction in ozone 
LRV, the daily risk curve shifted vertically, which also caused the daily risk to exceed the 2.7×10-7 
benchmark at different percentiles: 

• μ for ozone LRV = 3.38  exceeds daily risk benchmark at ~99.95% 
• μ for ozone LRV = 2.38  exceeds daily risk benchmark at ~99.7% 
• μ for ozone LRV = 1.38  exceeds daily risk benchmark at ~99.5% 
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B.16.3 Sensitivity Analysis on Management Barriers 
The City of San Diego’s Pure Water Program will ultimately involve augmentation of local reservoirs with 
purified water. For Phase 1, the current plan is to pump purified water from the North City AWPF to 
Miramar Reservoir, which will have a theoretical hydraulic retention time (HRT) of approximately 60 
days. In accordance with California’s Surface Water Augmentation regulations, the reservoir will achieve 
significant dilution, and although it is not considered in the regulatory framework, this approach would 
theoretically achieve pathogen die-off as well over the 60-day storage period. As such, this case study 
was expanded to evaluate the significance of dilution and die-off relative to the LRVs achieved by the 
engineered treatment train. In particular, this evaluation demonstrates how the reservoir—even with a 
relatively short retention time of 60 days—can potentially buffer off-specification or failure conditions. 

For this sensitivity analysis, all baseline inputs remain the same except for the Management Barriers. 
Blending should remain set with an LRV of 0, pathogen die-off should be set to a point estimate of 
1.07 (i.e., 0.041 d-1 × 60 d / 2.303; see earlier section on Step 7: Management Barriers), and dilution 
should be modeled as a user-input file, which is available for download under How to use this tool in 
the left menu bar (MiramarDilution.csv). Because the user-input file for dilution only includes 104 LRVs, 
DPRisk samples with replacement to generate 10,000 data points for the underlying parameter set. The 
user-input file is based on hydrodynamic modeling for Miramar Reservoir (i.e., dilution estimates) for a 
24-hr tracer pulse, which could represent a 24-hr (or 1-day) pulse of off-specification recycled water. 
The original dilution data from the tracer study (see figure) approximately follow a normal distribution 
with a mean X-fold dilution of 51 and standard deviation of 7.35. The ideal CSTR approach described 
earlier would result in a comparable 61-fold dilution [i.e., 
1/(1-exp(-1/60)) = 61]. LRVs were calculated from the 
dilution data as the -log10 of (1/X). The mean 51-fold 
dilution equates to an LRV of 1.71, although the use of the 
input file allows the entire range of dilutions to be sampled 
by DPRisk.  

This sensitivity analysis provides another practical example 
of redundancy. In other words, the management barriers 
supplement the engineered treatment processes by 
increasing the overall LRV, which causes a vertical 
downward shift in the daily risk curve. In a scenario in 
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which the daily risk approaches the 2.7×10-7 benchmark, inclusion of management barriers might 
demonstrate sufficient redundancy to mitigate public health concerns.  

 

B.17 Case Study 3: QMRA for Adenovirus in an FAT-Based DPR 
Scenario  
Soller et al. (2018b) evaluated the reliability of pathogen control in hypothetical potable reuse 
treatment trains experiencing short-duration, off-specification conditions. The QMRA primarily relied on 
literature data for pathogen concentrations and project-specific data (e.g., operational performance and 
industry surveys) for treatment performance and estimating probabilities of off-specification conditions. 
The data summarized in that QMRA are incorporated into this case study as a demonstration of the use 
of the DPRisk tool. The user can follow the specified approach to recreate the QMRA for adenovirus in 
Soller et al. (2018b) or incorporate any desired changes to evaluate impacts on the results. 

1. Access the tool via the DPRisk website link. The code can also be downloaded and run locally using 
R. Input files are available for download under the How to use this tool option in the menu bar. 

2. Select Raw Wastewater Pathogen Concentrations on the left menu bar. This will bring the user to an 
input screen where (1) the target pathogen can be selected, (2) additional information related to the 
pathogen enumeration method can be identified, and (3) the distribution of raw wastewater 
concentrations can be characterized. Note that the information for enumeration method does not 
impact the QMRA and is only stored for user reference. The concentrations can be described by a 
lognormal distribution with user-defined parameters, a user-provided data file that follows a 
lognormal fit (tool will use MLE to identify lognormal parameters), or a user-provided data file that 
has already been curated with 10,000 data points (current scenario). 
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Soller et al. (2018b) uses a log10uniform 
distribution to describe raw 
wastewater pathogen concentrations. 
For a log10uniform distribution, the 
concentrations are uniformly 
distributed between the log10 of the 
minimum concentration and the log10 
of the maximum concentration. The 
final concentrations are then calculated 
as the base 10 antilogarithm of each 
data point. This allows the data to be 
weighted evenly across multiple orders 
of magnitude. Because log10uniform 
distributions are less common in the 
literature, this option was not 
integrated into DPRisk. Instead, a 
corresponding dataset was generated 
independent of the tool and is available 
for download under How to use this 
tool in the left menu bar 
(AdVRawWW.csv). The provided data 
file includes 10,000 data points representing the raw wastewater concentration of adenovirus 
according to a log10uniform distribution. The distribution was developed assuming a minimum of 1.8 
log10 and a maximum of 3.8 log10 infectious viruses per liter based on cell culture data (see 
preceding figure).  

3. Select Treatment Train 
on the left menu bar. 
This will bring the user 
to an input screen 
where the treatment 
train can be selected 
and characterized. 
Treatment can be 
characterized as (1) a 
single LRV point 
estimate for the entire treatment train, (2) a user-provided data file that has already been curated 
with 10,000 LRVs for the overall treatment train, or (3) individual log removals for each process 
(current scenario). All LRV estimates should be base 10 (i.e., log10 reductions) and not base e (i.e., 
ln). The figure above summarizes the LRV inputs for secondary biological treatment (uniform 
distribution), RO (zero-truncated normal distribution), UV (point estimate), and pipeline chlorine 
(point estimate).  

4. Select Treatment Failure on the left menu bar. This will bring the user to an input screen where 
“Conduct failure analysis” can be selected. In contrast with Case Study 2, different failure settings 
will be applied to the four treatment processes in Section B.17. Specifically, two treatment 
processes (secondary biological treatment and pipeline chlorine) will be excluded from the failure 
analysis, and two treatment processes (RO and UV AOP) will be characterized with process-specific 
failure types. Note that selecting “No” in the dropdown box for “Does this failure type apply to all 
processes?” allows the user to apply failure types to individual processes. 
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Based on operational performance and industry surveys, Soller et al. (2018b) assumed process-
specific probabilities of off-specification performance for any random 15-min time period. This 
requires reconciliation with the daily failure probability in DPRisk; specifically, the 15-minute failure 
probabilities reported in Soller et al. (2018b) require adjustments to achieve similar frequencies in 
the tool output. For example, Soller et al. (2018b) reported a 15-minute probability of 0.018 for an 
off-specification condition for RO. With 8 samplings of the performance distribution each day (i.e., 
every 3 hours and 2,920 samplings per year), an off-specification condition would be expected for 
RO approximately 53 times in a year (i.e., 0.018×2,920 = 53). DPRisk’s framework does not allow for 
multiple failures of a single process within a given day. Assuming a similar off-specification 
frequency in DPRisk (i.e., 53 failures per year), that would equate to a daily probability of 0.145 (i.e., 
53/365). The process-specific daily failure probabilities are summarized in the far right column of 
the following table. In order to increase the probability of a failure in DPRisk aligning with an 
ingestion event, the failure duration should be consistent with the ingestion frequency in Soller et 
al. (2018b) (i.e., 3 hours). Finally, all failure magnitudes are assumed to be 100% for this scenario. 

Unit 
Process 

15-min Off-
Spec 

Probability1 

No. of 3-hr 
Time 

Increments per 
Year 

Expected Off-
Spec Events 

per Year 

No. of 
Days 

per Year 

Adjusted Daily 
Off-Spec 

Probability3 

Secondar
y 

0.000 2,920 0.0 365 0.000 

UF 0.021 2,920 61 365 0.1672 
RO 0.018 2,920 53 365 0.145 
UV 0.002 2,920 6.0 365 0.016 
NaOCl 0.000 2,920 0.0 365 0.000 

1Soller et al. (2018b); 2Adenovirus LRV for UF is assumed to be 0 so failures need not be applied; 3Failure 
magnitude = 100% and failure duration = 3 hours  
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5. Select Management Barriers on the left menu bar. This portion of the case study does not 
incorporate blending, dilution, or die-off so the default LRV of 0 can remain unchanged. 

6. Select Exposure on the left menu bar. This will bring the user to an input screen where the daily 
ingestion rate can be specified and characterized. The ingestion rate in mL/day can be described by 
one of the default distributions/point estimates or specified by the user. The user-specified option 
allows for (1) an input file with 10,000 data points, (2) a point estimate (current scenario), or (3) a 
lognormal distribution with user-defined mean and standard deviation. The ingestion frequency in 
Soller et al. (2018b) was assumed to be eight 250-mL aliquots (i.e., 2 L total) spread randomly 
throughout the day. This should be described in DPRisk as a point estimate of 2 L/day distributed 
evenly across 8 ingestion events per day. 

7. Select Dose-Response on the left menu bar. This will bring the user to an input screen where the 
pathogen dose-response equation can be identified and characterized. The user can (1) select one of 
the default dose-response models specific to the target pathogen (adenovirus in this scenario) or (2) 
select and characterize one of several dose-response models commonly used in QMRAs. Soller et al. 
(2018b) used a hypergeometric dose response model for adenovirus, which is also described as an 
Exact Beta Poisson dose response model. For this case study, the user can either select the Exact 
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Beta Poisson default (see figure on next page) or specify a dose response and select 
hypergeometric. For the user-defined hypergeometric approach, the parameters can then be 
described as (1) point estimates or (2) based on an input file with 10,000 data points for each 
parameter. Based on Soller et al. (2018b), the alpha parameter should be 5.11 and the beta 
parameter should be 2.8. Note that if the user-defined dose response model is selected, it will not 
be possible to view the benchmark LRVs in the PATTP output tab because the DPRisk algorithm is 
not equipped to make the benchmark LRV calculations with user-defined dose response models.  

 

8. Select PATTP Output on the left menu bar, which will trigger the tool to perform the Monte Carlo 
simulation and calculations related to treatment train performance. A box will likely appear in the 
bottom right corner of the screen to indicate the tool’s progress. The following series of figures 
summarizes the PATTP output for Case Study 1. Assuming the ‘seed’ for random number generation 
under the Configure tab is set at 1 and the number of failure simulations is set to 100, some of the 
output may appear exactly as shown. Recall that the benchmark LRV data are not available when 
using a user-specified dose response function. These data were generated using the Exact Beta 
Poisson default for adenovirus.  

The following figure shows the distributions for the benchmark LRVs, the observed treatment 
performance in the absence of failures, and the observed treatment performance when accounting 
for failures. In the absence of failures, the modeled treatment train includes ~6 logs of redundancy 
beyond the benchmark LRV curve. For the default setting of 100 failure simulations (i.e., 36,500 
simulated days and 3,504,000 total time intervals) and the failure specifications described earlier 
(i.e., daily failure probabilities of 0.145 for RO and 0.016 for UV), approximately 5,293 RO failures 
(i.e., 0.145×36,500), 584 UV failures (i.e., 0.016×36,500), and 85 simultaneous failures (i.e., 
0.145×0.016×36,500) are expected. For an assumed failure duration of 3 hours (or twelve 15-min 
time intervals per failure), these failures would span 63,510 (RO), 7,008 (UV), and 1,016 
(simultaneous) time intervals, accounting for 1.8%, 0.2%, and 0.03% of the LRVs, which appears to 
be consistent with the inflection points in the failure LRV curve. 
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9. Select QMRA Output on the left menu bar, which will trigger the tool to perform the Monte Carlo 
simulation and calculations related to daily and annual 
risk. A box will likely appear in the bottom right corner 
of the screen to indicate the tool’s progress. 

The following figure shows a comparison of the daily risk estimates from Figure 1 of Soller et al. 
(2018b) versus the output from DPRisk. Several daily risk points are noted by red circles to highlight 
direct comparisons between the data. For example, point A represents the median daily risk in all 
datasets, which was relatively consistent at ~10-12. Point B represents the inflection point in the 
failure analyses, which occurs immediately before the 99th percentile in the published QMRA and in 
the output from DPRisk. Finally, point C represents the intersection point with the daily risk 
benchmark of 2.7×10-7, which occurs between the 99th and 99.9th percentile in the published QMRA 
and in the output from DPRisk. Based on these similarities, the output from DPRisk appears to be 
consistent with the output from Soller et al. (2018b). 
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10. Select Summary of PATTP and QMRA Output on the left menu bar, which will bring the user to a 
screen summarizing the critical outputs from the tool, specifically the LRV comparison and the daily 
and annual risks. The supporting data excluded from this summary are still accessible in the other 
tabs. 

B.18 Conclusions 
Probabilistic assessment of treatment train performance (PATTP) and quantitative microbial risk 
assessment (QMRA) are tools that are constantly evolving as the industry develops new datasets and 
refines its understanding of underlying principles and assumptions. Many of the assumptions 
incorporated into these tools can have significant implications for final risk calculations and any 
regulations or policies being considered. This is one of the limitations of trying to apply published 
QMRAs to a specific application: there may be an assumption built into the published QMRA that 
significantly deviates from the application being considered. For example, a published QMRA may have 
considered a long environmental buffer storage time, but the application in question may have a storage 
time of only a few days. As another example, a past QMRA may have considered an outdated pathogen 
dataset or dose response model that no longer meets updated standards of practice. This tool was 
developed to alleviate this problem by providing a relatively simple user interface that provides 
sufficient flexibility to tailor the model to the potentially unique characteristics of a project under 
consideration. Moreover, the tool can be configured to allow for relatively rapid risk calculations, which 
facilitates sensitivity analyses on a wide range of input parameters. The goal of this Guidance Document 
was to not only provide context about important components of PATTP and QMRA but to also ensure 
transparency with respect to the underlying structure and calculation methodology of DPRisk. 
Considering these features, DPRisk provides a robust platform for evaluating a wide range of drinking 
water applications, particularly in the context of potable reuse, and can be a powerful tool for 
facilitating the decision-making process.  
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B.19  Summary of Output File Headers 
Parameter Set Data File 

Heading Description 
(none) The first column does not have a heading and is a count of the rows from 1 to 

10,000 
input The raw wastewater concentration in pathogen units/L 
Lr Treatment train log removal value if LRVs are not provided for specific unit 

processes (optional) 
sbt_lr Treatment LRV for secondary biological treatment (optional) 
mbr_lr Treatment LRV for membrane bioreactor (optional) 
ozone_lr Treatment LRV for ozone (optional) 
bac_lr Treatment LRV for biological activated carbon (optional) 
mf_lr Treatment LRV for membrane filtration (optional) 
ro_lor Treatment LRV for reverse osmosis (optional) 
uvaop_lr Treatment LRV for the UV advanced oxidation process (optional) 
pipelinechlorine_lr Treatment LRV for pipeline chlorine (optional) 
fsf_lr Treatment LRV for flocculation/sedimentation/filtration (optional) 
ozone2_lr Treatment LRV for ozone2 (optional) 
chlorine_lr Treatment LRV for chlorine (optional) 
custom1_lr Treatment LRV for custom process 1 (optional) 
custom2_lr Treatment LRV for custom process 2 (optional) 
blending_lr LRV from blending management barrier 
dilution_lr LRV from dilution management barrier 
dieoff_lr LRV from die-off management barrier 
lr_with_mb overall LRV including management barriers 
Ceff final drinking water concentration [i.e., input x 10^(- lr_with_mb)] 
exposure ingestion volume in mL/day 
eventsperday number of exposure/ingestion events per day (from 1 to 96) 
dose dose for given exposure (i.e., Ceff x exposure/1000/eventsperday) 
alpha alpha parameter for dose-response (optional) 
beta beta parameter for dose-response (optional) 
r r parameter for dose-response (optional) 
p p parameter for dose-response (optional) 
response probability of infection from given dose (calculated from the dose-response 

function) 
vc exposure (i.e., ingestion volume) times raw wastewater concentration, which 

is used as the input for the benchmark treatment calculation (i.e., input x 
exposure/1000/eventsperday) 

bttp_lrv LRV solution ot the benchmark treatment calculation 
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LRVs for Failure Analysis 
Heading Description 
(none) The first column does not have a heading and is a count of the rows from 1 to 

(35,040 x number of failure simulations) 
lr_with_mb The overal LRV (including treatment and management barriers) without failure for 

each 15-min time interval 
failure_lr_with_mb The overal LRV (including treatment and management barriers) with failures for 

each 15-min time interval 
Note: The failure_lr_with_mb and lr_with_mb columns are paired.  Each row is computed for the same 
combinations of treatment and management barrier LRV parameters, but the failure_lr_with_mb column 
includes the effects of a failure if it occurred within that 15-min time interval, whereas the lr_with_mb 
column omits the effects of the failure. 

Failure Analysis Pannual File 
Heading Description 
(none) The first column does not have a heading and is a count of the rows from 1 to 100 

(or the number of failure simulations specified in the tool settings) 
failure_Pannual The annualized risk with failures included 
Pannual The annualized risk with failures omitted 
Note: The failure_Pannual and Pannual columns are paired. Each row is computed for the same 
combinations of input, treatment, and exposure parameters, but failure_Pannual includes the failure, 
whereas Pannual does not. 

Failure Analysis Pdaily File 
Heading Description 
(none) The first column does not have a heading and is a count of the rows from 1 to 100 

(or the number of failure simulations specified in the tool settings) 
failure_Pdaily The daily risk with failures included 
Pdaily The daily risk with failures omitted 
Note: The failure_Pdaily and Pdaily columns are paired. Each row is computed for the same 
combinations of input, treatment, and exposure parameters, but failure_Pdaily includes the failure, 
whereas Pdaily does not. 

15-min Events for Failure Simulations 
Heading Description 
These files should have the same headings as the Parameter Set Data File, as well as: 
(none) The first column does not have a heading. The value shown indicates 

which row out of the underlying 10,000-parameter dataset was 
selected for the given 15-min data point. There should be 35,040 rows 
in total, corresponding to the number of 15-min periods in a year. 
Values with a decimal point and number after the decimal point 
indicate rows in the underlying parameter dataset that were sampled a 
second time (X.1), a third time (X.2), etc. 

failure_sbt_lr Treatment LRV for secondary biological treatment with failure if a 
failure occurred within the 15-min time interval (optional) 

failure_mbr_lr Treatment LRV for membrane bioreactor with failure if a failure 
occurred within the 15-min time interval (optional) 
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failure_ozone_lr Treatment LRV for ozone with failure if a failure occurred within the 15-
min time interval (optional) 

failure_bac_lr Treatment LRV for biological activated carbon with failure if a failure 
occurred within the 15-min time interval (optional) 

failure_mf_lr Treatment LRV for membrane filtration with failure if a failure occurred 
within the 15-min time interval (optional) 

failure_ro_lor Treatment LRV for reverse osmosis with failure if a failure occurred 
within the 15-min time interval (optional) 

failure_uvaop_lr Treatment LRV for the UV advanced oxidation process with failure if a 
failure occurred within the 15-min time interval (optional) 

failure_pipelinechlorine_lr Treatment LRV for pipeline chlorine with failure if a failure occurred 
within the 15-min time interval (optional) 

failure_fsf_lr Treatment LRV for flocculation/sedimentation/filtration with failure if a 
failure occurred within the 15-min time interval (optional) 

failure_ozone2_lr Treatment LRV for ozone2 with failure if a failure occurred within the 
15-min time interval (optional) 

failure_chlorine_lr Treatment LRV for chrlorine with failure if a failure occurred within the 
15-min time interval (optional) 

failure_custom1_lr Treatment LRV for custom process 1 with failure if a failure occurred 
within the 15-min time interval (optional) 

failure_custom2_lr Treatment LRV for custom process 2 with failure if a failure occurred 
within the 15-min time interval (optional) 

lr_with_mb overall LRV including management barriers 
failure_lr Treatment log removal value with failure if a failure occurred within the 

15-min time interval  
failure_lr_with_mb Treatment log removal value with failure and including additional LRVs 

from management barriers (if applicable) if a failure occurred within 
the 15-min time interval 

failure_dose 15-min dose computed with the failure if a failure occurred within the 
15-min time interval 

failure_response 15-min probability of infection computed from the dose-response 
function if a failure occurred within the 15-min time interval 

Note: These failure values are paired with their non-failure variables. If a failure was not identified within 
a given 15-min time interval, then the parameter values will be the same as their non-failure 
counterpart.  
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APPENDIX C 
 

Training Workshop Materials 



  

 Location: Teleconference 

 Date: July 14, 2020 

 Time: 1:00pm – 3:00pm PDT 
         
         

DPR‐1 QMRA/PATTP Introduction and Virtual Training  
Meeting Agenda 

 
Join the Meeting: Click HERE 
Call-in: +1 661-383-2580 
Access Code: 329 909 249# 

 
Time Topic Speaker(s) 

1:00 – 1:05 pm Welcome 
Adam Olivieri &  
Brian Pecson 

1:05 – 1:45 pm Introduction and Background on PATTP & QMRA 
Brian Pecson & 
TWG 

1:45 – 1:55 pm Questions from State Board All 

1:55 – 2:15 pm Live Demo of DPRisk Tool Edmund Seto 

2:15 – 2:35 pm Case Study Live Demo Daniel Gerrity 

2:35 – 2:40 pm  Next Steps 
Brian Pecson & 
Adam Olivieri 

2:40 – 3:00 pm Questions from State Board All 
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Part 1: Tool Introduction and Virtual Training

July 14, 2020
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Adam Olivieri

Brian Pecson
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 Technical Working Group
 Brian Pecson, Trussell Technologies (Chair)
 Nick Ashbolt, University of Alberta
 Charles Haas, Drexel University
 Theresa Slifko, Metropolitan Water District

 Research Team
 Dan Gerrity, Southern Nevada Water Authority
 Edmund Seto, University of Washington

 Additional Staff
 Anya Kaufmann, Trussell Technologies

 WRF/State Board Coordination
 Adam Olivieri

 State Water Board
 Randy Barnard
 Mark Bartson
 Brian Bernados
 Steven Book
 Robert Brownwood
 Jing Chao
 Asad Faraz
 Candida Granillo-Doods
 Saeedreza Hafeznezami
 Tricia Lee
 Eugene Leung
 Laura McLellan
 Aide Ortiz
 Sherly Rosilela
 Kurt Souza
 Dave Spath
 Bob Hultquist

 Water Research Foundation
 Julie Minton
 Erin Partlan
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Time Topic Speaker(s)

1:00 – 1:05 pm Welcome & Introductions Adam Olivieri & Brian Pecson

1:05 – 1:45 pm Introduction & Background on PATTP & QMRA Brian Pecson & TWG

1:45 – 1:55 pm Q&A All

1:55 – 2:15 pm Live Demo of DPRisk Tool Edmund Seto

2:15 – 2:35 pm Case Study Live Demo Daniel Gerrity

2:35 – 2:40 pm Next Steps Brian Pecson & Adam Olivieri

2:40 – 3:00 pm Q&A All

144 The Water Research Foundation



Brian Pecson and TWG

Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 145



A probabilistic assessment of treatment train performance (PATTP) 
and QMRA can provide insight on multiple public health aspects

 Reliability of DPR treatment trains in consistently meeting risk goals

 Benefit of additional redundancy in treatment in achieving goals

 Benefit of the diversity of treatment barriers (i.e., robustness)

 Impact of management barriers on system resilience (failure response)

 Impact of a range of treatment failures on reliability
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Goal #1: Develop guidelines for evaluating DPR facility treatment 
performance

Goal #2: Use QMRA to confirm the level of treatment needed to 
achieve risk-based targets
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performance
PATTP

160 The Water Research Foundation



1. Exposure Assessment

Raw 
wastewater

Treatment Drinking water 
levels

Calculated

Drinking water 
consumption

Exposure

Calculated 0.01 0.1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99
100

1000

10000

Dr
in

ki
ng

 W
at

er
 C

on
su

m
pt

io
n 

(m
L/

da
y)

Percent ≤

Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 161



1. Exposure Assessment

Raw 
wastewater

Treatment Drinking water 
levels

Calculated

Drinking water 
consumption

Exposure

Calculated

2. Dose-Response

Dose-response
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1. Exposure Assessment

Raw 
wastewater

Treatment Drinking water 
levels

Calculated

Drinking water 
consumption

Exposure

Calculated

2. Dose-Response

Dose-response

3. Risk 
Characterization

Risk

Calculated
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 Intersection of risk curve and 
health threshold tells what 
percent of time the system meets 
the health goal

Treatment train providing 10 LRV 
of Cryptosporidium control meets 
goal 95% of time

Consistency of public health protection = Reliability
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Crypto
Treatment Train Performance

6-logs
If our risk-based standards require 10-

logs of Crypto reduction, this train 
provides 6 logs of redundancy at median 

performance
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There is a direct relationship between treatment redundancy and risk

Crypto
Treatment Train Performance

6-logs

6 logs of 
redundancy is 
reflected in the 

risk curve 
being ~6-logs 

below risk 
threshold
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We can model what happens at different levels of redundancy
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We can model what happens at different levels of redundancy

Lower redundancy causes upward shifts in risk
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Different degrees of compliance 
can be achieved by shifting the 
level of treatment provided

 10 LRV meets goal 95% of time

 11 LRV provides >99.9% 
compliance
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Rather than allow water microbial quality 
and risk of infection to fluctuate 
significantly and meet the risk objective on 
an annual average, the treatment scheme 
is expected to be regulated to provide 
consistently safe water by imposing a daily 
risk objective that would not exceed 
2.7x10-7 per day.
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 If ozone performs less consistently…

0 1 2 3 4 5 6
LRV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y 
Le

ss
 T

ha
n 

or
 E

qu
al

 T
o

Ozone LRV Performance

Baseline O3 Performance
Variability in O3 Performance

Ozone Unit Process Performance

174 The Water Research Foundation



 If ozone performs less consistently…

…the overall treatment train shows greater variability…
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…and greater performance variability leads to higher risk profiles
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Failure
Assumption

Duration

Frequency

Magnitude

39
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Failure
Assumption

Duration

Frequency

Magnitude
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How does failure frequency impact risk?
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Failure
Assumption

Duration

Frequency

Magnitude
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How does failure magnitude impact risk?
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If we shift the treatment requirements…. …what is the impact on public health?
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Source Control

Blending
ESB

Monitoring

Operator Training

Standby Capacity

Diversion

Alternative 
Water 
Supply

Reservoir

These project elements may also mitigate failures and help control risk
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Improves Water Quality

Mixing of off-spec water 
with on-spec water dilutes 

contaminants

30-day Reservoir

4-hr ESB

24-hr ESB

• Provides time to respond
• Allows for decoupling

Prevents Off-Spec Water Distribution
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DPRisk can also be used to model 
impact of management barriers: 

• Dilution/mixing
• Blending with other source waters

• Die-off in the environment
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Edmund Seto

Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 197



Daniel Gerrity
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Brian Pecson

Adam Olivieri
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PRESENT

 Webinar to Introduce PATTP/QMRA Tools

 Internal QA/QC of PATTP/QMRA with Research Team and Technical Working Group

FUTURE

 Distribute Guidance Manual and provide link to DPRisk Tools: July 24, 2020

 “Hands-on” training with PATTP/QMRA Tools: August 4, 2020

 Receive feedback from State Water Board on Guidance Document and tools: August 25, 2020

 Incorporate raw wastewater concentration data from DPR-2: Fall/Winter, 2020
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DPRisk Tool
Specifying Probabilistic Treatment Train Performance 
and Quantitative Microbial Risk Assessment Scenarios 

in the DPRisk Tool

Edmund Seto, PhD
Associate Professor

Environmental & Occupational Health Sciences
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Background on Tool Development

• Goals:
• Capable of analyses of a variety of PATTP and QMRA scenarios
• Ease of Use, providing reasonable defaults for various parameters
• Flexibility to incorporate a variety of user-specified inputs
• Powerful enough to consider complex treatment failure scenarios

• Based on R Shiny.
• Can be run locally on computer, or hosted on a server and run in a web-

browser.
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The tool provides this recommendation
based on the pathogen selected.

Including default distribution for raw 
waste water concentrations.
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Changing the pathogen changes the defaults.

Including default distribution for raw 
waste water concentrations.
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Flexibility to provide an overall treatment
log removal as a point estimate, an input 
file with a distribution of values, or
specify treatment for each unit process.
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If we select log removal for each process,
we can provide settings for each unit 
process.
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Treatment Train

• Membrane bioreactor
• Ozone
• Biological activated carbon
• Membrane filtration
• Reverse Osmosis
• UV/Advanced Oxidation Process
• Pipeline Chlorine
• Flocculation/sedimentation & filtration
• Ozone 2
• Chlorine
• Custom Process #1
• Custom Process #2

There are two “custom” processes, where users can specify LRVs
that are also included in the analysis, including in failure analyses.
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Flexibility to provide log removal values as
a point estimate, input file or LRVs, or 
as parameters for statistical distributions.

If a unit process isn’t relevant, setting its
LRV to 0, removes it from the
analysis.

Tools to Evaluate Quantitative Microbial Risk and Plant Performance/Reliability 211



Optionally, failure analyses can be 
performed.

We can leave this as is if we just want the 
tool to compute a benchmark treatment 
performance (i.e., what LRV is required for 
the specified raw wastewater pathogen 
concentrations and exposure to achieve an 
acceptable annualized risk, like 10-4 risk of 
infection).

We can leave as is if we just want the tool to 
compute daily and annualized risk results 
for the specified treatment train.
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If we turn on failure analysis…

Magnitude of failure on LRV?

Duration of each failure?

Frequency of failures (days out of the year)?
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Combining “Failure Types”

• The tool allows for up to 6 Failure Types, which can be combined 
within a single failure analysis.

For example:

• Type 1:  Magnitude: 25%,  Duration: 1-hour, Frequency: 10 days/yr
• Type 2:  Magnitude: 50%,  Duration: 30-min, Frequency: 3 days/yr
• Type 3:  Magnitude: 100%,  Duration: 15-min, Frequency: 1 day/2 yrs

214 The Water Research Foundation



Blending

Dilution

Die-off

Management Barriers may be specified 
separately from the Treatment Train

These are not subject to 
treatment failures.
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Various defaults provided 
for exposure

216 The Water Research Foundation



Or, the user can specify their own 
exposure distribution as parameters 
for a statistical distribution, or as an 
input file.
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Default dose-response relationships 
are provided to the user.

These are specific to the pathogen.
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The user can provide their own dose-
response relationship and parameter 
values.

For example, various common dose-
response forms are provided by the 
tool.
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An Example: Case Study 2 from the Guidance 
Document
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Specification for Ozone in the 
treatment train

… and similarly for other unit processes.
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Outputs from the Analysis
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This is the distribution of overall 
treatment log removal (including 
management barriers) based on the 
user specifications
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Figures show the individual LRV 
contributions of each unit process in 
the treatment train

Ozone RO

Membrane Filtration UV/AOP
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Target risk of 10-4

Annual risk 
(without failure)

Annual risk 
(with failure)
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The tool allows you to download the 
data for further analyses, visualization, 
etc.
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The tool allows you visualize the 
factors that contribute to risk… 
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DPRisk Tool:
Guidance Document and Case Studies

Daniel Gerrity, Ph.D.
Principal Research Scientist, Water Quality R&D

Southern Nevada Water Authority
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Guidance Document Components
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• Background
– Literature review (e.g., target pathogens 

in recently published QMRAs)
– Important concepts (e.g., uncertainty vs. 

variability)

Section Breakdowns

• Integration into DPRisk Tool
– Implementation (e.g., target pathogens 

actually included in DPRisk)
– Flexibility to expand beyond defaults
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Default User Inputs:
To be updated and 
autopopulated with data 
from DPR-2
(shown: Cryptosporidium
in Case Study 2)

Default User Inputs vs. Flexibility

238 The Water Research Foundation



Default User Inputs:
To be updated and 
autopopulated with data 
from DPR-2
(shown: Cryptosporidium
in Case Study 2)

Flexibility:
Input files to allow for 
alternative distributions 
(shown: log10uniform 
distribution for adenovirus 
in Case Study 3)

Default User Inputs vs. Flexibility
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• 3 case studies included in Guidance Document
• Demonstrate overall functionality of DPRisk tool (walk user through inputs)
• Show example inputs from regulatory frameworks/published literature
• Show example outputs from tool (screenshots in Guidance Document)
• Allow for direct comparison of tool output with published data
• Explain alternative modeling options and potential for sensitivity analyses

Case Study Goals
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• Use default enterovirus data from DPR-2
• Focus on a common LRV benchmark

– Example: Point estimate  LRV = 12

• Sensitivity analysis to evaluate tolerances 
on LRV target

– Demonstrates input file upload for 
treatment train LRV

– Example: 12±0.0, 12±0.5, 12±1.0, 12±1.5
– Simultaneous comparison of risk curves

Case Study 1: Enterovirus in a Default DPR Scenario
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1. Raw WW Pathogen Concentration 2. Treatment Train (Point Estimate)

3. Treatment Failure (None)

4. Management Barriers (None)
6. Dose Response (Default)

5. Exposure (Default)Case Study 1: Inputs

242 The Water Research Foundation



Case Study 1: Example Output

(Raw data available for download)

Beta-Poisson

(Distribution of enterovirus doses)
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2. Treatment Train (Alternative)• User Input Files
– A series of user input 

files will be provided on 
the tool website for 
users to reproduce the 
case studies

– Case Study 1: 
implications of a 
normally distributed 
treatment train LRV of 
12 with different 
standard deviations 

Case Study 1: Sensitivity Analysis

Normal Distribution:
68% of LRVs fall within

+/- 1 standard deviation of mean

95% of LRVs fall within
+/- 2 standard deviations of mean
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Case Study 1: QMRA

Benchmark LRVs to Achieve 10-4 Annual Risk of Infection

LRV = 12±0.0
LRVmin = 12.0
Pdaily,99 = 9×10-10

LRV = 12±1.0
LRVmin = 8.4
Pdaily,99 = 5×10-8
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• Direct comparison with published data from City of San Diego demo 
facility (Pecson et al., 2017)

• LRVs for each unit treatment process 
– Inverse Gaussian distributions/point estimates from publication
– Input file upload for RO treatment (bimodal: TOC surrogate used 85% of the 

time and EC surrogate used 15% of the time) 

• Failure framework
– Global failures of specified magnitude, frequency, and duration

Case Study 2: Crypto in a FAT-Based DPR Scenario
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Case Study 2: Inputs
1. Raw WW Pathogen Conc.

2. Treatment Train (Point Estimate)
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Case Study 2: Inputs
4. Management Barriers (None)

5. Exposure (Default)

3. Treatment Failure 6. Dose Response (Default)
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Case Study 2: PATTP Results
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Case Study 2: PATTP Results
Benchmark LRVs Simulated LRVs

What LRVs are needed to achieve 10-4 annual risk target? What LRVs are actually achieved by the treatment train? 
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Case Study 2: QMRA (No Failures)
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Case Study 2: Failure Results and Comparison

QA/QC Approach?
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Case Study 3: Adenovirus in a FAT-Based DPR Scenario
• Direct comparison with published data from Soller et al. (2018)
• Combination of default model inputs vs. customized model inputs

– Default inputs for treatment LRVs: uniform, normal, and point estimates
– User input file: Log10uniform distribution for raw wastewater adenovirus 

concentration

• Failure framework
– Comparison of short-duration (15-min) vs. long-duration (3-hr) failures to 

duplicate published data
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Final Notes: “Management Barriers”

1. How can an ideal ‘CSTR’ (tank) be used to 
model dilution in small reservoirs or 
engineered storage buffers?

2. How can response retention time (RRT) be 
integrated into the management barrier?
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Final Notes: “Management Barriers”

Implications of including or 
excluding pathogen die-off?

Dependent on the application, 
specifically the amount of storage 

or travel time and the 
environmental conditions.

LRV = k (days-1) × time (days)
2.303
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 Location: Teleconference 

 Date: August 4, 2020 

 Time: 9:00am – 1:00pm PDT 
         
         

DPR‐1 QMRA/PATTP Workshop Agenda 

 
Join the Meeting: https://global.gotomeeting.com/join/927704405 
Call-in: +1 (646) 749-3112 
Access Code: 927-704-405 

 
Time Topic Speaker(s) 

9:00 am – 9:05 am Welcome & Introductions Brian Pecson 

9:05 am – 9:25 am Case Study 1 Edmund Seto 

9:25 am – 9:45 am Case Study 2 Edmund Seto 

9:45 am – 10:05 am Case Study 3 Edmund Seto 

10:05 am – 10:50 am 

Expanded Investigations 
• Impact of raw wastewater pathogen 

concentration assumptions 
• Impact of treatment redundancy 

TWG and Research Team 

10:50 am – 11:00 am 10-min Break  

11:00 am –  12:00 pm 

Expanded Investigations 
• Impact of treatment variability 
• Impact of failure assumptions 
• Sensitivity analysis 

TWG and Research Team 

12:00 pm – 12:50 pm Ask the Experts – Q&A All 

12:50 pm – 1:00 pm Next Steps Brian Pecson 
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 Technical Working Group
 Brian Pecson, Trussell Technologies (Chair)
 Nick Ashbolt, University of Alberta
 Charles Haas, Drexel University
 Theresa Slifko, Metropolitan Water District

 Research Team
 Dan Gerrity, Southern Nevada Water Authority
 Edmund Seto, University of Washington

 Additional Staff
 Anya Kaufmann, Trussell Technologies

 WRF/State Board Coordination
 Adam Olivieri

 State Water Board
 Faraz Asad
 Randy Barnard
 Brian Bernados
 Steven Book
 Jing Chao
 Candida Granillo-Dodds
 Saeedreza Hafeznezami
 Bob Hultquist
 Eugene Leung
 Aide Ortiz
 Sherly Rosilela
 Dave Spath
 Kurt Souza
 Mark Bartson
 Robert Brownwood
 Tricia Lee
 Laura McLellan
 Claire Waggoner

 Water Research Foundation
 Julie Minton
 Erin Partlan
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Time Topic Speaker(s)

9:00 am – 9:05 am Welcome & Introductions Brian Pecson

9:05 am – 9:25 am Case Study 1 Edmund Seto

9:25 am – 9:45 am Case Study 2 Edmund Seto

9:45 am – 10:05 am Case Study 3 Edmund Seto

10:05 am – 10:50 am

Expanded Investigations
• Impact of raw wastewater pathogen 

concentration assumptions
• Impact of treatment redundancy

TWG and Research Team

10:50 am – 11:00 am 10-min Break

11:00 am – 12:00 pm

Expanded Investigations
• Impact of treatment variability
• Impact of failure assumptions
• Sensitivity analysis

TWG and Research Team

12:00 pm – 12:50 pm Ask the Experts – Q&A All

12:50 pm – 1:00 pm Next Steps Brian Pecson
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Edmund Seto
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DPRisk Tutorial
Edmund Seto

August 4, 2020
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Case Study 1: 
QMRA for Enterovirus in a Default DPR Scenario
This case study demonstrates a quantitative microbial risk assessment for Enterovirus, using virus 
data from DPR-2. 
The case study also demonstrates a sensitivity analysis on the the dose response model and also 
differential performance between AWPFs, including differences in overall redundancy and facilities 
with tight tolerances on critical control points vs. facilities with less stringent monitoring of 
operational performance.

Learning objectives
1. Take a “walk through” of the different sections of the tool
2. Understand how to specify raw wastewater concentrations
3. See how default settings provided with the tool can make it easier to setup model scenarios
4. Become familiar with providing user-specified input files to expand the features of the tool

Let’s get started…
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Step 1: Specify Raw Wastewater 
Concentrations
• Select from the left side of the tool,

“Raw Wastewater Pathogen Concentrations”

• Select enterovirus as our pathogen, and 
culture as the enumeration method.

• Enter in the statistical distribution for 
enterovirus raw wastewater concentration 
based on DPR-2.

A lognormal distribution with 
log mean of 3.19
log SD of 1.74
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Step 1: Specify Raw Wastewater 
Concentrations
• What happens in the background in DPRisk 

is a parameter set starts to be created for 
the model…

10,000 values.
Each one represents a 15-min conc

Input raw virus concentrations (MPN/L) 
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Step 2: Specify Treatment Train

• Select from the left side of the tool,
“Treatment Train”

• For this case study, we’ll specify a single LRV for the 
entire treatment train.

• This is provided as an 
“Overall log removal point estimate”

• The LRV will be specified as 12 which is consistent 
with the California potable reuse regulatory 
framework for groundwater replenishment when 
targeting viruses.
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Step 2: Specify Treatment Train

• Again, more calculations are performed in the 
background by the tool…

10,000 values.
Each one represents a 15-min conc

Raw (MPN/L) Overall LRV 
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Step 3. Treatment Failure Specification

• Select from the left side of the tool,
“Treatment Failure”

• In this case study, we will not incorporate 
treatment failures, so leave this set to 
“Do not conduct failure analysis”
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Step 4. Management Barriers

• Select from the left side of the tool,
“Management Barriers”

• In this case study, we will not incorporate management barriers, such 
as blending, dilution, or die-off, so keep the default LRV values of 0.
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Step 5. Exposure

• Select from the left side of the tool,
“Exposure”

• Notice various default assumptions are 
provided, and be easily selected.

• We’ll use the default “Lognormal distribution 
from Roseberry and Burmaster, 1992”, which 
corresponds to median of 1,798 mL/day.

• The 1,798 mL is divided by 96, so that each 
15-min period in the day gets an equal 
amount of exposure.
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Step 5: Exposure

• Again, more calculations are performed in the 
background by the tool…

10,000 values.
Each one represents a 15-min conc

Raw (MPN/L) Overall LRV ExposureM.B.
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Step 6: Dose-Response

• Select from the left side of the tool,
“Dose-Response”

• Notice various default assumptions are 
provided, and be easily selected.

• We’ll use the default “Beta=Poisson from Ward 
et al.,  1986”.
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Step 7. Generate Outputs

10,000 values.
Each one represents a 15-min conc

Raw (MPN/L) Overall LRV ExposureM.B. Dose

• Tool computes dose for each 15-min period.
• Then it computes the probability of infection 

based on the dose-response function.
Response
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Step 7. Generate Outputs

10,000 values.
Each one represents a 15-min conc

Raw (MPN/L) Overall LRV ExposureM.B. Dose

• Performs the Benchmark PATTP calculation: 
i.e., what is the LRV that meets

Acceptable risk = dose-response ( [rawWW] x [exposure] x 10 – LRV )

Response

This is solved for all 10,000 
rows of data from below. (it 
assumes the risk is constant, 
i.e., the rawWW and exposure 
combo occurs every 15-min in 
the year).
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Step 7. Generate Outputs

10,000 values.
Each one represents a 15-min conc

Raw (MPN/L) Overall LRV ExposureM.B. Dose

• Performs the Daily and Annualized Risk calculations

Response

The P15 correspond to randomly sampled 15-min 
risks of infection drawn from the “responses” 
below.

The Pdaily and Pannual calculations
are Monte Carlo simulated 10,000 
times to generate distributions on 
Pdaily and Pannual.
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Step 8. PATTP Output

• Select from the left side of the tool,
“PATTP Output”

• It will take a few seconds for the plots to generate.
The actual specified LRV 
in this case study was 12.

The set of points, or ”curve” represents 
the LRV needed for each of the 15-min 
periods to exactly achieve an annualized 
risk of infection of 10-4

Notice how the blue curve is under the 
red curve for all 10,000 values in the 
parameter set  LRV of 12 exceeds the 
annualized risk goal 99.99% of the time 
for this given set of model assumptions.
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Step 9. QMRA Output

• Select from the left side of the tool,
“QMRA Output”

• It will take a few seconds for the risk calculations to complete and the 
plots to generate.
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Step 9. QMRA Output
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Pause for Questions

• We’ll cover some of the other steps in Case Study 1 later.
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Case Study 2
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Case Study 2: 
QMRA for Cryptosporidium in a FAT-based DPR 
Scenario
This case study is based on Pecson et al., 2017, evaluating the reliability of 
pathogen control at San Diego’s Pure Water Demonstration Facility.
The QMRA used actual performance data collected over 1 year.  This case study will 
demonstrate the analysis of the Pecson et al. study for Cryptosporidium.

Learning objectives
1. Specify individual LRVs for treatment train for each process
2. Analyze failure scenarios

Let’s get started…
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Step 1: Specify Raw Wastewater 
Concentrations
• Select from the left side of the tool,

“Raw Wastewater Pathogen Concentrations”

• Select Cryptosporidium as our pathogen, and 
Microscopy as the enumeration method.

• Enter in the statistical distribution for 
enterovirus raw wastewater concentration 
based on DPR-2.

A lognormal distribution with 
log mean of 2.72
log SD of 1.85
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Step 2: Specify Treatment Train

• Select from the left side of the tool,
“Treatment Train”

• For this case study, we’ll specify a individual LRVs for 
each treatment train process.

• This is provided as an 
“Log removal for each process”

• Specify the LRV for processes according to diagram.
• Note that RO is based on a user-provided file of LRV 

values.
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Step 3. Treatment Failure Specification

• In this case study, we will assess the 
potential effect of treatment failures on 
risk.

• Select from the left side of the tool,
“Treatment Failure”

• Choose “Failure analysis with global 
settings”

• We will assess the impact of…
1 failure per year...
in which the failure magnitude is 100% 
(i.e., LRV goes to 0)…
for a duration of 0.25 hours (i.e., 15 
minutes).
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Step 4. Management Barriers

• Select from the left side of the tool,
“Management Barriers”

• In this case study, we will not incorporate management barriers, such 
as blending, dilution, or die-off, so keep the default LRV values of 0.
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Step 5. Exposure

• Select from the left side of the tool,
“Exposure”

• Notice various default assumptions are 
provided, and be easily selected.

• We’ll use the default “Lognormal distribution 
from Roseberry and Burmaster, 1992”, which 
corresponds to median of 1,798 mL/day.

• The 1,798 mL is divided by 96, so that each 
15-min period in the day gets an equal 
amount of exposure.
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Step 6: Dose-Response

• Select from the left side of the tool,
“Dose-Response”

• Notice various default assumptions are 
provided, and be easily selected.

• We’ll use one of the defaults “Beta-Poisson from 
Messner and Berger, 2016”, with 
α = 0.116 and β = 0.121
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Step 7: PATTP Output
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Step 8: QMRA Output
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Pause for Questions
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Case Study 3
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Case Study 3: 
QMRA for Adenovirus in a FAT-based DPR Scenario
This case study is based on Soller et al., 2018, evaluating the reliability of pathogen 
control in hypothetical treatment trains experiencing short-duration, off-spec 
conditions.
This case study will demonstrate the analysis of the study for Adenovirus.

Learning objectives
1. Specify individual LRVs for treatment train for each process
2. Specify a failure analysis scenario
3. Specify LRVs for treatment processes that are not to be included in the failure analysis

Let’s get started…
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Step 1: Specify Raw Wastewater 
Concentrations
• Select from the left side of the tool,

“Raw Wastewater Pathogen 
Concentrations”

• Select Adenovirus as our pathogen, and 
Culture as the enumeration method.

• We’ll provide a data file with a column of 
10,000 raw wastewater concentrations.  
The file corresponds to a distribution with a 
min of 1.8 log and max of 3.8 log virus.  The 
file is called “AdVRawWW.csv”
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Step 2: Specify Treatment Train

• Select from the left side of the tool,
“Treatment Train”

• For this case study, we’ll specify a individual 
LRVs for each treatment train process.

• This is provided as an 
“Log removal for each process”

• Specify the LRV for processes according to 
diagram for RO and UV.

• However: in this model, we want to modify 
the specification, so that Secondary Biological 
Treatment and Free Chlorine are NOT subject 
to failures.  So do NOT enter them in this 
section of the tool.
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Step 3. Treatment Failure Specification

• In this case study, we will assess the potential 
effect of treatment failures on risk.

• Select from the left side of the tool,
“Treatment Failure”

• Choose “Failure analysis with global settings”
• Note: the Soller, et al study used different 

failure probabilities for different processes.  In 
our case, we’ll focus on the worst-case failure 
scenario.

• We will assess the impact of…
daily failure probability of 0.016...
in which the failure magnitude is 100% (i.e., 
LRV goes to 0)…
for a duration of 3 hours.
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Step 4. Management Barriers

• Select from the left side of the tool,
“Management Barriers”

• In the Soller et al. study management 
barriers were not considered.

• However: we WILL use the Management Barriers section of the tool in order to 
implement work-arounds to include treatment processes that are NOT included in 
the Failure Analysis.

• Use the “Blending” section to specify the LRV distribution for Secondary Biological 
Treatment.   

• Use the “Dilution” section to specify the LRV point estimate for Free Chlorine.
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Step 5. Exposure

• Select from the left side of the tool,
“Exposure”

• Notice various default assumptions are 
provided, and be easily selected.

• We’ll use the default “2 L/day”, which was 
specified by Soller et al.
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Step 6: Dose-Response

• Select from the left side of the tool,
“Dose-Response”

• Notice various default assumptions 
are provided, and be easily selected.

• We’ll use one of the defaults “Exact 
Beta Poisson”, with 
α = 5.11 and β = 2.8
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Step 7: PATTP Output
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Step 8: QMRA Output
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Pause for Questions
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Expanded Investigations

• Impact of raw wastewater pathogen concentration assumptions 
(Case Study 1 – Crypto, Case Study 2 – Crypto variability)

• Impact of treatment redundancy 
(Case Study 2 – ozone variation, Case Study 2 – management barriers)

• Impact of treatment variability 
(Case Study 1 – variation on overall LRV)

• Impact of failure assumptions 
(Case Study 2 – Pecson study curves)

• Sensitivity analysis 
(Case Study 1 – changing dose-response)
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Brian Pecson, Trussell Technologies

Anya Kaufmann, Trussell Technologies

August 4, 2020
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 Understanding the Benchmark Curve

 Impact of Raw Wastewater Pathogen Concentration Assumptions

 Impact of Treatment Redundancy

 Impact of Treatment Variability and Failure Assumptions

 Sensitivity Analysis
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

1.7 x 10-6 Crypto oocysts / L is tolerable because it leads to:
• 10-4 infections per person per year
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

1.7 x 10-6 Crypto oocysts / L is tolerable because it leads to:
• 10-4 infections per person per year
• 2.7x10-7 infections per person per day
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

1.7 x 10-6 Crypto oocysts / L is tolerable because it leads to:
• 10-4 infections per person per year
• 2.7x10-7 infections per person per day
• 2.9x10-9 infections per person per 15 minutes
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

2.9x10-9 infections per 
person per 15 minutes
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

2.9x10-9 infections per 
person per 15 minutes

10-8 oocysts
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

2.9x10-9 infections per 
person per 15 minutes

10-8 oocysts

10 mL every 
15 minutes
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

2.9x10-9 infections per 
person per 15 minutes

10-8 oocysts

10 mL every 
15 minutes10-6

oocysts/ L
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

2.9x10-9 infections per 
person per 15 minutes

682 oocysts 
/ L

10-8 oocysts

10 mL every 
15 minutes10-6

oocysts/ L
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10 mL every 
15 minutes

Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

2.9x10-9 infections per 
person per 15 minutes

682 oocysts 
/ L

8.8 LRV
=log (682/10-6)

10-8 oocysts

10-6

oocysts/ L
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

𝑇𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑖𝑠𝑘 ൌ 1 െ 𝐷௥ 𝑉 𝑥 10୪୭୥ ஼ ି௅ோ௏ ௡
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk
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Calculating the Benchmark Treatment Train
1. Exposure Assessment 2. Dose-Response

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk
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Redundancy is important when considering the impact 
of low probability failure events
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We know performance doesn’t always look like this
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We know performance doesn’t always look like this

Sometimes we perform better

Sometimes we perform worse
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We know performance doesn’t always look like this

Sometimes we perform better

Sometimes we perform worse
Monitoring can capture most of this variability
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 What causes variation in performance?
 Water quality
 Ozone demand
 Frequency of maintenance 
 Ozone dosing control strategies

 This variability is captured by monitors 
and shown in the performance curves 

 This may vary from site to site

Wide range of 
ozone performance 

captured
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How does this type of variability impact risk?
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What isn’t captured in performance curves?

Low probability failures:
• Rare failures that aren’t captured in 1-

year’s worth of data
• Failures that don’t get picked up by 

monitors
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1. Exposure Assessment 2. Dose-Response
3. Risk 

Characterization

Raw 
wastewater

Treatment Drinking water 
levels

Drinking water 
consumption

Exposure Dose-response
Risk

Calculated Low
(Sensitivity 
Analysis)

Moderate
(DPR-2)

High
(DPR-1)

CalculatedLow
(Sensitivity 
Analysis)

Calculated

Investigate impact on risk by changing 
assumptions of different steps of QMRA

Constant point estimate 
vs. distribution?

Constant point estimate 
(1.5L) vs. distribution?

Beta-Poisson vs. exponential?
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PRESENT

 Internal QA/QC of PATTP/QMRA with Research Team and Technical Working Group

 “Hands-on” training with PATTP/QMRA Tools: August 4, 2020

FUTURE

 Receive feedback from State Water Board on Guidance Document and tools: August 25, 2020

 Incorporate raw wastewater concentration data from DPR-2: Fall/Winter, 2020
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