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Water Demand Forecasting

Top Left: Hungry Horse Dam, Montana, Dept. of Interior via 
Wired.com; Top Right: City of Lancaster, Texas; Bottom: 
Tampa Bay Desalination Plant, Florida, wateronline.com

Accurate demand 
forecasting is essential.

Underestimating future water 
demand could contribute to water 
supply shortfalls, temporary 
increases in water bills, and the 
imposition of emergency cutbacks.

Overestimating demand can lead 
to costly investment in unneeded 
infrastructure and water sources, 
with higher water bills and potential 
environmental impacts. 
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Forecasts often overestimate 
demand

Phoenix, ArizonaSan Diego, California

Heberger, Donnelly, and Cooley, 2016. “A 
Community Guide for Evaluating Future Urban 
Water Demand.” Pacific Institute, Oakland, CA.
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Municipal Water Use in the U.S.

Donnelly and Cooley (2015); New York City 
(2016); City of Austin (2017); Seattle Public 
Utilities (2016)

Per capita water use in the U.S. is declining, at 
least partially due to efficiency standards and codes.
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Research Objective

WRF Report #4495

Develop guidance to help water 
planners and managers increase the 

reliability of their water demand 
forecasts by accounting for 

efficiency standards and codes.
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Water-Use Efficiency Standards

Units Federal 
Standards

WaterSense or 
ENERGY STAR 
minimum 
efficiency

Ultra-high 
efficiency

Single-flush tank-type 
toilets gpf 1.6 1.3 0.79

Dual-flush tank-type 
toilets gpf 1.6 1.6 (full)/

1.1 (reduced)
0.95 (full)/
0.5 (reduced) 

Commercial toilets 
(flushometer valve) gpf 1.6 1.28 1.0

Showerheads gpm 2.5 2 0.75
Bathroom faucets gpm 2.2 1.5 1.0
Commercial pre-rinse 
spray valves gpm 1.6 1.28 0.65

Residential clothes 
washers IWF 4.7 (front- load)

6.5 (top-load)
3.7 (front-load)
4.3 (top-load) 2.6

Commercial clothes 
washers IWF 4.1 (front-load)

8.8 (top-load) 4.5 3.7

Residential dishwashers gallons per 
cycle 5.0 3.5 1.95



Demand Forecasting Methods
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Four methods for long-term demand forecasting:
(1) Extrapolation models: Population x Water Use Factor

(2) Econometric or regression models: 

Demand = f(growth, water price, new development, etc.)

(3) Comprehensive end use (‘bottom up’) models: water 

use projected by end uses individually and then summed.

(4) Hybrid models: Extrapolation or econometric models with 

correction factor for conservation (guesstimate or modeled)
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Base Models with Corrections Models
Baseline Econometric or Extrapolation Model 
with a Correction Factor for Efficiency

Modified from Tampa Bay Water. (2013). 
“Water Demand Management Plan”
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Comprehensive End Use Modeling
• Water use projected for each end use as a function 

of stock, efficiency, and behavior.
• Water use is a function of economic/price impacts, 

technology, development, and changing efficiency.
• Allows for co-variation between economy and 

efficiency.

Peter Roberts, Yarra Valley Water, Melbourne, AUS
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Modeling Water by End Use
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Total Stock of Dishwashers
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(Efficiency) Behavior

End Use Analysis can be used as part of correction 
factors or comprehensive end use modeling.
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Stock Model Components
Stock models simulate the turnover of cohorts of 
devices using replacement distribution and a 
device lifetime.

Peter Roberts, Yarra Valley Water, Melbourne, AUS



14

Replacement Distributions
E

xp
on

en
tia

l 
D

ec
ay

Lo
gn

or
m

al
 

D
is

tri
bu

tio
n

Diringer et al., forthcoming. WRF Project #4495
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Choosing a Replacement Rate
• Water Sector: Australia study showed that lognormal decay 

best fit the replacement rates of toilets (Snelling 2007)
• Energy Sector: Weibull distributions of replacement rates fit 

with sales data

The replacement 
function can 
dramatically affect the 
modeled current stock 
and future conservation 
savings.

Diringer et al., forthcoming. WRF Project #4495
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Impact of Device Lifetime on Models
Device Range of Device 

Lifetime
Showerheads 5 – 12 years

Toilets 20 – 30 years

Dishwashers 10 – 15.5 years

Clothes Washers 8 – 20 years

If an analyst forecasts a 
20-year average life and 
the devices last 30 years, 
that leads to a 17% 
difference in water usage.

Diringer et al., forthcoming. WRF Project #4495
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Example of Stock Modeling
Tampa Bay Water, Demand Management Plan (2013)

Step 1: Separate households by age based on new legislation 
• Pre-1984: 5 gpf toilets 
• 1984–1994: 3.5 gpf
• 1994–Present: 1.6 gpf

Datasets:
• Billing and conservation program data
• Water use data
• Water Efficiency Program Library (WEPL)
• Parcel data
• Market share of WaterSense devices
• Projected population growth (Moody’s Analytics)
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Example of Stock Modeling
Step 2: Run stock model with decay 
function for each housing group.

Data provided by Tampa Bay Water. (2013). Water 
Demand Management Plan. 
Diringer et al., forthcoming. WRF Project #4495
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Example of Stock Modeling
Step 3: Determine total stock of 
toilets in the service area.

Step 4: Multiply stock of toilets by 
distribution of toilet efficiencies.

Step 5: Adjust per capita water 
demand by changing average 
toilet efficiency.

Next Step: (1) Validate model with surveys, 
in-person assessments, or flow trace analyses.

(2) Examine uncertainty in forecast using 
Monte Carlo or scenario testing.

Data provided by Tampa Bay Water. (2013). Water 
Demand Management Plan. 
Diringer et al., forthcoming. WRF Project #4495
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Datasets for Stock Modeling
Study 
Outcomes

Data 
Collection 
Method

Residential 
Water 
Demand

Total Stock Efficiency Behavior

REUWS 
1999, 2016

End uses of 
water, single-
family homes,
Not nationally 
representative

Customer 
survey, 
flow 
monitoring

Average 
indoor and 
outdoor 
residential 
water 
demand

Single 
flush/dual 
flush toilets, 
CW, DW, 
showers, 
bathtubs

Calculated 
water 
efficiency 
per use

Toilet, 
faucet, 
DW, CW, 
bathtub, 
shower 

RECS 1987, 
1990, 1993, 
1997

RECS 2001, 
2005, 2009, 
2015

Residential 
energy use, 
single and 
multi-family 
homes, 
nationally 
representative

In-person, 
paper, or 
online 
survey 

None

-- --
--

DW, CW 
Presence/
Absence

CW: Top 
Loading 
vs. Front 
Loading

Self-
reported 
DW, CW 
use per 
week
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Collecting Data
• Surveys for end uses of water
• In-person assessments
• High-resolution flow trace analyses
• Advanced Metering Infrastructure (AMI)

Stewart. (2015). “Hydroinformatics - Big Data 
Solutions for Water Savings.”
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Incorporating Data
Study data be incorporated into models, used to 
calibrate models, and/or verify model results.

Market share from 
Australia for toilet, 
where the orange dots 
represent census data 
to calibrate the 
changing stock.

McKibbin et al. (2010). “A New National Tool for 
Integrated Water Resource Planning.” 
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Characterizing Uncertainty
Multiple scenarios and Monte Carlo simulations can be 
used to provide a range of predicted future water demand.

(above) Flory, 2013. “Forecasting Water Demand 
in Seattle.”
(right) Aquacraft, 2015. “Residential Demand 
Forecasting Model.”

Check out WRF 4558 
(Kiefer et al., 2016)
Uncertainty in Long-
Term Water Demand 

Forecasting 
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Guidance and Recommendations
1. Improve overall forecasting methods

• Examine the accuracy of demand forecasts and monitor trends 
in water use.

• Incorporate stock models into demand forecasts to capture 
efficiency improvements resulting from standards and codes. 

• Integrate uncertainty into demand forecasts.

2. Improve stock modeling for demand forecasts 
• Determine current stock and efficiency of devices.
• Develop realistic device lifetimes and replacement rates.

3. Anticipate the Future
• Anticipate future standards and codes.
• Investigate AMI technologies for collecting water data
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