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Summary 
This work introduces the Real-time AI-Driven Decision Support System (RADS). RADS is a real-time 
cybersecurity, prediction, and optimization framework for Wastewater Treatment Plants (WWTP). RADS 
addresses the need for intelligent systems (AI-driven) to manage immense data and water flow at 
facilities. We present a web-based, AI-driven framework that can be adapted and deployed to assist 
multiple tasks including but not limited to, data security, reservoir water level prediction, and cost-
efficient effluent management for pumping goals and during extreme weather conditions. RADS provides 
90% protection against cyberattacks, 87% accurate prediction of peak water levels in the WWTP 
reservoirs, and 27% saving on effluent release processes during extreme weather conditions. Our 
simulations also showed RADS was able to predict every single overflow incident from 2018 to 2022 at 
Blue Plains Advanced Wastewater Treatment Plant (DC Water). 
 

About A3 Lab at Virginia Tech 
We are a team of researchers focused on developing Artificial Intelligence (AI) applications and assurance 
algorithms. We deploy AI across different domains and provide data-driven solutions to persisting security 
and public policy problems, such as: optimizing water system operations, precision wastewater treatment, 
protecting national cyber-physical systems, evaluating technological trends, and understanding the 
effects of outlier events on society and the environment. However, serious show-stopper problems are 
persistent throughout those AI deployments, such as data poisoning, AI explainability, safety, 
trustworthiness, data bias, incompleteness, data democracy, security, and dark data. AI assurance 
methods are required to address such critical challenges; our research is at the intersection of these 
issues.  
 

About DC Water 
This project is a collaboration of Virginia Polytechnic Institute and State University (Virginia Tech) and DC 
Water. The work is also related to DC Water’s Clean Rivers Project. The Clean Rivers Project is DC Water's 
ongoing program to reduce combined sewer overflows (CSOs) into the district’s waterways - the Anacostia 
and Potomac Rivers and Rock Creek. The Project is a massive infrastructure and support program designed 
to capture and clean wastewater during rainfalls before it ever reaches our rivers. More details can be 
found in the link: www.dcwater.com/cleanrivers 
 
As a part of our collaboration, we aim to improve the operational security and efficiency of Blue Plains 
Advanced Wastewater Treatment Plant (BPAWWTP) (Figure 1). BPAWWTP is located at 5000 Overlook 
Ave SW, Washington, DC 20032, and is the world's largest advanced wastewater treatment plant. The 
facility is operated by the District of Columbia Water and Sewer Authority (DC Water). The plant opened 
in 1937 as a primary treatment facility, and advanced treatment capacity was added in the 1970s and 
1980s. The effluent that leaves Blue Plains is discharged to the Potomac River and meets some of the most 
stringent permit limits in the United States (Figure 2). 
 
 

https://www.dcwater.com/cleanrivers


 

 

 

 

 

 

 

 

    
  

       

 
Figure 1 Blue Plains Advanced WWTP (BPAWWTP). 



 

 

 

 

 

 

 

 

    
  

       

 

Figure 2 DC Water Clean Rivers Project location map. 

  



 

 

 

 

 

 

 

 

    
  

       

The Problem Statement 
Based on their dynamic nature and large scale, water treatment facilities generate an immense flow of 
real-time data. Monitoring such data and interpreting underlying hidden information in a timely manner 
is crucial for decision-making and ensuring safe, secure, and efficient operation at a facility (Tuptuk, 
2021). Our team has developed a comprehensive three-way solution to the critical problems of protecting 
(against cybersecurity threats), predicting (the system state), and optimizing processes in the facility, 
using cutting-edge AI and data science technologies. 
 

Why is AI-based security critical? 
One of the problems to be addressed in intelligent water systems is how engineers can ensure the health 
of the data used to make decisions. In that process, it is crucial to assess whether anomalies (i.e. cyber-
attacks) exist, including internal ones, from competitors, form other nations, or others non-state 
adversaries.  
 
Cyber-physical attacks have increasingly targeted water treatment systems in recent years (Adepu, 2016). 
This is partially due to the expansion of the Internet of Things (IoT) and the proliferation of AI increasing 
the digitization of the decision-making processes and creating an adversarial attack opportunity following 
recent development in the machine learning field, which led to black-box adversarial methods that work 
well even with limited information of the system (Black-box Adversarial Attacks with Limited Queries and 
Information, 2018). Kaspersky ICS-CERT vulnerabilities report also showed that the water systems are the 
3rd out of all other cyber-physical systems (CERT, 2019).  
 
The Kemuri Water Company (KWC) (Hassanzadeh, 2020) incident in 2016 is a significant example of the 
risk that operators at national water infrastructures should consider. The mentioned attack has resulted 
in more than 2.5 million records being stolen. More importantly, the attackers were able to change control 
data and manipulate the water quality and flow supplied to the area. The attacks were halted before any 
public health damage occurred. Nonetheless, this shows how vulnerable these infrastructures are and 
how important it is to ensure their safety.  
 
Another recent and critical incident was the Florida Water Supply hack in 2021 (Bergal, 2021). In this 
malicious attack, the hacker was able to gain remote access to the Programmable Logic Controller (PLC) 
unit that controls sodium hydroxide levels (also known as lye) of the water supplied to more than 15,000 
people in Tampa, Florida. The hacker increased the amount of sodium hydroxide content in the water by 
110-fold. Fortunately, the attack was mitigated before the poisonous levels of chemicals were diffused 
into the distribution network.  
 
Both incidents demonstrate the importance of cybersecurity in water security threats with many 
manifestations that can't be detected unless intelligent algorithms such as Artificial Intelligence (AI) 
models are leveraged. The real-time management framework developed addresses these security and 
optimization issues. As an example, Figure 3 shows an attack scenario from a famous attack detection 
Secure Water Treatment (SWaT) Dataset. 



 

 

 

 

 

 

 

 

    
  

       

 

Figure 3 Attack Scenario 1: Attack on a sensor. 

SWaT is a scaled-down water treatment testbed with real cyber and physical equipment to experiment 
with cybersecurity incidents, which was started in 2015 by the Singapore University of Technology and 
Design (Goh, 2016). The testbed consists of a six-stage water treatment process with modern-day 
components. Our initial experiments were performed using SWaT. The data collected from the testbed 
consists of eleven days of continuous operations, including seven days' worth of data under normal 
operation and four days' worth of data under attack. All network traffic, sensor, and actuator data were 
stored in a database supporting the models. 
 
In the attack scenario shown in Figure 3, attackers were able to manipulate our readings from the system 
sensors in a marked timeframe. An experienced operator might detect this anomaly only if they monitor 
every single value of the system at every second. However, there are cases even under the supervision of 
an expert that cannot be detected. Figure 4 shows us such a case. In this attack scenario, attackers mimic 
the patterns of the system while manipulating the data. This is a complex attack instance for an expert to 
detect. Yet, AI systems are proven capable of recognizing such subtle changes in patterns. A Single Stage 
Single Point attack (SSSP). Most of the time, however, attackers choose to attack multiple stages of the 
process from multiple attack points (MSMP – Multi-Stage Multi-Point), making detecting the attacks even 
harder. On average, most WWTP attacks have been noticed within one week to one month after the 
attack happened. 



 

 

 

 

 

 

 

 

    
  

       

Figure 4 Attack Scenario 2: Attack on actuator data. 

Why is AI-based prediction necessary? 
The second problem we have identified at water facilities is the prediction of water flow and the amount 
of water in reservoirs. As all the operations rely on the amount of water in the system, having early 
information about it is crucial for taking cost-efficient actions while minimizing the potential overflow risks 
and greatly helping critical decision-making processes (such as pumping and adding chemicals). AI can 
help forecast (Gurrapu, 2021) and understand non-linear relationships among different system parts, 
including sensor values, weather, and water levels in the reservoir. 
 
We look at other domains, including Energy and Health, and find out that those domains exploit the power 
of AI and save operational expenditure (OPEX) by forecasting energy demand, medical resources 
prediction, and allocation. We can adopt the power of AI for different downstream tasks to provide 
sophisticated decision intelligence support to the operators. For instance, identifying intense rainy days 
in a wastewater treatment plan is important to forecast water levels. Since overflow of water in the tunnel 
leads to higher operational costs, the overflowing water can pollute the river. By properly forecasting the 
water level, the operator can make decisions ahead of time for resource allocation and minimize chemical 
consumption. Similarly, the forecasted data can have the same energy consumption as well since energy 
consumption makes up 25-30% of total operation and maintenance (O&M) costs (According to the 
USEPA). If the water level can be forecasted, the operator can operate the most cost-efficient investment 
for energy savings. 
 
Deep Learning based prediction models (including LSTM and GRU) can represent systems using historical 
data from a group of nodes or a single node in a Water Distribution System. Using LSTM, forecasting can 
be produced in real-time for the next number of hours (next 2, 4, 6, or 8 hours) to assist with capacity and 



 

 

 

 

 

 

 

 

    
  

       

pumping plans. DC Water required a 4-hour multistep forecast to predict tunnel water level using LSTM 
architecture so that action can be taken in a timely manner; operators require around 3 to 5 hours to 
operate such decisions efficiently. 
 

Why is AI-based optimization required? 
Lastly, after ensuring the safety of the data and enriching raw data with forecasts and insights, we need 
to use all the information we have to make decisions regarding the facility's energy efficiency. However, 
it is practically impossible to completely, consistently, and accurately process all this information (i.e., Big 
Data) by a human operator. Therefore, it is essential to use AI for optimizing aspects such as energy 
utilization and operational cost.  
 
Combined sewer overflows (CSOs) represent major water-quality threats to hundreds of cities and 
communities in the US that are served by combined sewer systems. CSO events cause the release of 
untreated stormwater and wastewater into receiving rivers, lakes, and estuaries, causing a variety of 
environmental and economic problems. Costs associated with CSO management are expensive. The EPA 
estimates the costs of controlling CSOs throughout the country are approximately $56Billion (Wise, 2010). 
 
The optimization of the massive energy consumption of the treatment process facilitates mitigating 
greenhouse gas emissions, which has been considered one of the biggest global challenges in the 21st 
century. It is because water treatment requires intensive energy consumption. For example, wastewater 
treatment consumes up to 20% of the total energy by public utilities (Means, 2004) and 2-3% of the 
world's electricity consumption (Olsson, 2012). The accelerated population growth and urbanization 
further require more energy input to satisfy the higher water treatment standards. Therefore, the 
optimization of energy is highly desired. Since biological treatment is still the most common wastewater 
treatment strategy for pollutant removal, the associated pump operation, chemical addition, and aeration 
largely contribute to the total energy cost in the wastewater treatment plant. The real-world data 
collected from different WWTPs are used to develop the model in this proposed plan for future application 
in full-scale facilities. Understanding the factors that will most affect the energy cost allows for creating a 
higher energy- and cost-efficient wastewater treatment strategy. 
 

System Goals 
Our goal is to design and create a software suite that can process a high stream of real-time data and 
support cost-efficient, safe, and secure decision-making processes at water treatment facilities. 
 
As shown in Figure 5, the main skeleton of RADS consists of three major AI-driven modules. The protection 
part assures the security of data used throughout the facility and prediction and optimization models of 
RADS. The prediction module forecasts the system state variables including but not limited to water levels 
(amount of water in different parts of the WWTP). This forecasted information is used for monitoring, 
better management of the WWTP resources, and being fed to the optimization module for increasing the 
model’s efficiency. The optimization module continuously collects sensors, actuators, pumps, PLC 
(Programmable Logical Unit) statuses, and forecasted data from the prediction model. It provides 
actionable recommendations such as when to start pumping water to the reservoir, how many pumps to 
operate, and with what capacity these pumps should be run for the operators. 
 



 

 

 

 

 

 

 

 

    
  

       

 

Figure 5 RADS Framework. 

Protection 
As mentioned earlier, the Florida Water Supply hack in 2021 showed how vulnerable water systems are 
(Bergal, 2021). Another (recent) intrusion happened on the water treatment plant that served parts of the 
San Francisco Bay area on January 15, 2021 (Collier, 2021). The hacker had the username and password 
of an employee's TeamViewer account. In many cases, reasons that cause a system to be unsafe include 
human mistakes, sensor breakdowns, and security code leakages. All these malicious incidents lead to the 
need to build an intelligent water protection system. In both examples, the systems were breached, yet 
after investigating the data flow, the authorities were able to notice the intrusions. Generally, we can see 
that data level protection is the last line of defense in system security. Therefore, RAD’s primary goal is to 



 

 

 

 

 

 

 

 

    
  

       

protect the system and data.  For instance, a reservoir's water level would continuously grow or decline, 
but it would not suddenly drop. If that happens, there is usually something wrong with the data. Another 
point is if we see the data input just from a one-time unit when the water level suddenly drops. Therefore, 
we need to evaluate (using AI) the value sequence to know if there is a cyber incident.  
 
Besides the real-life dataset provided by DC Water, we also utilize benchmark research datasets in this 
project. This is due to a lack of historical records of cyber-attacks at the facility. Modbus Penetration 
Testing Framework (Smod) (Laso, 2017) dataset is one of the most important cyber-physical attack 
datasets. The value of this dataset is that it records the attack situation (Table 1), which is helpful for the 
protection module to train a model that can detect and classify anomaly types or identify components 
that are under attack.  
 
For example, a blocking object covers the sensor and creates noise for the ultrasound sensor or floating 
objects that cause sensor value perturbations. The physical system used to generate this dataset contains 
two tanks: The main tank storage and one ultrasound depth sensor to record the liquid level. The second 
tank has four discrete sensors to observe the liquid level and two pump state records. This collection 
includes 15 temporal series that record 15 different anomaly/attack situations separately (Table 1). Each 
situation is classified into five operational scenarios – normal, accident, breakdown, sabotage, and cyber-
attacks. The duration of each scenario varies, and the frequency of the data collected is every 0.1s.  
 
The protection model’s inputs include the physical system's sensory reading (Ultrasonic level readings, 
humidity, pressure readings, etc.) and actuator state (pump running capacity, valve states, etc.).  We use 
the Recurrent Neural Network Models (RNN) based Long-Short Term Memory (LSTM) architecture to build 
the protection model. The characteristic of LSTM is that it learns the information on a timely basis, unlike 
other AI methods. Instead of looking at one input at a time, it looks at inputs from a period to learn trends 
(Figure 6). 
 
We labeled different attack scenarios into four labels: normal, intentional attack, unintentional breakage, 
and unknown (in cases where the algorithm is not able to classify). It is important to note that AI models 
are data hungry. As the number of examples from the same anomaly increases, the model’s accuracy 
increases further as well. Suppose there is a water distribution system that serves a city that can predict 
the water supply and demand; if there is a failure in data collection, then the predictions can no longer be 
correct, and the whole city might not get enough drinking water because the system forecasts are off 
(Sobien et al., 2022). Also, Tuptuk et al. (Tuptuk 2021) reviewed how frequently attacks occur on water 
systems, showing the importance of the security of a water system. Mao et al. (Mao et al., 2022) also 
found the variabilities of water systems and proposed a framework to build an early warning system. Our 
goal aligns with their conclusion that the security of the water systems needs more attention and 
empirical manners to evaluate it. 
 



 

 

 

 

 

 

 

 

    
  

       

 
Figure 6 Protection model data flow - n: current timestamp; l: lookback window width. 

 



 

 

 

 

 

 

 

 

    
  

       

Table 1 Fifteen attack situations of Smod dataset 

Situation Affected component Operational scenario 

Normal None Normal 

Unknown sensor noise Ultrasound sensor Accident/ Sabotage 

Blocked measure 1 Ultrasound sensor Breakdown/ Sabotage 

Blocked measure 2 Ultrasound sensor Breakdown/ Sabotage 

Floating objects in main tank  (2 objects) Ultrasound sensor Accident/ Sabotage 

Floating objects in main tank (7 objects) Ultrasound sensor Accident/ Sabotage 

Humidity Ultrasound sensor Breakdown 

Discrete sensor 1 failure Discrete sensor 1 Breakdown 

Discrete sensor 2 failure Discrete sensor 2 Breakdown 

Denial of service attack Network Cyber-attack 

Spoofing Network Cyber-attack 

Wrong connection Network Breakdown/ Sabotage 

Leaking pipe (low intensity) Whole subsystem Sabotage 

Leaking pipe (medium intensity) Whole subsystem Sabotage 

Leaking pipe (high intensity) Whole subsystem Sabotage 
 

Protection results 
One limitation of this dataset is that the physical components that collected the data are small, and each 
attack situation data was collected separately, not continuously, and the time duration for each attack 
situation varies. Therefore, to prevent the model from learning with bias, we oversample each attack 
situation on a custom width lookback window to make the dataset more balanced while preprocessing 
the data. We tried many different approaches and architectures for classification and detection tasks. A 
deep-learning RNN model, LSTM (Long-Short Term Memory) has been the most successful (Figure 7).  
Table 2 shows that the model performs with an average of 90.2% accuracy in attack/anomaly detection 
tasks.  
 

 
Figure 7 Attack/Anomaly Situation Classification result compared with different methods. 



 

 

 

 

 

 

 

 

    
  

       

Table 2 Protection model metrics 

Task Accuracy 

Attack/Anomaly Detection 90.2% 

Intentionality Classification 74% 

Attack/Anomaly Situation Classification 70% 

 

Prediction 
Accurate forecasting of WWTP's water level can improve the WWTP's reliability, reduce operational costs, 
and endorse overall optimization. AI models are proven helpful for data-driven applications (Sikder, 2021). 
In RADS, AI is used for WWTP applications to tackle the process of non-linearity and the dynamic nature 
of sequential system data. The proposed framework includes a regression model, a deep learning-based 
method, to forecast WWTP water levels. Long Short-Term Memory models are good at handling 
sequential time series data. Application of Recurrent Neural Networks (RNN) for learning sequential 
datasets, specifically LSTM networks (Zhao, 2017), to make predictions. 
 
Additionally, we present variable importance that helps identify essential information about the system 
and take intelligent operational steps. Model explainability lets the operator know why and when to take 
an operational decision. We explain feature importance for the forecasted output using the Shapley 
Additive exPlanations (SHAP) tool (Lundberg, 2017). LSTM, with SHAP explanation, delivers state-of-the-
art processes for an explainable AI model. Again, an LSTM network is a better architecture for learning 
complex trends and seasonal patterns than traditional methods, including Auto-Regressive Moving 
Average (ARIMA) (Box, 1994). Parametric methods, including conventional statistical learning models, 
require static data. The following section provides a detailed discussion of the prediction model and its 
application to DC Water. 
 
BPAWWTP collects water from natural rainwater and city wastewater from the District of Columbia (DC) 
area and cleans it before using it for multiple purposes such as vertical farming, community gardening, 
and urban restoration. The diagram of the whole treatment plant is shown in Figure 9. The figure divides 
the treatment plan into three zones. The first zone is colored green which represents wastewater 
collection topology. The light orange and purple colored zone represent various operational activities for 
cleaning the wastewater by applying bacteria and chemical mixture. Usually, the plant saves much money 
by applying a natural cleaning process and exploiting natural bacteria. However, the game changes during 
the heavy rainy days because the tunnel quickly fills up with wastewater and overflows. In this context, 
the plant operators cannot rely on the natural cleaning process as this may cause an overflow of the 
wastewater and pollute the river. So, the facility adds additional chemicals and electrical energy to 
expedite the cleaning process.  
  
To solve this overflow problem, we focus on predicting the water level in the tunnel, especially during 
intense rainy days. Additionally, the plant must consume more chemicals to clean the overflowed water, 
increasing operational expenditure during heavy rainy days. The prediction model tries to solve both 
problems together. For instance, the model can provide the operator with the tunnel's next 2 or 4 hours 
of forecasted water level data. With that information, they can make intelligent operational steps to 



 

 

 

 

 

 

 

 

    
  

       

minimize this additional expenditure (for example, chemicals). We have access to DC Water's historical 
tunnel water levels data from 2018 to 2022 (Figure 10). Furthermore, we have access to all the tunnel 
sensor data that provide necessary information for forecasting water levels. We also incorporate weather 
data, including rain gauge information for predicting/forecasting water levels. 
 

 
Figure 8 Attack/ Anomaly Situation Classification results. 

 
 
 



 

 

 

 

 

 

 

 

    
  

       

 
Figure 9 Blue Plains WWTP 

 
 

Figure 10 Blue Plains Advanced WWTP tunnel water levels over time 

Figure 11 shows our initial approach to developing and testing models for the forecasting task and how 
we evaluated the effectiveness of the models in a pipeline. However, our proposed RADS includes LSTMs 
only that take sequentially processed data input and forecast multistep (2 hours) data. One of the three 
essential modules of RADS is to forecast or predict short-term DC tunnel water levels. The main goal of 
prediction is to correctly identify the potential chance of Combined Sewer Overflows (CSOs) during intense 
wet days.  
 



 

 

 

 

 

 

 

 

    
  

       

 
Figure 11 Water level prediction pipeline 

DC Water data 

The DC Water dataset consists of 30 min intervals of the plant's water level information from August 2018 
to March 2022. From figure 10, it is evident that the water level data are not stationary. Usually, static 
data have constant standard deviation, mean, and autocorrelation. Nevertheless, Figure 10 shows non-
stationary and dynamic water level behavior because of stochastic weather and precipitation; therefore, 
traditional parametric methods do not perform well. Thus, conventional prediction techniques, including 
ARMA, cannot learn the data's dependency structure over time; hence LSTMs are good alternatives. 
Although LSTMs are popular with natural language modeling, they can learn temporal relationships 
among different objects while predicting single or multiple outcomes. Additionally, LSTM models work 
well with complex time series (Box, 1994). 
  

Data Processing 

Adding more compelling features to the training dataset may bring good model prediction. Therefore, we 
feature engineer and derive three attributes from the date column, including the day of the month, the 
month of the year, and the hour of the day, to help predict the target feature, the water level. Since we 
collected raw time series data from the plant, we paid attention while wrangling the data. The trial steps 
incorporate data cleaning, imputation, missing value check, correlation check, PCA analysis, Pearson 
correlation coefficient test, and variable correlation check. Then, we split the dataset into training and 
test sets and rescaled all features to a standard scale between 0 and 1. When the features are on different 
scales, this process helps to prevent model overfitting. We observe the model's prediction performance 
on the test dataset only.  
  
Next, we derive a multivariate time series model using LSTMs that can take multiple inputs for predicting 
multistep outputs. Before we discuss the modeling steps, we need an effective objective function (i.e., 
loss function) that helps to achieve the desired outcome (i.e., correctly predicting water level peaks or 
effective pump action generation). We aim to predict water levels as closely as possible while prioritizing 
water overflow incidents. We make the following considerations: choose cubic difference as a cost 
function (Equation 1), given that our data have outliers because of intense rainy days and water overflow 
situations. 
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|          (1) 

 
Given some significant but rare overflow incidents in our data, cubic difference as loss is a good pick. 
Furthermore, we are more interested in predicting the peak of water level (i.e., overflow situations) rather 
than understanding the general trend of the time series.  
 

Training and Evaluating Model 
Our multivariate forecasting model (Figure 12) includes one LSTM layer and one fully connected layer for 
predicting the next four hours of tunnel water level. We create sequences of 24 hours in length and train 
the model with them, resulting in 4 hours multistep forecast. We apply the Adam optimizer to minimize 
our objective function (Equation 1). After the model is trained, we evaluate the outcome using the test 
dataset (30% of the original dataset). Next, we have to perform an inverse scale of the model's outputs to 
the actual scale to assess the forecast water level against the original tunnel water level.  
 

 

Figure 12 Water Level Forecasting LSTM Architecture 

Prediction model results 
Let us look at the test data's predictions (Figure 13). The model performs well in water level prediction, 
reflecting our primary objective of multivariate modeling. Around the middle of the test data, the model 
constantly underestimates the water level and fails to predict extreme scenarios. Table 3 has a few other 
values on other important metrics, including MAE, RMSE, and R square. Apart from these metrics, we also 
estimate peak detection accuracy (Equation 2). 
 

𝑷𝒆𝒂𝒌 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑵𝒐 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒑𝒆𝒂𝒌𝒔

𝑵𝒐 𝒐𝒇 𝒂𝒄𝒕𝒖𝒂𝒍 𝒑𝒆𝒂𝒌𝒔
          (2) 

 
Table 3: Multivariate model performance metrics on test dataset 

Performance Metric Score 

Mean Absolute Error 0.0161 

Root Mean Squared Error 0.0408 

R-square 0.665 

  



 

 

 

 

 

 

 

 

    
  

       

Peak prediction is essential as the optimization model relies on this extreme water level information to 
generate optimal releasing actions. For detecting peaks, we choose threshold -47ft; therefore, we 
consider tunnel overflow beyond the -47ft value for model development. 
 
Furthermore, Table 4 provides peak detection accuracy from both training and test dataset. We observe 
a peak detection accuracy of 87.2% on the test set and 86.5% on the training set.  
 

Table 4: Peak detection performance 

Dataset Actual peak 

observed 

Peak Detected Peak Detection 

Accuracy 

Train Dataset 223 193 86.5% 

Test Dataset 39 34 87.2% 

Total 262 227 86.6% 

 

 
Figure 13: Predicted vs. actual tunnel water level 

 
Sequential data, in time series forecasting, have a seasonal drift; therefore, a deployed forecasting model 
needs to retrain with the latest samples after a particular time step. Retraining the model with new 
samples helps the model to learn seasonal drift and temporal information.  
 
Important Features 
Neural networks are black boxes in nature because interpreting them is problematic. We use SHAP API to 
estimate Shapley values that apply a game theory. This technique assesses the model's prediction and 
answers the contributions of each feature for each prediction. More specifically, the process, also known 
as a deep explainer, decomposes each outcome of the model and backpropagates the contribution of all 
neurons to every feature. It then compares each neuron's activation to its reference activation. According 



 

 

 

 

 

 

 

 

    
  

       

to the difference, it assigns contribution scores. Based on a representative dataset, once the multipliers 
have been computed, feature importance can be calculated using some sample inputs (900 training data 
samples) and ranked (100 test data samples) based on their most prominent contributions to the model's 
outcome. We average the weights of all 100 samples and plot them in Figure 14. The top four input 
features are Water Level, sensor overflow indicator, sensor total water flow, and sensor pump 5. 
  

 
Figure 14: Feature importance summary plot 

 

Comprehending a deep learning model's prediction is essential to interpreting the results at the DC Water 
plant. Using this feature importance approach, we can get insight into the DC water plant and devise 
action plans to promote the desired operational outcome. Furthermore, additional insights into feature 
importance help to optimize the operational process. For example, essential features dictate how quickly, 
and which pump must start early to avoid tunnel water overflow.  
  

How the prediction module can help the facility 
In full-scale WWTPs, there is always a latency phase between inflow parameters and operation 
adjustment, leading to less treatment efficiency with higher cost. The daily and seasonal fluctuation of 
influent parameters also harm the robustness of the operation. The proposed model for water level 
prediction and cost optimization can precisely inform the operators to control the treatment system. For 
example, the model can forecast the start time of pollutant concentration change caused by the increasing 
toilet utilization or storm. Then, the software can monitor the change and send optimization suggestions, 
including changing pump speed, adding more/less chemical, or increasing/decreasing inner circulation, to 
the operators so that the operation strategy of WWTPs can be adjusted accordingly. 
 

Optimization 
The final part of RADS is an optimization module that aims to reduce the risk of untreated wastewater 
overflowing the reservoir under extreme wet-weather conditions. The main goal of the Optimization 



 

 

 

 

 

 

 

 

    
  

       

module is to prevent Combined Sewer Overflows (CSOs) in the most cost-efficient manner following the 
US Environmental Protection Agency's (EPA) CSO control policy.  
 
RADS utilizes system state predictions to support operators and management of the WWTPs by optimizing 
actions using a metaheuristic algorithm inspired by natural selection called Genetic Algorithm (Hingston 
et al., 2008). The module calculates the optimal times and capacity for operators to start pumping 
untreated wastewater. This process requires wastewater to be treated by chemical means, thus 
introducing the energy cost associated with running the massive industrial pumps and the cost of the 
chemicals used in the fast treatment process instead of the most common and cheaper biological 
treatment, i.e., activated sludge technology. Our optimization model minimizes the usage of chemical 
treatment while providing secure operation perimeters for wastewater treatment processes. Hence, the 
developed software has the promising potential for application in other WWTPs worldwide based on 
activated sludge.  
 
DC Water's Blue Plains Advanced Wastewater Treatment Plant (BPAWWTP) utilizes 24,300 linear feet of 
reinforced concrete tunnel as its wastewater reservoir. The tunnel can hold up to a total of 137 ft deep 
wastewater (17 ft above and 120 ft belove sea level). The facility has 5 large capacity industrial pumps 
that can move between 50 to 83.3 Mg/d (million gallons per day) and a lesser capacity pump that can 
move between 3 to 10 Mg/d. These pumps directly control the amount of wastewater treated by chemical 
means. 
 
The model is given pump specifications and energy consumption data samples of pumps under wet-
weather conditions. Inputs of the optimization model are current pump states and water level estimations 
from the prediction model. The model outputs optimal times to operate 6 release pumps of the facility. 
The optimization model also calculates the simulation results of operating under optimal actions and plots 
the expected level of wastewater in the tunnel. 
 
To summarize how this module operates; RADS generates an initial population of random solutions to the 
problem. Then the actions of each solution are simulated, and the system state is calculated. Using a 
fitness function feasibility and optimality of each solution are scored. This step ensures only the non-
overflowing solutions are passed on to the next generation. Pairs with the highest scores are selected for 
crossover to generate new solutions using a selection method. This step improves the overall fitness of 
the solution throughout the generations. Then each solution with a certain chance is selected for 
mutation. Mutation allows the algorithm to search the solution space for the optimal solution and 
generate variability.  And then, the process is repeated from the simulation step with the new solutions 
until the cost of operation is improved no further. 
The optimization module has been tested with wet weather records of DC Water’s BPAWWTP from 2018 
to 2022. These records included a total of 191 wet weather events. RADS was able to predict 95% of these 
extreme weather conditions. The tests show that using the optimization model prevented all the overflow 
incidents with very high efficiency. 
 
WWTP records show the facility has pumped around 100 billion gallons of chemically treated wastewater 
to the Potomac River from 2008 to 2022. Our simulations show that the optimization model was not only 
able to lower the effluent release and chemical treatment cost by 23%, but it also prevented every single 
overflow incident (Table 5) under extreme wet weather conditions, given our prediction model’s 4 hours 
of water level forecasts. 



 

 

 

 

 

 

 

 

    
  

       

Figure 15 Genetic Algorithm flowchart 

 
As the model used in this stage is a heuristic algorithm, the tests are evaluated 100 times. The model 
provides less than 3% deviation from the optimum after 50 generations with an initial solution population 
of 50. After 100 generations, the deviation from the optimal value becomes less than 1%.  
 

Table 5: Optimization efficiency evaluation 

 Chemical Treatment 
(Mg Wastewater) 

Overflow 
(Mg Wastewater) 

BPAWWTP Records 99,400 3,200 

Optimization Model 76,531* 0* 

RADS Efficiency 23%* 100%* 

*Average over 100 repetitions 

 

 
 



 

 

 

 

 

 

 

 

    
  

       

The RADS Interface 
 
RADS brings the presented 3 modules together into a web-based real-time monitoring interface. The 
application can run locally or remotely; modules and the application have been programmed on Python-
3.9. The protection module uses the TensorFlow and Keras libraries to train and evaluate the LSTM model, 
whereas the prediction model runs on the PyTorch library. Both modules have a millisecond range 
response time. The optimization model, however, uses the PyGAD library, and evaluating optimum actions 
takes a few seconds (less than 10). In best-case scenarios, the average evaluation takes 1.8 seconds.  
Figure 16 shows RADS graphical user interface (GUI). RADS can collect data from the WWTP and process 
it by the 3 modules in real-time.  
 

 
Figure 16: RADS Graphical User Interface. 

 

The first plot on the top right indicates the wastewater level in the reservoir (Figure 17). The blue line 
represents the water level forecast from the prediction module. The green line represents the water level 
simulated following the optimal actions recommended by the optimization module. The horizontal 
dashed red line is sea level. RADS aims to prevent water levels from rising above sea level since the sea 
level is selected as the target safety level (by DC Water) even though the reservoir can hold up to 17 ft 
above that. The red zone above the dotted red line represents this risk associated with operating above 
the level. Another indicator on this graph is the optimal pump operation markers. The dashed vertical 
lines represent the start and stop times for release pumps. Each color represents one of the six pumps at 
the DC Water WWTP. 
 



 

 

 

 

 

 

 

 

    
  

       

 
Figure 17: Water level prediction and optimum actions simulation. 

 

The effluent control parameters are also listed on a table with further details, including start/stop times 
of releasing pumps and their run speed (capacities) (Figure 18); attack detection is shown in Figure 19.  
 

 
Figure 18: Effluent release control interface. 

 

The other plot on the top right shows the probabilities of any anomalies in the data flow of the facility. It 
informs the operators about the system state in real-time. It includes the 15 situations from the SMoD 
dataset, but the number of these can be increased by collecting more data samples from the facility.  
 
The last part at the bottom right of the page has further details and the underlying information behind 
the RADS’s decisions. This plot shows the operator the most critical readings in the data flow used in the 
decision-making process of RADS (Figure 20). 
 



 

 

 

 

 

 

 

 

    
  

       

 
Figure 19: Attack percentage probabilities. 

 

 
Figure 20: Top ten most impactful data features for decision making. 

 
The RADS user interface is fully customizable. Any changes to the tasks we performed can be easily 
reflected in the GUI. New modules, plots, and indicators can be added, removed, or modified to fit any 
facility's needs. AI modules and the user interface code base of RADS can be found on A3’s official GitHub 
(https://github.com/AI-VTRC/IWS-Challenge). 
 

Adoption of RADS 

RADS is a very flexible framework. Besides DC Water, RADS can be implemented at other wastewater 
treatment facilities (process shown in Figure 21). Our Virginia Tech team collaborates with Alexandria 
Renew Enterprises, a.k.a. AlexRenew (formerly Alexandria Sanitation Authority). AlexRenew operates and 

https://github.com/AI-VTRC/IWS-Challenge


 

 

 

 

 

 

 

 

    
  

       

maintains a new sewage treatment system to serve the city and parts of Fairfax County. Our current goal 
is to customize and apply RADS to provide a solution to their needs. 
 
The timeline we envision to deploy RADS at AlexRenew can be generalized to other WWTPs. Depending 
on many factors such as the WWTP's size, technological infrastructure, management strategy, etc., this 
process can take 9 months to 2 years. Most of the time is anticipated to be spent in the deployment phase 
as the deployment steps may involve synchronization with the facility’s workflow to minimize any 
disturbance to the plant’s operations.  
 

 
Figure 21: RADS adoption timeline. 

 
Challenge Plan 

 

This work was a collaboration between the Artificial Intelligence Assurance and Applications Lab (A3) at 
Virginia Tech and the District of Columbia Water and Sewer Authority (DC Water). The responsibilities of 
each researcher are listed below. Also, the project timeline is attached at the end of this document. 
 

Responsibilities and works distribution 
 

Batarseh, Feras A.: Responsible for communication and management of the team, quality assurance of 
the project, project plan, and models, evaluating the preparation of data models’ tests, verification, and 
validation of the models, editorial of the documents, proofreading and submission. 
 
Yardimci, Mehmet O.: Responsible for the project planning, writing, and documentation of all the 
materials. He was also responsible for developing and testing protection and optimization models and 
implementing AI Assurance into the models, visualization the results, implementing the models to the 
facility, and bringing submission together. 
 
Suzuki, Ryu: Responsible for providing datasets, preparing data, and managing data access for the team. 
He supervised facility visits and educated the team on the operations of the WWTP. He conducted on-site 
facility tests for models and evaluated the test results to be reported. He was also responsible for ensuring 
the safety of the data and the results that have been shared. 
 



 

 

 

 

 

 

 

 

    
  

       

Sikder, Md Nazmul K.: Responsible for the development, testing, and validation of the prediction model, 
visualization, reporting, and compiling of the prediction model results, experiment design for the 
prediction model, and implementation of the prediction model for the facility. 
 
Wang, Zhiwu: Dr. Wang has joined our team after the first proposal of this project. He replaced Zhaohui 
An to fulfill the further need for a WWTP expert. Responsible for verifying and validating the models from 
a WWTP expert perspective. He also ensured data quality, analyzed results, documented findings, and 
wrote reports. 
 
Mao, Wan Yi: Responsible for the development of the protection model, data collection, data 
preprocessing, testing models, verification and validation of the results, and documenting them as well as 
visualization of these results and creating related graphs.  
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