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Water Demand Forecasting

Accurate demand
forecasting is essential.

Underestimating future water
demand could contribute to water
supply shortfalls, temporary
Increases in water bills, and the
Imposition of emergency cutbacks.

Overestimating demand can lead
to costly investment in unneeded
Infrastructure and water sources,
with higher water bills and potential
environmental impacts.

Top Left: Hungry Horse Dam, Montana, Dept. of Interior via
Wired.com; Top Right: City of Lancaster, Texas; Bottom:
Tampa Bay Desalination Plant, Florida, wateronline.com




Forecasts often overestimate
demand
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Municipal Water Use in the U.S.

Per capita water use in the U.S. is declining, at
least partially due to efficiency standards and codes.
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Research Objective

WRF Report #4495

Develop guidance to help water
planners and managers increase the
reliability of their water demand
forecasts by accounting for
efficiency standards and codes.
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Water-Use Efficiency Standards

WaterSense or

Federal ENERGY STAR Ultra-high
Standards minimum efficiency
efficiency
Slpgle-flush tank-type o 16 13 0.79
toilets
Dual-flush tank-type ¢ 16 1.6 (full)/ 0.95 (full)/
toilets 9P ' 1.1 (reduced) 0.5 (reduced)
Commercial toilets
(flushometer valve) gpf 1.6 1.28 1.0
Showerheads gpm 2.5 2 0.75
Bathroom faucets gpm 2.2 1.5 1.0
Commercial pre-rinse gpm 16 128 0.65
spray valves
Residential clothes IWE 4.7 (front- load) 3.7 (front-load) 26
washers 6.5 (top-load) 4.3 (top-load) '
Commercial clothes 4.1 (front-load)
washers IWF 8.8 (top-load) 4.5 3.1
Residential dishwashers gallons per 5.0 3.5 1.95

cycle




Demand Forecasting Methods

Four methods for long-term demand forecasting:
(1) Extrapolation models: Population x Water Use Factor
(2) Econometric or regression models:
Demand = f(growth, water price, new development, etc.)
(3) Comprehensive end use (‘bottom up’) models: water
use projected by end uses individually and then summed.
(4) Hybrid models: Extrapolation or econometric models with

correction factor for conservation (guesstimate or modeled)
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Base Models with Corrections Models

Baseline Econometric or Extrapolation Model
with a Correction Factor for Efficiency
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Comprehensive End Use Modeling

o Water use projected for each end use as a function
of stock, efficiency, and behavior.

e Water use is a function of economic/price impacts,
technology, development, and changing efficiency.

 Allows for co-variation between economy and

efficiency.
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Peter Roberts, Yarra Valley Water, Melbourne, AUS
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Modeling Water by End Use

End Use Analysis can be used as part of correction
factors or comprehensive end use modeling.
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Stock Model Components

Stock models simulate the turnover of cohorts of
devices using replacement distribution and a

device lifetime.
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Replacement Distributions
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Choosing a Replacement Rate

* Water Sector: Australia study showed that lognormal decay
best fit the replacement rates of toilets (Snelling 2007)

* Energy Sector: Weibull distributions of replacement rates fit
with sales data
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Impact of Device Lifetime on Models

Device

Range of Device

Showerheads
Toilets
Dishwashers

Clothes Washers

Lifetime If an analyst forecasts a
5— 12 years 20-year average life and
20 — 30 years the devices last 30 years,

that leads to a 17%

10 — 15.5 years _ _
difference in water usage.

8 — 20 years

.

Diringer et al., forthcoming. WRF Project #4495
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Example of Stock Modeling

Tampa Bay Water, Demand Management Plan (2013)

Step 1. Separate households by age based on new legislation

 Pre-1984: 5 gpf toilets
e 1984-1994: 3.5 gpf
e 1994—Present: 1.6 gpf

Datasets:
 Billing and conservation program data
« Water use data
 Water Efficiency Program Library (WEPL)
 Parcel data
 Market share of WaterSense devices
* Projected population growth (Moody’s Analytics)
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Example of Stock Modeling

Step 2: Run stock model with decay
function for each housing group.

Homes built before 1983
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Example of Stock Modeling

Step 3: Determine total stock of _.3 | m1.28 gpf m1.6 gpf
toilets in the service area. £ |=35gpf =5gpf
Step 4: Multiply stock of toilets by~ £2 ||
distribution of toilet efficiencies. 2 |
% 1
Step 5: Adjust per capita water E
demand by changing average 6
toilet efficiency. 2010 2015 2020 2025 2030 2035

Year

Next Step: (1) Validate model with surveys,
In-person assessments, or flow trace analyses.
(2) Examine uncertainty in forecast using
Monte Carlo or scenario testing.

Data provided by Tampa Bay Water. (2013). Water
Demand Management Plan. 19
Diringer et al., forthcoming. WRF Project #4495



Datasets for Stock Modeling
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Collecting Data

e Surveys for end uses of water

e [n-person assessments

« High-resolution flow trace analyses

e Advanced Metering Infrastructure (AMI)

Flow data from 3 Tollet Others:
intelligent —> 3 maou:: ba:!:.
meterlng s Physical features extraction . % 3 6 leak, otc.
- . )
wdﬂb’s«-‘&.ﬂ ; ¢ . y !’ o Faucet
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= S o : ' % 5 w . " "
: Z P
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- St L el ol o T e ' 0 Time(s) e % % )
<= @ L > Water end-use categories
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Stewart. (2015). “Hydroinformatics - Big Data 21
Solutions for Water Savings.”




Incorporating Data

Study data be incorporated into models, used to
calibrate models, and/or verify model results.
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Characterizing Uncertainty

Multiple scenarios and Monte Carlo simulations can be
used to provide a range of predicted future water demand.

Residential Demand Scenarios
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Guidance and Recommendations

1. Improve overall forecasting methods
« Examine the accuracy of demand forecasts and monitor trends
In water use.
 Incorporate stock models into demand forecasts to capture
efficiency improvements resulting from standards and codes.
* Integrate uncertainty into demand forecasts.

2. Improve stock modeling for demand forecasts
« Determine current stock and efficiency of devices.
« Develop realistic device lifetimes and replacement rates.

3. Anticipate the Future
 Anticipate future standards and codes.
 Investigate AMI technologies for collecting water data
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