

Webcast Methods Assessment for SARS-CoV-2 Genetic Signal in Wastewater: WRF 5089 Study Results

Brian Pecson, Ph.D., P.E. – Trussell Technologies Emily Darby, P.E. – Trussell Technologies Charles Haas, Ph.D. – Drexel University

November 19, 2020

Clinical testing of individuals

Clinical testing of individuals

Wastewater Based Epidemiology

Wastewater Based Epidemiology

Project Objective

 Assess the methods currently used by laboratories to determine which methods provide a reliable and repeatable measurement of the SAR-CoV-2 genetic signal in untreated wastewater

Overview of Project

Interlaboratory an	nd Methods Assessi			Signal in Wastewater (5089)
	T di despation i on	iii buc by 4.	00 1 11 1151 011 5011	0 2, 2020
First Name, Last Name				
Email			Phone	
Lab/Organization Name				
Street Address				
Street Address				
City		State	Zip Code	Country
 Has a developed method t 	les at their own expense for the detection of the gen	Y 🔲 I netic signal of S	N ARS-CoV-2	
Ability to test 5–10 samp Has a developed method i fplease provide written pr Is routinely or planning to Ability to handle wastewa pre-treatment (i.e., paste	les at their own expense for the detection of the gen rotocol and describe control or routinely analyze samples ster samples that have beer urization]	Y I I I I I I I I I I I I I I I I I I I	N ARS-CoV-2 signal of SARS-CoV-2 fo inactivate live microorga	r environmental surveillance
Ability to test 5–10 samp Has a developed method i please provide written pr Is routinely or planning to Ability to handle wastewa pre-treatment (i.e., paste Has the reagents and equ Is established as an envir	les at their own expense for the detection of the gen rotocol and describe control or routinely analyze samples ster samples that have been	Y letic signal of S ls in box below	ARS-CoV-2 signal of SARS-CoV-2 fo inactivate live microorga	nisms (samples that have undergone
Ability to test 5–10 samp Has a developed method if please provide written pr Is routinely or planning to Ability to handle wastewa pre-treatment (i.e., paste Has the reagents and equ Is established as an envir (please provide details of Has a quality assurance p Has the ability to share di	les at their own expense for the detection of the gen otoccol and describe control or outlinely analyze samples ter samples that have beer urization] Y N ipment to quickly process sommental microbiology or raccreditation in box below, blan for the overall operation at with the selected research.	y letic signal of Si si n box below! for the genetic n pre-treated to samples supplices earch laborary n of the lab thanch team	ARS-CoV-2 signal of SARS-CoV-2 for inactivate live microorgaled by the selected researctory Y N	nisms (samples that have undergone

Overview of Project

SOLIDS REMOVAL

- Centrifugation
- Filtration
- Both

SOLIDS REMOVAL

CONCENTRATION

SOLIDS REMOVAL

CONCENTRATION

PARTICIPATING LABS (32 labs, 36 SOPs*)

*Four of the labs tested two different methods

Overview of Project

Develop experimental plan and QAPP

Quality Assurance Project Plan

Analytical Microbiology Services

Water Research Foundation Interlaboratory and Methods Assessment of Contract #5089 Wastewater

Prepared for:

The Water Research Foundation

Prepared by:

1939 Harrison St. suite 600 Oakland, CA 94612 Brian Pecson PhD, PE Project Manager 1939 Harrison St. suite 600 Oakland, CA 94612

Email: brianp@trusselltech.com

References.

July 2020 Version 1.0

Table	e of Contents
A1.	Title and Approval Sheet1
A2.	Table of Contents2
А3.	Distribution List4
A4.	Project/Task Organization4
A5.	Problem Definition/Background7
A6.	Project/Task Description8
A7.	Quality Objectives and Criteria10
A8.	Special Training/Certification
A9.	Documents and Records12
B DA	ATA GENERATION AND ACQUISITION13
	Sampling Process Design (Experimental Design) 13 Imple Collection 14 Imple Handling 14
B2.	Sampling Methods15
В3.	Sample Handling and Custody19
B4.	Analytical Methods20
B5.	Quality Control22
В6.	Instrument/Equipment Testing, Inspection and Maintenance26
B7.	Instrument/Equipment Calibration and Frequency26
В8.	Inspection/Acceptance for Supplies and Consumables26
B9.	Non-Direct Measurements27
B10.	Data Management27
C AS	SESSMENT/OVERSIGHT27
C1.	Assessment and Response Actions27
C2.	Reports to Management27
D DA	ATA REVIEW AND EVALUATION27
D1.	Data Review, Verification and Validation27
D2.	Verification and Validation Methods27
D3.	Reconciliation with User Requirements

QA/QC: Matrix Spikes

QA/QC: Matrix Spikes

SARS-Cov-2

Surrogate 1

Surrogate 2

25% (1/4)

25% (1/4)

100% (4/4)

QA/QC: Matrix Spikes

Concentration Factor

SARS-Cov-2

Surrogate 1

Surrogate 2

25% (1/4)

25% (1/4)

100% (4/4)

Method Sensitivity

Method Sensitivity

X

Overall Sensitivity

Option 1: 10 x

Option 2: 2 x

0.01 x

0.25 x

0.1

= 0.5

Method Sensitivity

X

Overall Sensitivity

Option 1: 10 x

Option 2: 2 x

Option 3: 10 x

0.01 x

0.25 x

0.05 x

= 0.1

= 0.5

= 0.5

Overview of Project

Wastewater Sampling

- 5 replicates per round
- 2 wastewater treatment plants
 - Hyperion Water Reclamation Plan
 - Joint Water Pollution Control Plant
- Follow sampling/shipping requirements from QAPP

Overview of Project

Reproducibility

QA/QC and Exclusion Criteria

- Sample processing
 - More than 24 h after receipt of sample
- No-template controls
 - All NTC replicates positive
 - Similar order of magnitude as environmental samples
- Recovery efficiency
 - Recoveries < 0.01% were rejected
- Detection limit
 - Results lower than the lowest detectable standard (by a factor greater than 2)

Reproducibility across methods after QA/QC filter

With Recovery Correction

- Conclusions:
 - Across all groups, 80% of the values fall within +/- 1-log range

- Conclusions:
 - Correcting for recovery generally brings the concentration methods in line with no-concentration methods

- Conclusions:
 - Correcting for recovery generally brings the concentration methods in line with no-concentration methods
 - No systematic impact from solids removal step

- Conclusions:
 - Correcting for recovery generally brings the concentration methods in line with no-concentration methods
 - No systematic impact from solids removal step
 - Groups 3, 3S, and 4 had the greatest reproducibility

Reproducibility within a SOP

Precision evaluated based on variability in replicates run for each method

	Standard deviation of replicates (in log GC/L)		
SARS-CoV-2 Target	Uncorrected	Recovery-Corrected	
N1	0.15 [0.04 – 0.38]	0.13 [0.032 – 0.60]	
N2	0.14 [0.01 – 0.53]	0.13 [0.033 – 0.51]	

Conclusions:

- Precision within a lab is high based on ~5 replicates
- Higher precision makes it easier to identify differences in raw wastewater concentrations over time

Sensitivity

Method Sensitivity

Recovery Efficiency

Concentration Factor

Instrument Sensitivity

Limit of Detection = $\frac{1}{C}$

Instrument Detection Limit

Concentration Factor × Recovery

Recovery Efficiencies

- Conclusions:
 - Recovery efficiency between two plants was not statistically different

Recovery Efficiencies

- Recovery efficiency between two plants was not statistically different
- Methods show a wide range of recovery efficiencies (7 orders of magnitude)

Recovery Efficiencies

- Recovery efficiency between two plants was not statistically different
- Methods show a wide range of recovery efficiencies (7 orders of magnitude)
- Methods with lower recovery efficiencies more likely to produce non-detects (NDs)

Concentration Factors

- Conclusions:
 - Methods show a wide range of concentration factors (>2 orders of magnitude)

Concentration Factors

- Methods show a wide range of concentration factors (>2 orders of magnitude)
- Methods without a concentration step prior to RNA extraction did not always have a lower CF

Recovery Efficiency

Concentration Factor

Instrument Sensitivity

Instrument Detection Limit (assumed
$$1 \frac{GC}{assay} \times \frac{assay}{5\mu L}$$
)

Theoretical LOD =

Concentration Factor \times Recovery

- Conclusions:
 - Limit of detection spanned 7-orders of magnitude

- Conclusions:
 - Limit of detection spanned 7-orders of magnitude
 - Methods generally able to quantify a 10-fold lower concentration than those in August, 2020

- Limit of detection spanned 7-orders of magnitude
- Methods generally able to quantify a 10-fold lower concentration than those in August, 2020
- Methods with all NDs had high LODs (lower sensitivity)

- Limit of detection spanned 7-orders of magnitude
- Methods generally able to quantify a 10-fold lower concentration than those in August, 2020
- Methods with all NDs had high LODs (lower sensitivity)
- Low LOD is important for tracking trends over a range of concentrations

Relationship between Limit of Detection and NDs

- Methods with lower sensitivities (high LOD)
 had higher rates of NDs and vice versa
- Suggests OC43 provides accurate reflection of SARS-CoV-2 recovery across methods

Theoretical Limit of Detection by Method Group

- The SOPs with highest sensitivity were not all associated with the same method group
- Multiple methods may be capable of achieving high sensitivities

Impact of Other Method Steps

Impact of Pasteurization

- Pasteurization at 60°C for 60 minutes led to a significant but small increase in SARS-CoV-2 number
- Concern that pasteurization would degrade the signal results show no clear impact on sensitivity
- Importance: ability to pasteurize may open the door to more labs being able to test for SARS-CoV-2

Impact of Primer Set

Round	Significant difference between N1 and N2?	Log difference (N1– N2)
Plant 1	Yes (p = 1e-8)	0.13
Plant 2	Yes (p = 0.00042)	0.12

- While significant, the impact of selecting primer set N1 or N2 is small compared to other sources of variability
- Importance: may not be necessary to run both primer sets when quantifying SARS-CoV-2 concentrations

Impact of PCR Platform

- No clear patterns emerged between the two quantification platforms
- Merits further research to evaluate impacts on inhibition and sensitivity

- Conclusions:
 - OC43 showed similar behavior to other betacoronaviruses (bovine coronavirus and heat-inactivated SARS-CoV-2)

- Conclusions:
 - OC43 showed similar behavior to other betacoronaviruses (bovine coronavirus and heat-inactivated SARS-CoV-2)
 - OC43 showed greater similarity to MS2 bacteriophage than Phi6 in the methods tested

- Conclusions:
 - OC43 showed similar behavior to other betacoronaviruses (bovine coronavirus and heat-inactivated SARS-CoV-2)
 - OC43 showed greater similarity to MS2 bacteriophage than Phi6 in the methods tested
 - Multiple surrogates may be acceptable, but additional work needed to understand similarities with SARS-CoV-2

- Nationwide interlaboratory method comparison showed high reproducibility
 - Multiple methods may be used to obtain reproducible results
 - The same SOP or lab should be used to track trends at a given location
- Quality assurance plans are critical for reproducibility
 - Recovery efficiencies varied by 7 orders of magnitude
 - Matrix spikes critical to quantify recovery and obtain reproducible numbers
- Study showed no systematic impact from key differences between methods
 - Minimal impact of solids removal, concentration, pasteurization, primer selection
- Findings support use of wastewater surveillance for tracking trends
 - Methods with higher sensitivity allow tracking over a wider range of concentrations

Next Steps

- Sites will have different requirements and constraints during selection of methods
- Additional criteria should be used to select the "best" method for your application
 - Sensitivity
 - Cost
 - Operator experience
 - Material requirements
 - Throughput or processing time
- Address other knowledge gaps for wastewater-based epidemiology
- Continued coordination on methods is encouraged

Acknowledgements

- Trussell Technologies
 - Yamrot Amha
 - Mitch Bartolo
 - Hunter Johnson
 - Mark Keller
 - Liana Olivas
 - Yan Qu

- BCS Labs
 - George Lukasik
 - Bonnie Mull
- Cel Analytical
 - Yeggie Dearborn
 - Richard Danielson
- WRF Project Advisory Committee

SARS-CoV-2 Interlaboratory Consortium

- Biological Consulting Services (BCS) Laboratories
- Cel Analytical
- City of Scottsdale
- City University of New York
- Columbia University
- Hampton Roads Sanitation District
- IDEXX Laboratories, Inc.
- Los Angeles County Sanitation District
- Michigan State University
- Mycometrics
- New York City Department of Environmental Protection

- Ohio State University
- Oregon State University
- Promega Corporation
- Saginaw Valley State University
- SiREM
- Source Molecular Corporation
- Southern Nevada Water Authority
- Tulane University
- United States Environmental Protection Agency
- University of California Berkeley
- University of California Irvine

- University of Colorado Boulder
- University of Maryland
- University of Missouri
- University of Nebraska
- University of Nebraska Medical Center
- University of Utah
- University of Wisconsin
- Utah State University
- Weck Labs
- Wisconsin State Lab of Hygiene

Thank You

See publications for additional details

Pre-publication available at medRxiv:

https://www.medrxiv.org/content/10.1101/2020.11.02.20221622v1

In peer review at Environmental Science: Water Research & Technology

Questions?

Canadian COVID-19 Wastewater Coalition

Webinar series - Tuesday, December 1, 2020

Outcomes & Implications
11:30 a.m. to 12:45 p.m. EST

WBE in Canada: Use cases, challenges & next steps 2:00 p.m. to 3:30 p.m. EST

Register at cwn-rce.ca

Connecting water professionals to decision-ready knowledge