

www.moleaer.com

Advancing Nanobubble Technology

WRF Tech Scan

Presented by:

Andrea White, P.E. Application Engineering Leader andrea@moleaer.com 20800 Belshaw Ave. Carson, CA 90746

Moleaer[™] manufacturers industrialscale nanobubble systems that deliver extraordinary improvements in sustainable food production, chemical-free water treatment and the recovery of natural resources

Typical payback when incorporating Moleaer technology into industrial process: <u>6-24 months</u>

FOOD

Horticulture | Specialty Crops | Aquaculture | Food Safety

>400 Systems Installed

- Increasing crop yields by up to 50%
- Reducing oxygen costs in salmon farms by 70%
- Demonstrated that O₂ NBs can replace chlorine for food sanitization

WATER

Algae Control | Advance Oxidation | Biological Treatment | Floatation

>300 Systems Installed

- Eliminated use of harmful algicides and herbicides in >100 water bodies
- Reduced energy consumption >75% in industrial wastewater processes
- Potential to reduce energy consumption in municipal wastewater by 31% = 2.5M tons of CO₂

NATURAL RESOURCES

Produced Water Treatment | Heap Leaching | EOR | Floatation

>75 Systems Installed

- Reduced the cost of recycling produced water
- Increased oil production from aging wells by 50%-90%
- Demonstrated >14% increase in gold recovery

Leadership Team

Experienced leadership team with backgrounds in water and building successful early-stage companies

NICHOLAS DYNER

Chief Executive Officer

20+ years commercial experience, with the last 13 years in the water treatment industry

WARREN RUSSELL

Co-Founder, **Chief Commercial** Officer

15+ years as a business owner in wastewater treatment and environmental

services

BRUCE

SCHOLTEN

Co-Founder,

Chief Technical

Officer

25+ years in water and

wastewater treatment

chemicals and

equipment

SERVICES

JENNIFER LIM

VP of Marketing & PR

20+ years in marketing and public relations leadership roles with early stage companies and established brand leaders in B2C and B2B

7+ years in corporate strategy and commercial leadership roles in food & nutrition and

consulting

JOSH

BACHNER

VP of Strategy &

Corp Dev

14+ years in sales leadership and engineering roles in water and wastewater treatment

BRAD

HICE

Director, N.A. Sales

ANDREA

WHITE

POOYA MAHMOUDIAN

Application Engineering Leader

Director. Engineering

15+ years of experience in water & wastewater with Tier 1 Engineering Consulting firm specializing in biological and chemical oxidation processes and gas

13-years of experience in new product development and designing strategic products for the aerospace, energy and compression industries

EROGFIT USA

soylent

transfer

MOLEAER

CONFIDENTIAL

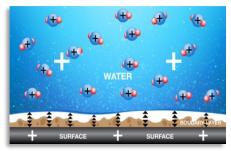
Leader in Nanobubble Technology and Science

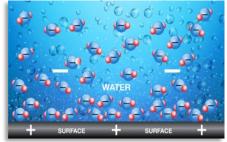
- ✓ Founded in August 2016 in Los Angeles, CA
- ✓ Officially launched first nanobubble generator in June 2017
- ✓ Globally recognized as market and technology leader
- ✓ Patented technology
- ✓ Independently validated by global experts in the fields of aeration, oxidation, food safety and nanobubble detection

- \checkmark Commercially proven with ~900 installations, in >40 different countries
- ✓ 40 employees in U.S., Canada, Spain, Mexico & Netherlands


What Are Nanobubbles?

Nanobubbles are nano-size bubbles, 2000x smaller than a grain of salt, that improve water quality and industrial processes through oxygenation, flotation and oxidation


Even O₂ Distribution



Chemical Free Oxidation

Scouring & Adhesion

- Don't rise to the surface and burst
- 30x better gas transfer efficiency then conventional methods
- Enables cost effective use of air, oxygen or ozone
- Remain suspended in water for months

- On collapse, nanobubbles generate an oxidant
- Oxidants (ROS) react with cell membranes and cell walls to break apart cells. This is called oxidative stress.
- NB Oxidants exchange electrons to change molecular state (Ex: Fe2 to Fe3)
- Nanobubbles have been suggested to act like hard particles in flowing liquids that break apart biofilm
- Negative charge enables bubbles to bond to particles with opposite charge changing their density

Moleaer Nanobubble Generators vs. Alternatives

Moleaer:

Compressed gas is diffused into flowing water from 25-to-1000 gpm in our "Nanobubble Generator (NBG)" forming >200M nano-sized bubbles / ml

Advantages:

- Introduces two forms of gas into the water: dissolved and nanobubbles
- >85% oxygen transfer efficiency (OTE) regardless of water depth
- Evenly oxygenates the entire water column
- Highest oxygen utilization when compared to all alternatives
- Stable, uniform dissolved oxygen levels
- Minimal off-gassing

Alternatives:

Diffusers

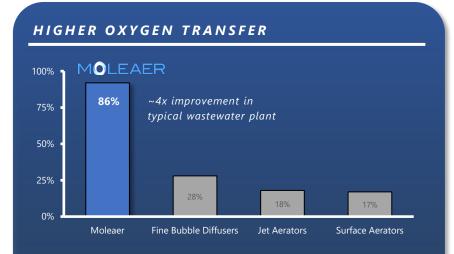
- 1-3% oxygen transfer efficiency per ft of water
- Susceptible to fouling
- High replacement rate
- Inefficient in shallow water

Cone

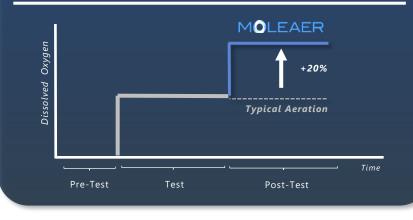
- High oxygen transfer efficiency
- High energy requirement
- Poor ramp up / down capability
- Frequent maintenance issues

Venturi

- 20-40% oxygen transfer Micro & Macro bubbles
- Inefficient and not economical when combined with pure oxygen



<u>Moleaer</u>: Robust, scalable, plug & play technology with best-in-class 86%+ oxygen transfer efficiency



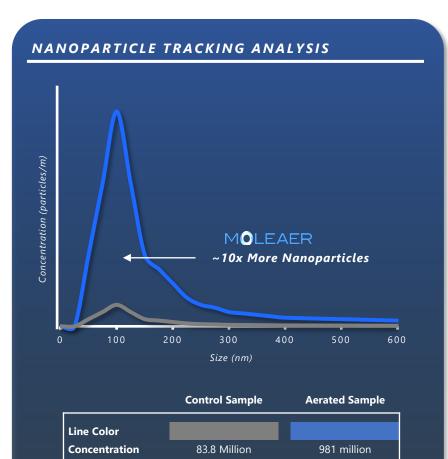
Independent Validation

LONGER OXYGEN RETENTION

<u> Test Overview – April – June 2017</u>

 Independently tested by Michael Stenstrom, distinguished UCLA engineering professor, world-renowned for research in aeration technologies

Key Findings


- Moleaer bubbles achieve <u>86%</u> oxygen transfer efficiency in any depth
 Vs. best-in-class of 2-3% per foot of water
- Moleaer delivers <u>17.5 lbs.</u> of O₂ / HP-Hr
 - Vs. best-in-class of 8 lbs of O₂ / HP-Hr
- Moleaer nanobubbles exhibit an Alpha factor > 1
 - Typical Alpha factor for fine bubble aeration: 0.4-0.6
- Moleaer achieves <u>20%</u> increase in dissolved oxygen 24 hours after aeration
 - Indicates nanobubbles increase gas holding capacity of water

Conclusions

 "Moleaer's nanobubble generators provide the highest oxygen transfer efficiency of any aeration technology I have tested so far" - Dr. Michael Stenstrom, UCLA

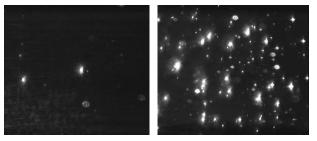
122 nm

65 nm

125 nm

82 nm

<u>Test Overview</u>


- NanoSight (Malvern) is regarded as the gold standard to detect the presence of nanobubbles
- Utilized independent lab "Particle Characterization Labs (PCL)" to conduct test
- Sent control and aerated samples to lab in September 2017

Key Findings

- Detected ~1B stable nanobubbles
- Nanobubbles detected 8-days after time of aeration, at which point the test was concluded

Conclusions

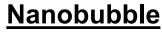
 Moleaer's systems produce high concentrations of stable nanobubbles that remain suspended in saturated water indefinitely

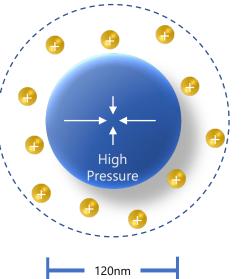
Images of Control vs. NB concentrated sample

Mean size

Mode size

Report: Nanobubble Oxidation


Arizona State University



- Confirmed the generation of hydroxyl radicals, a reactive oxygen species (ROS), with Moleaer nanobubbles.
- Hydroxyl radicals create the nanobubble chemical-free oxidation.
- Differentiates Moleaer nanobubbles from conventional gas injection and aeration.

+ Stimulus

- UV (Sunlight)
- Aeration
- Mixing

A stimulus can be any external force that causes the nanobubble to collapse.

Hydroxyl Radicals

- **Degrade algae and pathogens** by weakening the integrity of the cell.
- **Break down organics** such as algae toxins, taste and odor compounds, and emerging contaminants.

•О-Н

9

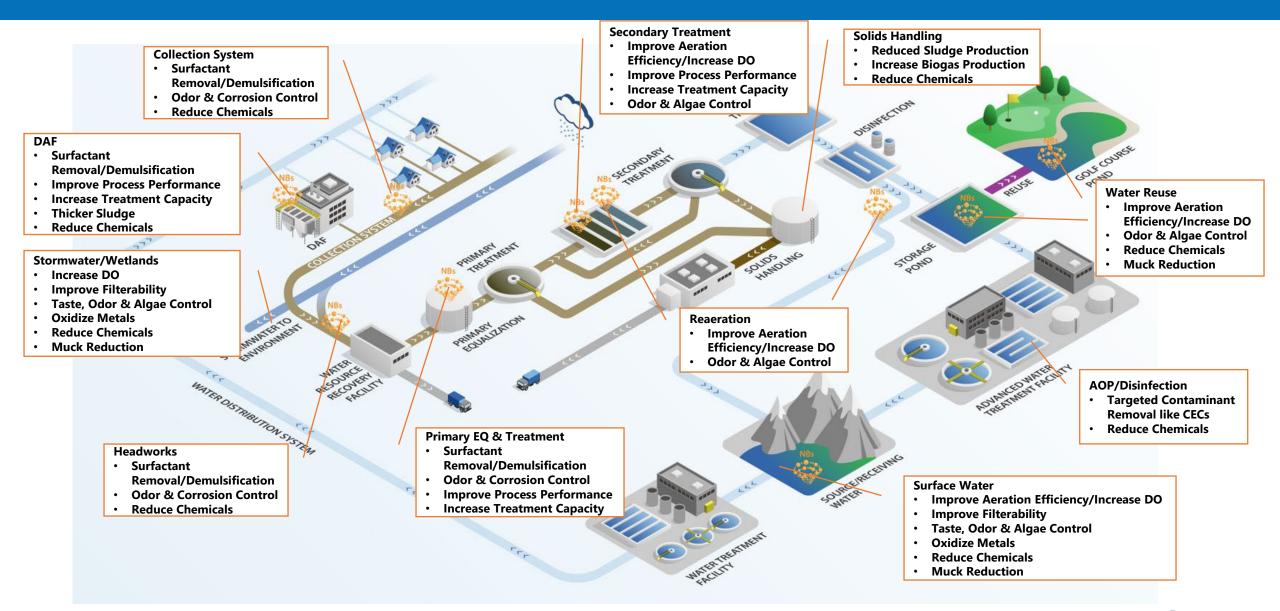
Product Overview

Irrigation Water for Small-to-Medium Size Greenhouses	ed Algae Treatment & Preve Lakes, Ponds an		Large-scale Greenhouses, Aquaculture Facilities and Food Safety Disinfection
Bloom	Clea	ar TM	Neo TM
MOLEAER	MOLEAER		
Industrial Wastewater & Municipal-scale Aquatic Management	dustrial and Oil & Gas Processes	Off-shore Aquaculture, On Treatment, Oil & Gas Produ	
Optimus™	XTB TM	Mobile NBG	Nexus [™] (inline NBG)
MLEARR			

Industry Value Proposition for Developed Markets

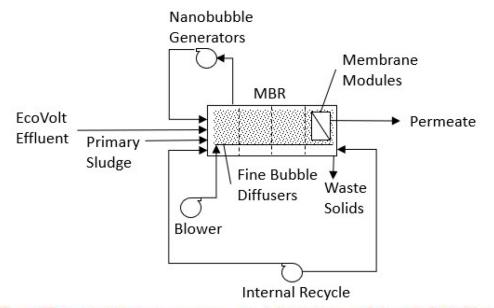
<u>Wastewater</u>: Increase treatment capacity, improve discharge water quality Customer ROI typically 6-24-months, depending on application and energy costs

Surface Water: Chemical-free treatment to eliminate algae and other harmful contaminants. **Customer ROIs driven by cost of, or inability of, alternative solutions to treat water**


<u>Oil & Gas</u>: Lower costs of produced water recycling; increase oil recoveries through EOR *Customer ROIs driven by well production and recovery rates*

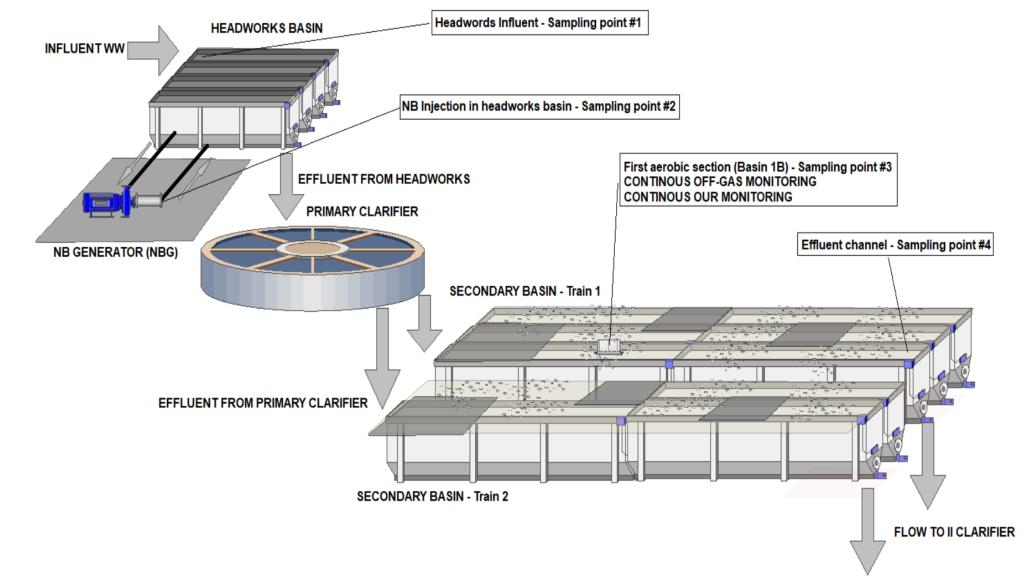
Irrigation: Improved water quality for healthier crops, less losses, higher yields. *Customer ROI typically 12-18-months, depending crop variety.*

Aquaculture: Higher oxygen utilization, higher stocking densities, less disease. **Customer ROI typically 12-24-months, depending on Oxygen costs and additional NB benefits**


Water/Wastewater Treatment: Where do Nanobubbles Add Value?

Case Study 1: Bear Republic Brewery MBR Fine Bubble Aeration Supplemented with Nanoububbles

Operating with oxygen nanobubbles since October 2018



- ✓ Reduced Oxygen Requirements by 33%
- ✓ Increased Treatment Capacity by > 60%
 - ✓ Now also Treating Primary Sludge in MBR
- ✓ Increased Average MLSS by 70% to 12,000 mg/L
- ✓ Increased Treatment Capacity and Still Reduced OPEX by 11%
- ✓ Payback Period < 4 Years</p>
- ✓ Eliminated Filamentous Bacteria Foaming Issues
- ✓ Eliminated Use of Chemical Defoamer
- Reduced Dewatering Polymer by 33% due to Improved Dewaterability
- ✓ Improved MBR Process Stability and Reliability

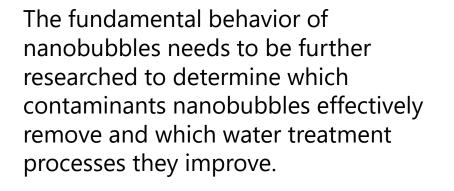
Case Study 2: Fallbrook WRRF#1 <u>Nanobubble-enabled Surfactant Removal</u>

Case Study 2: Fallbrook WRRF#1 Nanobubble-enabled Surfactant Removal (cont'd)

30-day Pilot Operated with Air Nanobubbles

- ✓ Reduced Organic Load to Secondary Process
- ✓ Reduced Quaternary Ammonia Compounds by >20%
- ✓ Increased Secondary Process Aeration Efficiency by 45%
- ✓ Increased Oxygen Transfer Rate by 61%
- ✓ Improved Biomass Kinetics by 25%
- ✓ Increased Nitrification Rate by 22%
- ✓ Increased Treatment Capacity by 25%
- Payback Period 6 to 18 Months Depending on Permanent Install Location

How Can WRF Help?


Nanobubbles:

- Are hydrophobic,
- Have a strong negative surface charge,
- Exhibit prolonged stability in 'dirty' water,
- Can behave like a solid nanoparticle,
- Exhibit selective contaminant removal,
- May cause phase change, and
- May enable precision separations

Specifically, Moleaer needs to better understand:

- 1. The phenomenon occurring at the interface of nanobubbles with surfaces and contaminants in water environments, and
- 2. Whether the properties of contaminants and surfaces relative to those of nanobubbles govern their interactions. Properties may include:
 - Water solubility
 - Water surface tension
 - Polar/ionic character
 - Octanol/water partition coefficient
 - Acid/base chemistry
 - Oxidation/reduction chemistry
 - Electrochemistry

16

www.moleaer.com

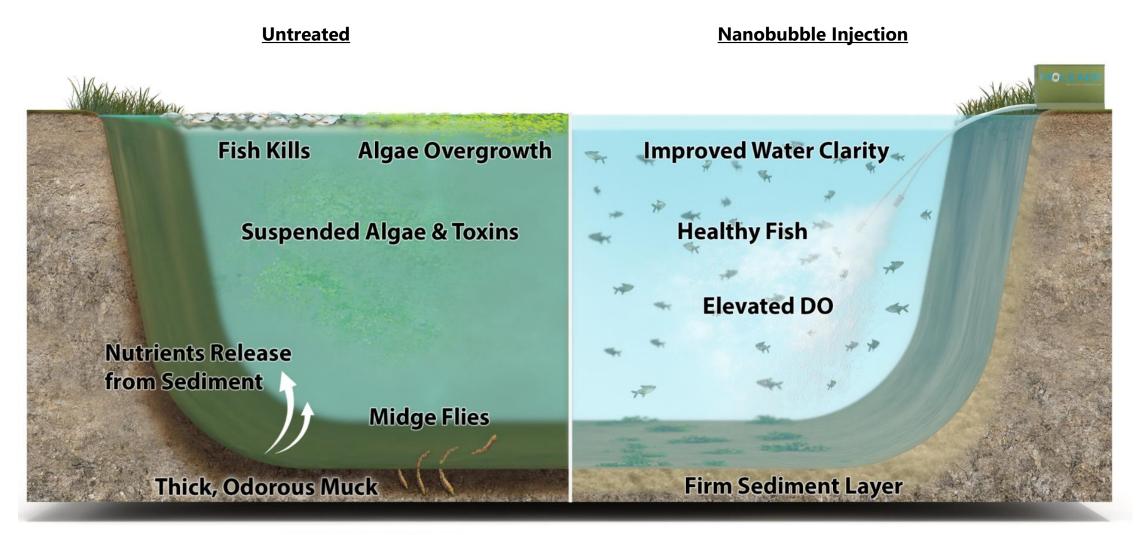
Thank You

Case Study: Waterpark Aquatic Treatment

Xoximilco, Cancun, Mexico - 27 acre-ft, 8.7M gallons

Nanobubbles reduced suspended algae and biofilms

Prior to Installation

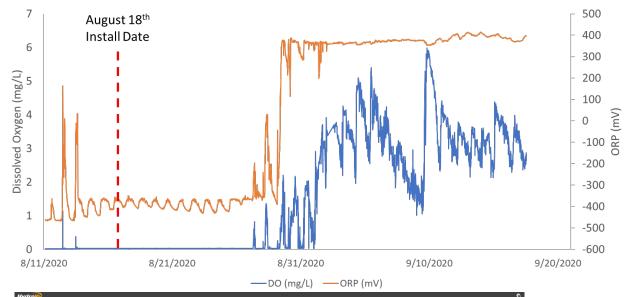

5 weeks after install

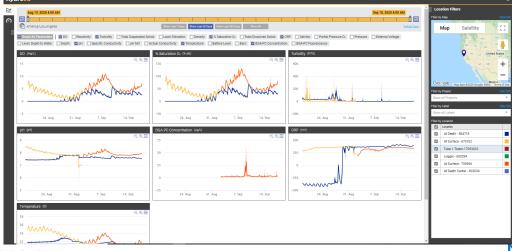
<u>8 weeks after install</u>

Nanobubbles Address Algae and Overall Waterbody Health

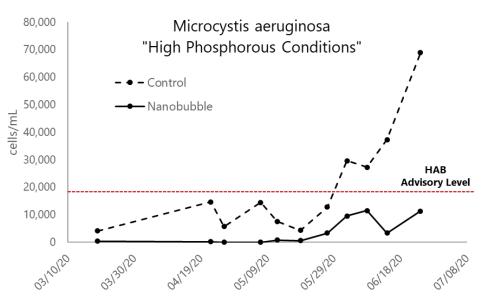
Aquatic Management: How Nanobubbles Add Value in Surface Waters

	Pain Point(s)	Moleaer Nanobubble Solution
Algae Control	Persistent Algae Blooms	 A demonstrated control and mitigation strategy for blue-green, green, and other algae species.
	Excessive Chemical Usage	 Moleaer nanobubbles are a chemical-free algae control solution utilizing only air and/or oxygen.
Ecosystem Health	Low Hypolimnetic (Deep Water) Oxygen Levels	 Efficiently increase oxygen levels at depth without breaking thermoclines.
	High Nutrient & Metal Levels	 Provide oxygen to the sediment to sequester nutrients (nitrogen & phosphorus) and metals.
	Odor Complaints	 Address the root cause of odor by reducing algae and odor causing bacteria.
	Fish Kills	 Improve fish habitat and avoid low oxygen during summer and algae bloom periods. Oxygenate without disrupting stratification.
	Poor Sediment "Muck" Quality	• Promote beneficial bacteria that breakdown muck layer.




Mobile + Monitoring Solutions

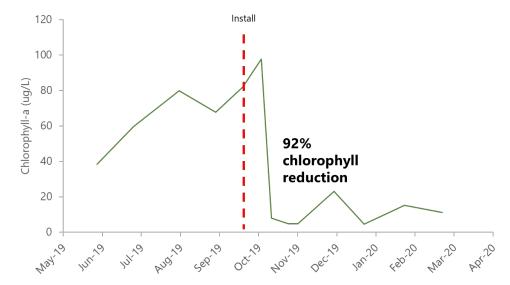
East Bay Parks, California lake with known Cyanobacteria (toxic) algae blooms. Installed two mobile systems & sensors to treat and monitor lake



CONFIDENTIAL

University Study & Case Study : Algae Control

Nanobubbles were compared to control ponds to study reduction in Microcystis (HAB)



* No impact on zooplankton was observed.

SOURCE: Burtle, Gary "Oxygen and Phytoplankton in Earthen Ponds Treated with Nanobubbles: Preliminary Report 8/12/2020", University of Georgia. 2020.

26-Acre Community Lake in Fort Myers, FL

*Chlorophyll indicates algae concentration *Data collected by Florida Pond Watch Citizen Monitoring Program

Before

