

Water Research Foundation 4372a

Real Loss Component Analysis: What's Your Leakage Profile

Project Team

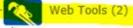
Downloading the 4372 Materials

www.waterrf.org, then search for 4372 or real losses

Water Audits and Real Loss Component Analysis - 4372

Completion Year 2013 Research Value \$544,023 Research Manager Maureen Hodgins Contractor

Water Systems Optimization Inc.


The purpose of this project is to help the North American water industry design efficient and sustainable leakage control programs. The project has been divided into two segments. Real Loss Component Analysis: A Tool for Economic Water Loss Control (Order #4372a) provides water utilities with an analysis tool to better understand the sources of their real losses (reported, un-reported, or background) and a means of analyzing their economic intervention strategies. This project improves the quality of standard leakage component analysis and compliments the AWWA Water Audits and Loss Control Program (M36), 3rd edition. In addition to the research report, the project produced two spreadsheet tools: a Component Analysis Model and the Leak Repair Data Collection Guide, which are available on this project page under Project Resources/Web Tools. 4372a was published in June 2014. Analysis of U.S. Water Audits (Order #4372b) will provide a national snapshot of IWA/AWWA water audit results including key performance indicators and benchmarks and summarize state regulations as of 2013. Data sources include approximately 2,500 water audits submitted to the California Urban Water Conservation Council, Georgia EPA, Texas Water Development Board, Tennessee Comptroller of the Treasury, and the Delaware River Basin Commission from 2011-2013. 4372b will be available in Fall 2015. Research partner: EPA.

Report Name	Report #	Available	Order Report	Download PDF	Executive Summary
Real Loss Component Analysis: A Tool for Economic Water Loss Control	4372a	5/30/2014		POF	

Project Resources

What are the Best Economic Options for Managing Leakage?

Leak Repair Data Collection Guide

Component Analysis Of Real Losses Software Model

The AWWA Water Balance

		Billed Authorized	Billed Metered Authorized Consumption	
	Authorized	Consumption	Billed Unmetered Authorized Consumption	
	Consumption	Unbilled	Unbilled Metered Authorized Consumption	
SYSTEM		Authorized Consumption	Unbilled Unmetered Authorized Consumption	
INPUT			Consumption Metering Errors	
VOLUME		Apparent Losses	Unauthorized Consumption	
			Systematic Data Handling Errors	
	Water Losses		Leakage/Overflow at Reservoirs	
		Real Losses	Leakage from Trunk Mains	
		Real LOSSES	Leakage from Distribution Mains	
			Leakage from Service Connections	

REVENUE WATER

NON-REVENUE WATER

Water Loss Control Program Next Steps

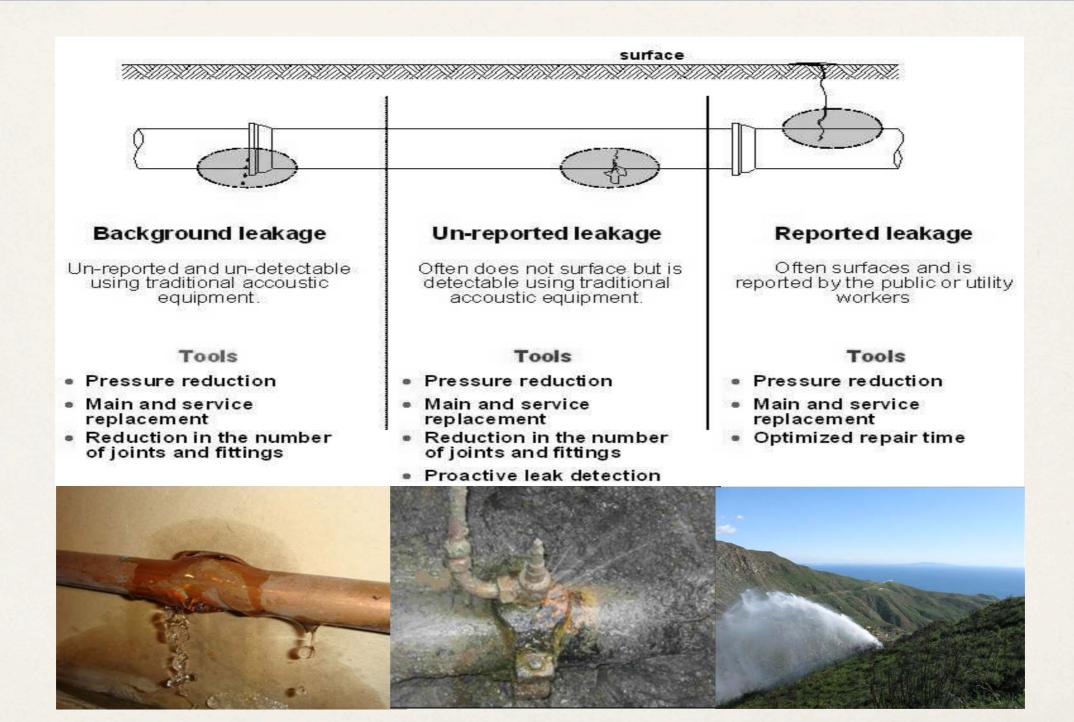
With A Completed AWWA Water Balance:

- √ Volume of Apparent Losses
- √ Volume of Real Losses
- √ Performance Indicators
- √ Data Validity Score

Remaining Assessments:

- → Understanding of Real Loss Breakdown (where are these losses occurring? what types of leakage?)
- → Evaluation of Cost-Effective Real Loss Intervention Strategies
- → Cost-Effective Non-Revenue Water Reduction Strategies

Key Points For Model Development


Adoption of AWWA Free Water Audit Software & Importance of Data

Validation

- Contextualized Performance Indicators
- Break Frequency Research

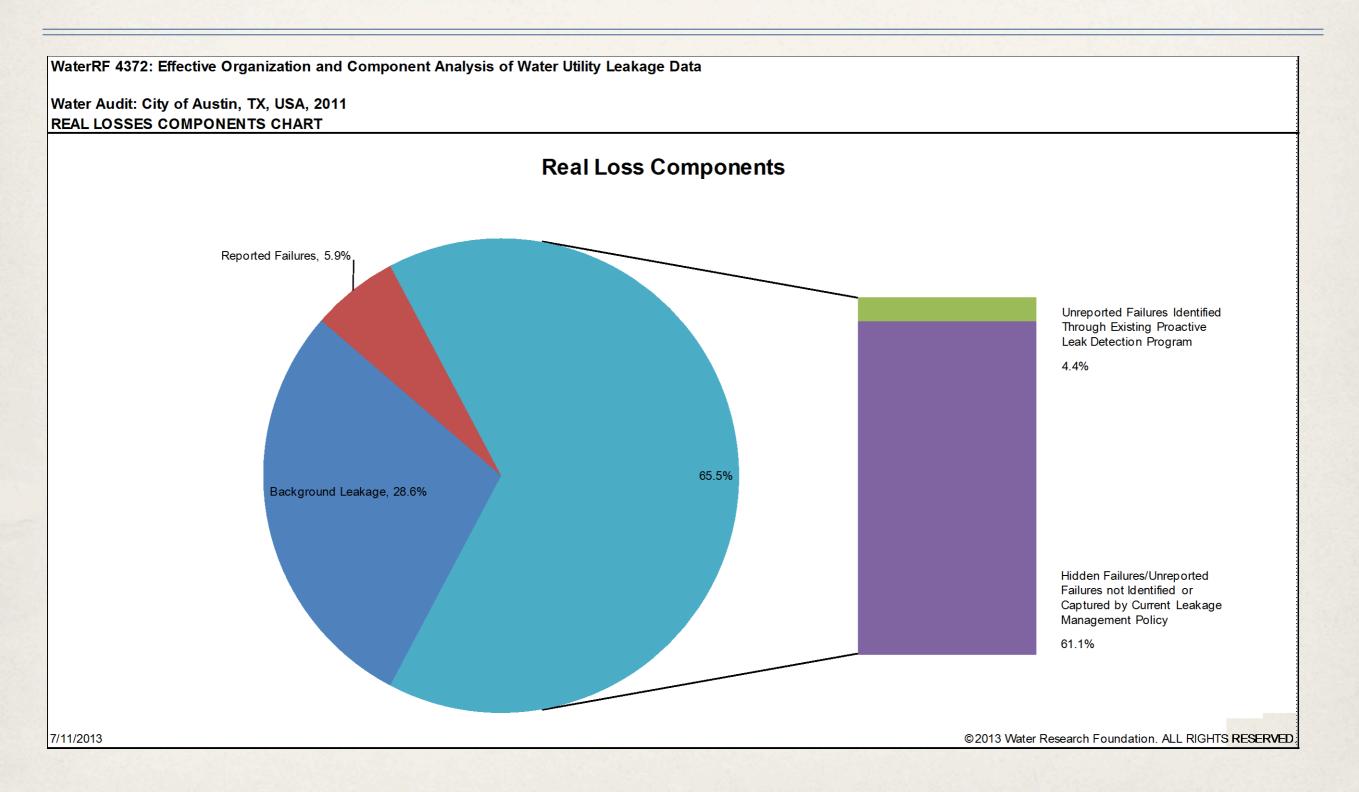
- Tools for developing water loss control strategies
 - → Location & Response Time Improvement
 - → Pressure Management
 - → Proactive Leak Detection

Component Analysis of Real Losses

Real Losses Calculation for Reported & Un-Reported Leakage

Annual Real Loss Volume from Reported Leaks =

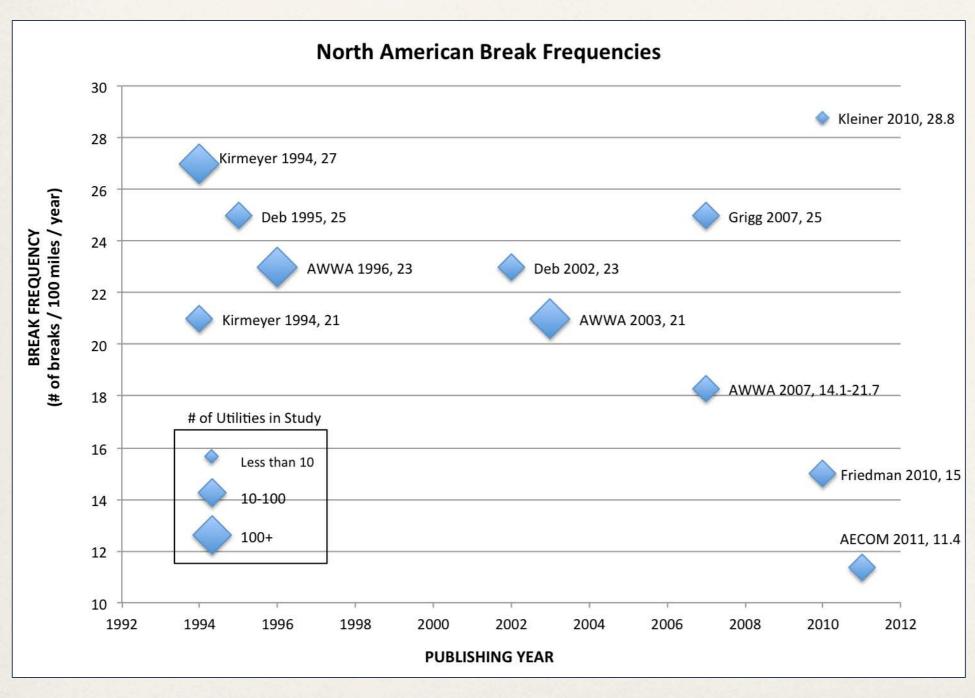
of leaks by size * average run time * average flow rate (at average system pressure)


Leakage Occurrence	Pipe Diameter	# of Events	Flow Rate (gpm)	Average Run Time (hrs)	Annual Leakage (MG)
Mains Breaks	8"	6	46	8.25	3.3

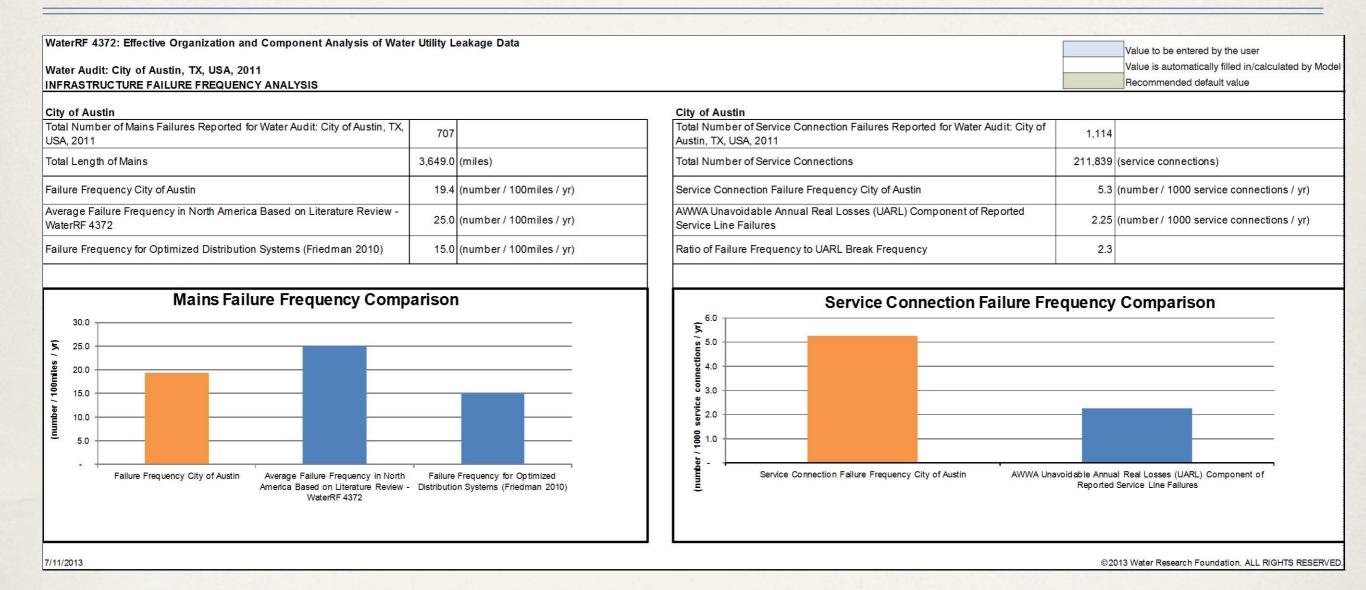
Failure Repair Records

Estimated based on pipe size using BABE methodology

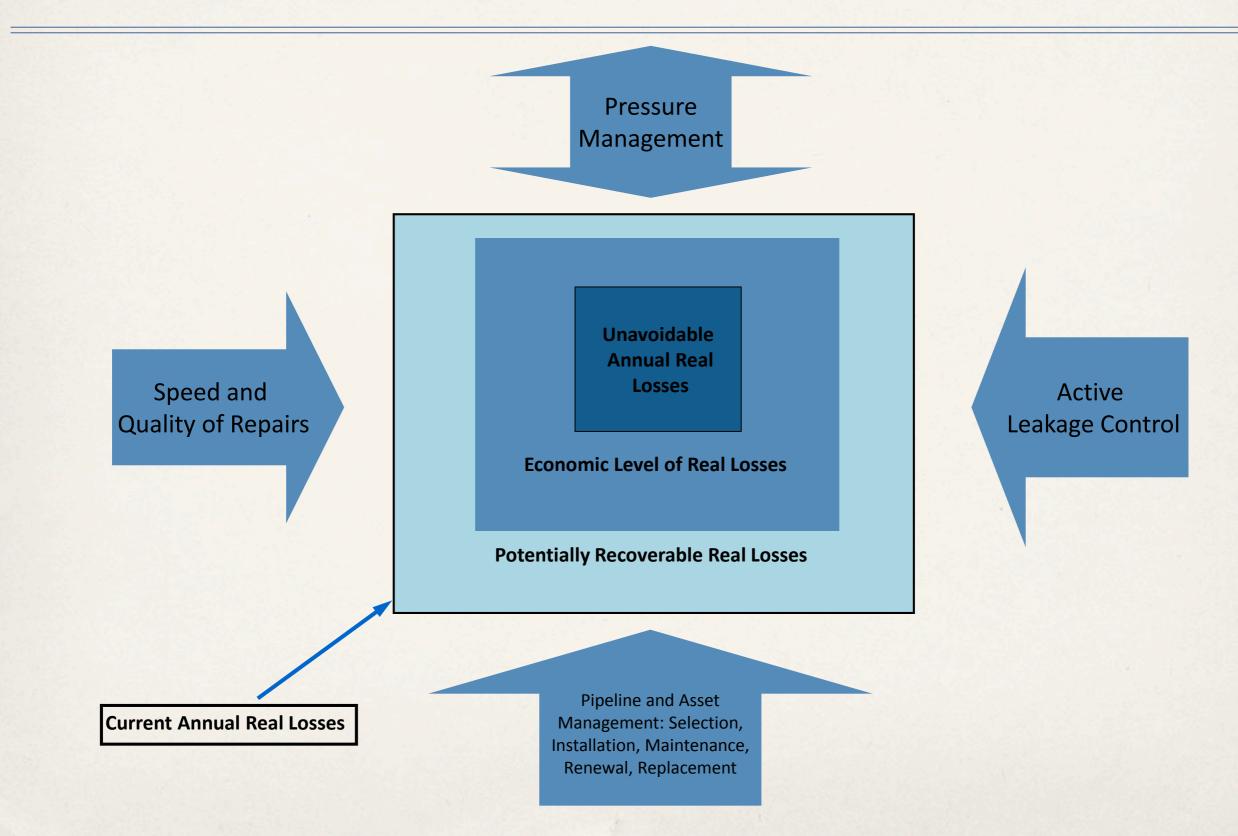
Awareness Time Estimation + Failure Repair Records for Location & Repair Time


Component Analysis of Real Losses

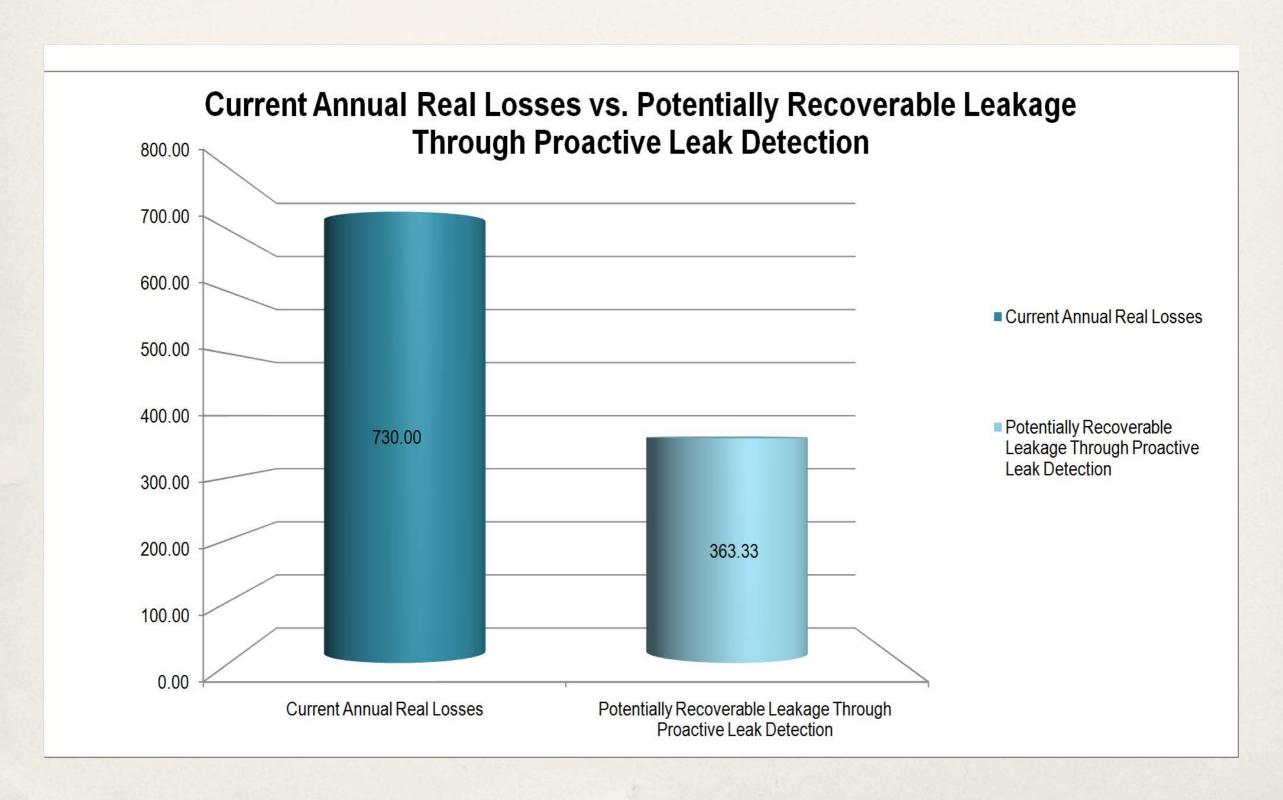
Contextualized Performance Indicators

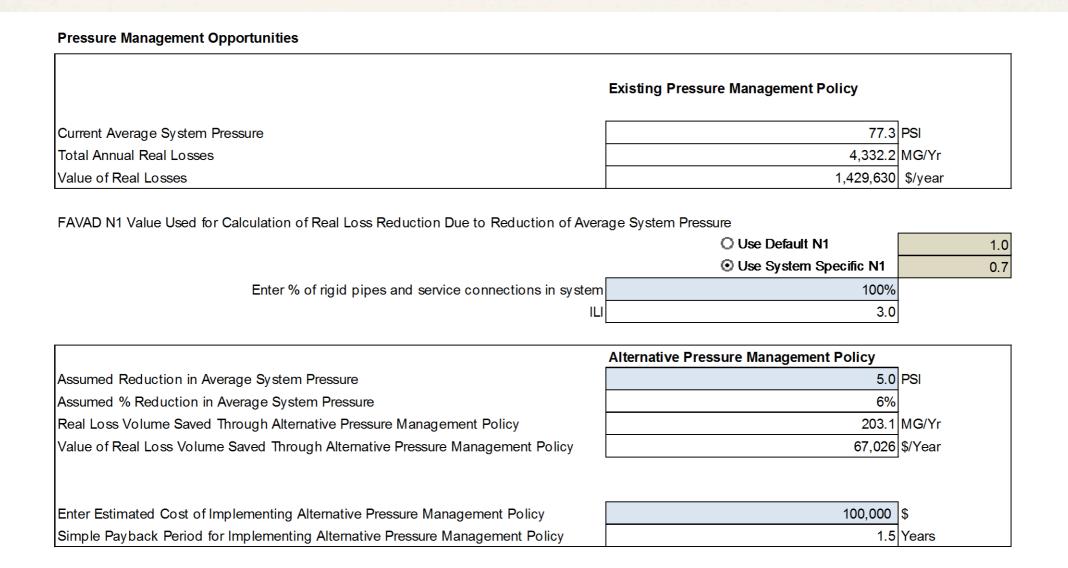


Break Frequency Research



- Focus on Predictive Models
- Terminology
- Data Collection
 Completeness


Break Frequency Research


Leakage Management Strategies

Proactive Leak Detection Model

Pressure Management in the Model

Response Time Improvement

Failures on Mains	R	eported	Un	reported	
Total Number of Failures on Mains in 2011		707			
Average location and repair duration		1.4		1.0	days
Total Volume lost (stemming from location and repair duration)		153.9			(MG)
Total Cost of Volume lost (stemming from location and repair duration)	\$	50,785	\$	23	,
What IF Location and Repair Duration is Reduced to		1		0.5	days
Percent Reduction		28%		50%	
Potential Related Savings in Leakage Volume		42.7		0.0	(MG)
Potential Related Savings in Leakage Volume Cost	\$	14,085	\$	11	,
Service Line Failures	R	eported	Un	reported	
Total Number of Failures on Service Connections in 2011		1,114		11	
Average location and repair duration		1.4		2.0	days
Total Volume lost (stemming from location and repair duration)		16.3		0.2	(MG)
Total Cost of Volume lost (stemming from location and repair duration)	\$	5,374	\$	76	
What IF Location and Repair Duration is Reduced to		1		1	days
Percent Reduction		29%		50%	
Potential Related Savings in Leakage Volume		4.65		0.1	(MG)
Potential Related Savings in Leakage Volume Cost	\$	1,535	\$	38	
Failures on System Appurtenances	R	eported	Un	reported	
Total Number of Failures on System Appurtenances in 2011		1,867		127	
Average location and repair duration		17.2		49.0	days
Total Volume lost (stemming from location and repair duration)		25.2		33.4	(MG)
Total Cost of Volume lost (stemming from location and repair duration)	\$	8,323	\$	11,013	
What IF Location and Repair Duration is Reduced to		1		1	days
Percent Reduction		94%		98%	
Potential Related Savings in Leakage Volume		23.8		32.7	(MG)
Potential Related Savings in Leakage Volume Cost	\$	7,838	\$	10,788	
Total Potential Savings if Location and Repair Duration is Reduced as Simulated in the Above Sections		182.3		32.9	(MG)
Simulated in the Above Sections					

Summarized Component Analysis

WATER AUDIT PERFORMANCE INDICATORS					
Financial					
Non-revenue water as percent by volume of water supplied:	10.3%				
Non-revenue water as percent by cost of operating system:	3.0%				
Annual cost of Apparent Losses:	\$4,376,956				
Annual cost of Real Losses:	\$1,429,630				
Operational Efficiency					
Apparent Losses per service connection per day:	13.7	gal/service conn/day			
Real Losses per service connection per day*:	56.0	gal/service conn/day			
Real Losses per length of main per day:	N/A	gal/mi/day			
r service connection per day per 1787.62743734595 pressure:	0.7	gal/service conn/day/psi			
Unavoidable Annual Real Losses (UARL):	1,453.52	MG/Yr			
Current Annual Real Losses (CARL):	4,332.21	MG/Yr			
Infrastructure Leakage Index (ILI) [CARL/UARL]:	3.0				

Cyatam Component	Pookaround Lookaga	Reported	Unreported	Total	
System Component	Background Leakage	Failures	Failures	Total	
	(MG)	(MG)	(MG)	(MG)	
Reservoirs	22.08	-	-	22.08	
Mains and Appurtenances	372.61	217.12	173.49	763.22	
Service Connections	844.15	39.55	17.46	901.15	
Total Annual Real Loss	tal Annual Real Loss 1,238.83 256.66 190.95				
Real Losses as Calculated by Water Audit					
Hidden Losses/Unreported Leakage Currently Running Undetected				2,645.77	

AWARNESS, LOCATION AND REPAIR TIME REDUCTION RESULTS						
	Reported	Unreported				
	Failures	Failures				
Total Potential Savings if Location and Repair Duration is Reduced as Simulated on the A-L-R Times Options Sheet	182.3	32.9	(MG)			
Total Potential Cost Savings if Location and Repair Duration is Reduced as Simulated on the A-L-R Times Options Sheet	\$ 23,458	\$ 10,837	Per Year			

ECONOMIC INTERVENTION FREQUENCY FOR PROACTIVE LEAK DETECTION RESULTS				
Percentage of the System to be Surveyed per Year	31	%		
Average Annual Budget for Intervention (Proactive Leak Detection)	283,187	\$/year		
Potentially Recoverable Leakage	1,787.63	MG/year		

ALTERNATIVE PRESSURE MANAGEMENT SCENARIO RESULTS						
User-Inputted Reduction in Average System Pressure	5.0	PSI				
Assumed % Reduction in Average System Pressure	6%					
Estimated Real Loss Reduction from Pressure Management Program	203.1	MG/Yr				
Financial Savings from Pressure Management Program	67,026	\$/Year				
User-Estimated Cost of Pressure Reduction	100,000	\$				
Resulting Pressure Management Program Payback Period	1.5	Years				

Please be in touch!

Reinhard Sturm

Water Systems Optimization

e: reinhard.sturm@wsoglobal.com

Kate Gasner

Water Systems Optimization

e: kate.gasner@wsoglobal.com