Green Energy Life Cycle Assessment Tool v2 (GELCAT2)

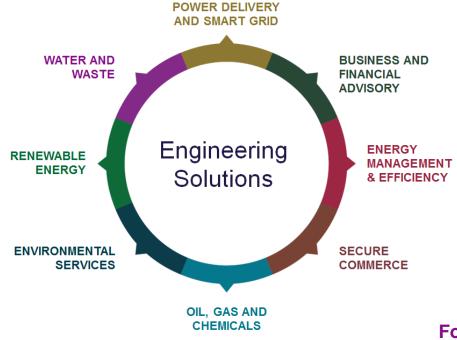
WaterRF Project No. 4464

AWWA Sustainable Water Management Conference 2016

Presented by: Peter Kobylarek, Energy Engineer March 8, 2016

Agenda

- About Leidos
- GELCAT Background
- Project Objectives
- Project Process
- GELCAT2 Tour
- Questions



WERF

Water Environment Research Foundation Collaboration. Innovation. Results.

About Leidos

- National Security, Health, Engineering
- HQ in Reston, VA
- About 19,000 employees
- About \$5 billion in revenues

Engineering and Technical Services

- > Energy benchmarking
- > Energy audits
- > Assistance for energy codes, EO111 compliance
- > Building energy simulation modeling
- > Building energy systems design
- > Building energy systems commissioning
- > Technology assessments and feasibility studies
- > Energy master planning and climate action plans
- > Portfolio management and incentive program assistance
- > Data monitoring and analysis
- > Training

Sustainable Solutions

- > Policy analysis, compliance, and strategic planning
- Sustainability consulting services and LEED certification
- > Green process improvements
- > Environmental, health, and safety management systems
- > Corporate social responsibility programs
- > Corporate training
- > Enterprise risk management
- > Supply chain strategies

For more information visit leidos.com/engineering

GELCAT Background

- Microsoft Excel®-based renewable energy screening tool
- Originally developed for wastewater utilities with funding from the Water Environment Research Foundation (WERF)
- Expanded for use by wastewater and water utilities with funding from the Water Research Foundation (WaterRF)
- Used to evaluate economic viability and energy, environmental, and social benefits/costs of selected renewable energy technologies
- Represented technologies include:
 - Photovoltaic systems original
 - Wind turbine generators original
 - Hydro-turbine generators expanded!
 - Geothermal heating and cooling systems *new!*

Project Objectives

- Incorporate two new modules micro hydro turbines and geothermal heat pumps
- Develop a framework to identify and evaluate the environmental and social costs and benefits associated with renewable energy projects
- Incorporate formats and information that account for any water-utility specific considerations, not present in the original tool
- Beta-test and validate to ensure proper function and reliable results

Project Process (1 of 4)

Task 1: Recruit Utilities to Test GELCAT

- Philadelphia Water Department (PA)
- Florida Keys Aqueduct Authority (FL)
- Mohawk Valley Water Authority (NY)
- Birmingham Water Works Board (AL)
- Ann Arbor Public Service Area (MI)
- Southern Nevada Water Authority (NV)

- Water One (KS)
- Denver Water (CO)
- Honolulu Water (HI)
- Madison Water Utility (WI)
- Santa Rosa Water Utilities (CA)
- Task 2: Perform Tests and Document Results
 - Utilities asked to use real data for testing to support validation efforts
 - Comments received from 8 of the 11 utilities
 - Outcome: Set of prioritized recommendations for incorporation into tool

Project Process (2 of 4)

- Task 3: Develop New Modules
 - Develop building heating and cooling requirements estimation method (geothermal module only).
 - Literature search to obtain system performance and cost data, as well as modeling approaches. Development of typical installation configurations and operating scenarios for the most likely applications of the technologies at water treatment plants.
 - Review of suggested technologies and configurations to be modeled with WaterRF
 - Develop and document calculation algorithms for estimating the energy impacts of the system
 - Code the module within the GELCAT structure (MS Excel/Visual Basic).
 - Internal testing of the module and de-bugging

Project Process (3 of 4)

- Task 4: Develop Co-benefits Evaluation Framework
 - Identify specific co-benefits, costs and potential impacts of renewable energy projects
 - For each co-benefit, identify and document considerations for evaluation
 - Develop scoring methodology and user guidance to translate qualitative and quantitative technology impacts into comparable metrics
- Task 5: Test GELCAT2 Beta Version
 - Same general process as Task 2 with focus and emphasis on new modules (Task 3) and co-benefits framework (Task 4)
 - Outcome: Set of prioritized recommendations for incorporation into tool

Project Process (4 of 4)

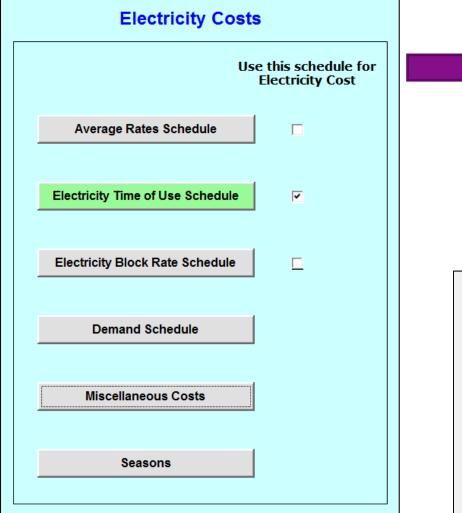
- Task 6: Finalize GELCAT2 Release Version
 - Incorporate beta test recommendations into tool
 - Final internal testing and de-bugging
- Task 7: Prepare User Manual and Case Studies
 - Develop user manual for GELCAT2 according to general format of GELCAT User's Manual
- Current Project Status
 - Addressing final comments on the tool and user manual

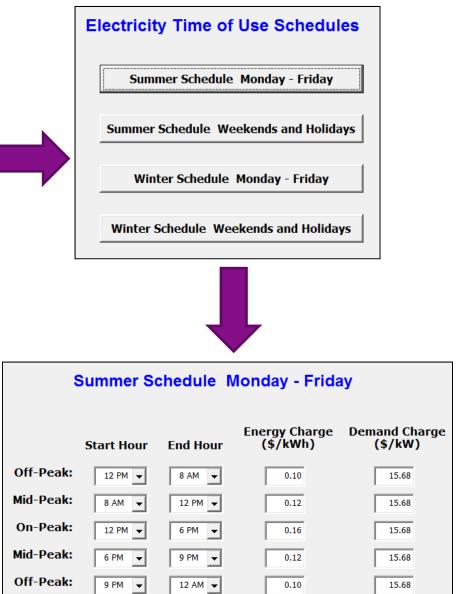
GELCAT2 Tour

Dashboard

- Main landing screen
- Navigation hub
- Quick-start instructions
- Technologies overviews
- Modules
- Co-benefits framework

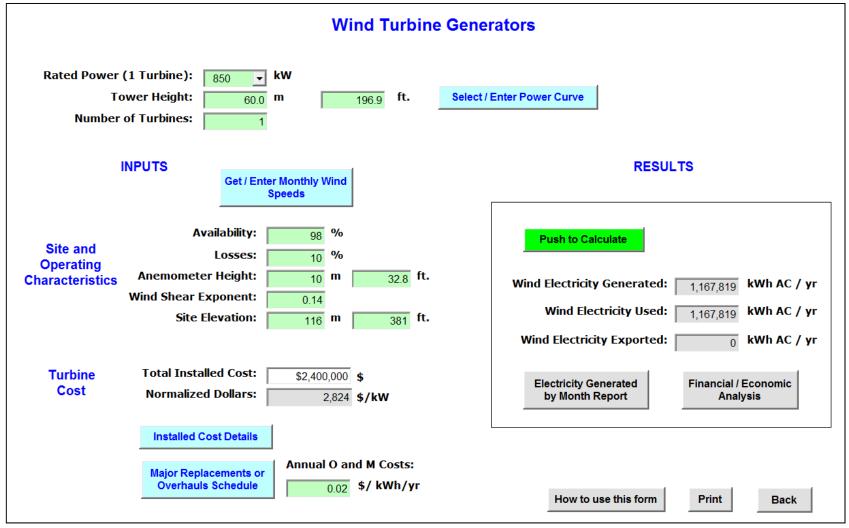
gelca green ene	RGYLIFE CYCLE ASSESSMENT TOOL
Facility Information	Green Energy Life Cycle
	Assessment Tool
Financial Parameters	(GELCAT)
Energy Cost Schedules	Version: 2.0 (user evaluation)
Photovoltaic Systems	Review Photovoltaic Systems technology
Wind Turbine Generators	R eview Wind Turbine Generators technology
Hydro Turbine Generators	Review Hydro Turbine Generators technology
Geothermal Heat Pumps	R eview Geothermal Heat Pumps technology
Quick Start Instructions	Co-benefits E valuation F ramework
Research Foundation (WERF). WRF and research contained in this tool or for the o trade names for commercial products does	When the provided the second provided the seco


Facility Information


			Facility Inform	ation					
	Site Nam	e: Processing Plan	nt XYZ		City: CHITTENANGO				
Pro	oject or Applicatio	n: Green Energy P	roject		State: NY				
					Zip: 13037				
				CO2e Emissions	Rate: 1,259	lb-CO2e/MWh			
			Monthly Details of Elect	ricity Usage					
	Number of	Year o	or Years Data Represents:	2015					
Month	Days in Billing Period	Consumption (kWh)	Peak Demand Fa (kW)	cility Demand (kW)	Total Electricity Cost (\$)	\$/kWh			
Jan	31	1,075,000	2,200	2,400	\$117,035	\$0.1089			
Feb	28	1,075,000	2,150	2,350	\$108,032	\$0.1005			
Mar	31	1,025,000	2,675	2,675	\$109,118	\$0.1065			
Apr	30	1,150,000	2,680	2,680	\$103,643	\$0.0901			
Мау	31	1,050,000	2,680	2,680	\$111,817	\$0.1065			
Jun	30	1,075,000	2,855	2,855	\$184,190	\$0.1713			
Jul	31	1,200,000	2,850	2,850	\$169,620	\$0.1414			
Aug	31	1,050,000	2,825	2,825	\$212,688	\$0.2026			
Sep	30	1,170,000	2,800	2,800	\$187,704	\$0.1604			
Oct	31	1,075,000	2,750	2,750	\$133,565	\$0.1242			
Nov	30	1,050,000	2,134	2,234	\$122,536	\$0.1167			
Dec	31	1,200,000	2,175	2,325	\$107 <mark>,</mark> 181	\$0.0893			
	Annual	13,195,000	2,855	2,855	\$1,667,129	\$0.1265			
		Graph of Consun	nption Graph of Peak D	emand	w to use this form	Print Back			

Financial Parameters

Financial Paramete	rs
Number of Years to be Evaluated: Utility Buyback Rate for Electricity: Escalation Rate for Utility Buyback Rate for Electricity:	20 years 0825 \$/kWh 2 % per year
Escalation Rate for Cost of Electricity: Escalation Rate for Cost of Fuel:	 2.5 % per year 3 % per year % per year
Escalation Rate for Maintenance Costs: Escalation Rate for Renewable Energy Credits: Discount Rate / Cost of Money (for Net Present Value calculation):	1.5 % per year 1 % per year 4.5 % per year
Federal Tax Rate:20%State Tax Rate:6%Federal Tax Credit:0% of capital cost iFederal Production Tax Credit:0\$/kWh for yearsState or Utility Capacity Incentives:0\$/kWState or Utility Production-based Incentives:0\$/kWh for yearsGreenhouse Gas Credits:0\$/lb-CO2eRenewable Energy Credits:0\$/MWh	Depreciation Schedule Federal Depreciation Schedule State
	How to use this form Print Back


Photovoltaic Systems – User Inputs (1 of 2)

Photovoltaic Systems – User Inputs (2 of 2)

Monthly Solar Radiation and Temperature												
System Type:	Flat	t Plate - Fixed	•									
Tilt (Angle): At Latitude												
Choose Nearest Location		Average Daily Insolation	Average Daytime	Coincident Peak								
SYRACUSE	onth	(kWh/m2)	Temperature (°F)	Demand Factor								
	Jan:	2.45	26.4	4 %								
Latitude: 43.12	Feb:	3.21	28.5	10 %								
Actual Tilt Angle: 43.12	Mar:	3.97	38.1	15 %								
	Apr:	4.49	50.7	21 %								
Determine Magnetic Declination	May:	4.78	63.5	30 %								
	Jun:	5.00	72	40 %								
Orientation (Azimuth or Bearing Angle):	Jul:	5.12	76.7	38 %								
	Aug:	4.85	74.6	35 %								
	Sep:	4.30	66.4	30 %								
	Oct:	3.41	54.8	13 %								
· · · · · · · · · · · · · · · · · · ·	Nov:	2.08	42.4	8 %								
	Dec:	1.84	31.3	3 %								
	How to	o use this form	Print Main Mer	Back								

Wind Turbine Generators – User Inputs (1 of 3)

Wind Turbine Generators – User Inputs (2 of 3)

	Wind Power Curve												
Rated Power: 850 kW													
Wind Speed Bin (m/s)	Wind Turbine Power, at Sea Level, 15 C (kW)	Wind Speed Bin (m/s)	Wind Turbine Power, at Sea Level, 15 C (kW)										
1	0	11	650										
2	0	12	760										
3	0	13	810										
4	30	14	850										
5	80	15	850										
6	120	16	850										
7	200	17	850										
8	290	18	850										
9	420	19	850										
10	520	20	850										

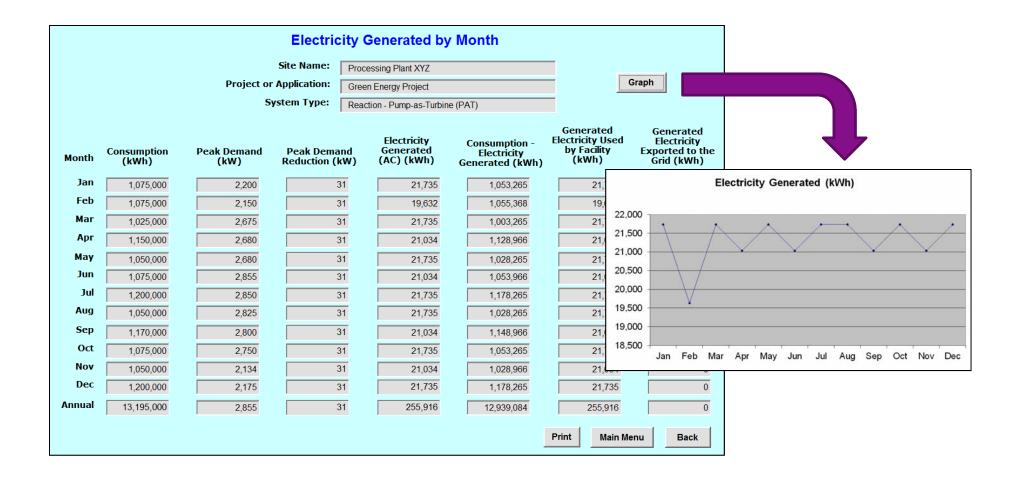
Wind Turbine Generators – User Inputs (3 of 3)

Get / Enter Monthly Wind Speeds											
		City: CHITTENA	ANGO								
		State: NY									
	10 a máis	Assessed Mind One of (m/o)									
Choose Nearest Location	Month	Average Wind Speed (m/s)	Weibull k								
	Jan:	4.7	2								
SYRACUSE, NY	Feb:	4.7	2								
Get Average Monthly Wind Speed	Mar:	4.8	2								
	Apr:	4.6	2								
	May:	4.0	2								
	Jun:	3.7	2								
	Jul:	3.5	2								
	Aug:	3.4	2								
	Sep:	3.7	2								
	Oct:	3.9	2								
	Nov:	4.6	2								
	Dec:	4.6	2								
		How to use this form	Print Main Menu Back								

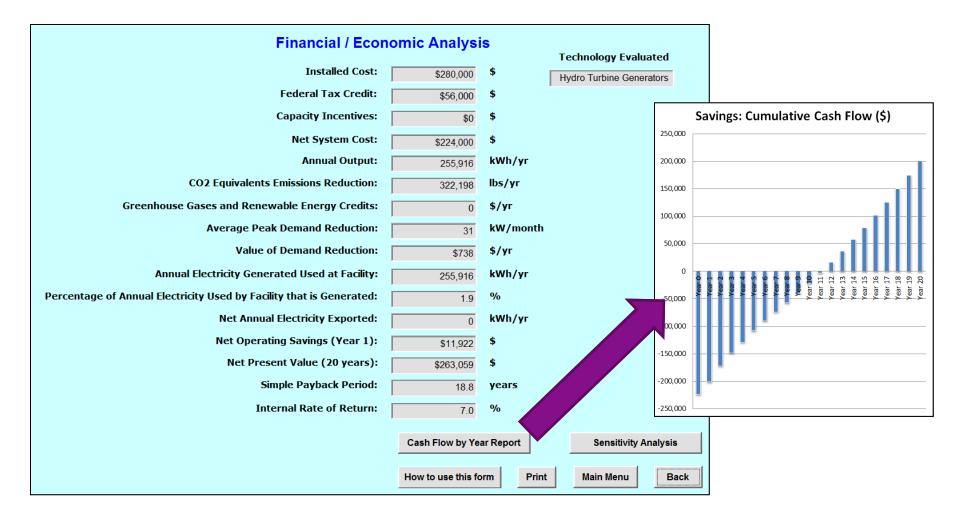
Hydro Turbine Generators - Improvements

- Modify user input fields to accommodate in-conduit projects
- Add Pump-as-Turbine (PAT) to turbine technology options
- Add Design Flow Rate input field in units of cubic feet per second
- Retain turbine efficiency curves from GELCAT
- Increase visible digits to accommodate micro and pico hydro
- Improve and expand help content to include specific considerations for water utilities

Hydro Turbine Generators – User Inputs (1 of 2)



Hydro Turbine Generators – User Inputs (2 of 2)


	Site	Flow Data	
	Average Flow (GPM)	Peak Flow (GPM)	Min Flow (GPM)
Jan	58,333	116,667	29,167
Feb	54,167	108,333	27,083
Mar	50,000	100,000	25,000
Apr	54,167	108,333	27,083
Мау	52,083	104,167	26,042
Jun	37,500	75,000	18,750
Jul	37,500	75,000	18,750
Aug	33,333	66,667	16,667
Sep	33,333	66,667	16,667
Oct	35,417	70,833	17,708
Nov	45,833	91,667	22,917
Dec	52,083	104,167	26,042
Annual	45,268		

	Daily Operating Profile												
Hour	% of Ave	rage Flow	Hour	% of Ave	rage Flow								
12 - 1 AM	50	%	12 - 1 PI	M 100	%								
1 - 2 AM	50	%	1 - 2 PI	M 100	%								
2 - 3 AM	50	%	2 - 3 PI	M 100	%								
3 - 4 AM	50	%	3 - 4 PI	M 100	%								
4 - 5 AM	50	%	4 - 5 PI	M 100	%								
5 - 6 AM	50	%	5 - 6 PI	M 100	%								
6 - 7 AM	100	%	6 - 7 PI	M 125	%								
7 - 8 AM	200	%	7 - 8 PI	M 125	%								
8 - 9 AM	175	%	8 - 9 PI	M 125	%								
9 - 10 AM	150	%	9 - 10 PI	M 100	%								
10 - 11 AM	125	%	10 - 11 PI	M 100	%								
11 - 12 PM	100	%	11 - 12 AI	M 75	%								
Use Standard Pr WW Treatm			rial Profile for for	or potable water	iles are not available facilities due to high st be entered manually								

Hydro Turbine Generators – Generation Report

Hydro Turbine Generators – Financial Analysis

Geothermal Heat Pumps - Overview

New module

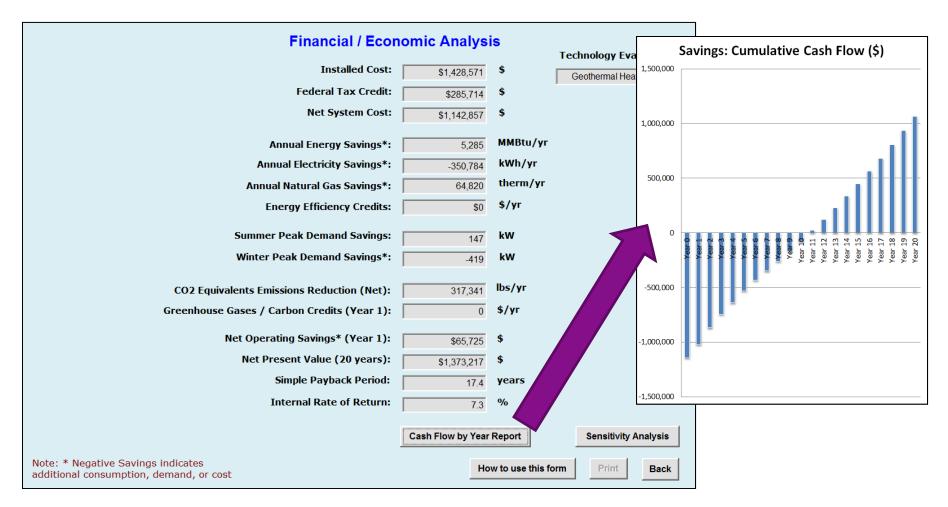
- Specific technology modeled is ground source heat pump
- Model requires inputs on building to be served by system to calculate heating and cooling loads.
- Two methods are provided to the user for load and system input requirements that differ in terms of the amount of building characteristic data that is needed.
- In order to estimate the economics of the investment, comparison to an alternative or baseline (conventional new or existing) system is needed.

Geothermal Heat Pump: User Inputs (1 of 2)

	Geothermal Heat Pumps	
Huilding and Location Building Area 200,000 (Sq. Ft)		
(excl. parking): 200,000 ((4,1+)) Percent Heated: 100 (%) Percent Cooled: 100 (%) Balance Point Tormererburg: 50 ▼ (deg. F)	Building Shape: wide rectangle Percent Exterior Glass: 11 to 25 percent Window Glass Type: Multi-layer glass	Installed Cooling Capacity: 70 (tons) System Size Method 2: Typical Sizing per Area Typical Cooling Capacity by Building Type:
Temperature: 50 (deg. F) Zip Code: 13037 City/State: CHITTENANGO, NY Weather Station:	Number of Floors:4Number of Underground Floors:1Floor to Ceiling Height:8	Typical Office (350 SF/Ton) Capacity Projection: 571
Syracuse-Hancock Intl AP 725190 Latitude: 43 (deg. N)	Freestanding Building: Yes Average Occupied Hours/Day: 10 Average Occupied 6	6. RESULTS Push to Calculate View Load Analysis
Longtitude: 76 (deg. W) Climate Zone: 1 (2003 CBECS) 1 Existing Heating & Cooling System(s)	Outside Air Days/ Week: Exchange Rate (per Hour): Low for Office (3 ACH)	Existing Heating & Cooling System(s) Electricity: 259,102 (kwh) 20,728 (\$) Natural Gas: 64,820 (therm) 129,636 (\$)
2. Input Geothermal Heat	Exchange Rate: Load Method 2: Annual End-Use Estimate	Total: 7,366 (MMBtu) 150,364 (\$) Geothermal Heat Pump Electricity: 609,886 (kwh) 48,791 (\$)
Pump System Efficiency Heating COP: 3.6	Annual Cooling Load EUI: 30 (kBtu/SF) Annual Heating Load EUI: 30 (kBtu/SF) Annual Load Projections (MMBtu):	Annual Savings Electricity: -350,784 (kwh) -28,063 (\$)
Cooling EER: 17.1	Heating: 5,172 Cooling: 3,229	Natural Gas: 64,820 (therm) 129,636 (\$) Total: 5,285 (MMBtu) 101,574 (\$) Equivalent Full-Load Hours (EFLH) 101,574 (\$)
Method 1: Simple Unit Installed Cost Es	timate Installed Cost Summary: Unit Cost: 2,500 (\$/ton)	Heating: 1,006 Flag: 2,000 Cooling: 471 Flag: 1,500
Method 2: Detailed Installed Cost Esti	mate Total Installed Cost: 1,428,571 (\$) Annual O&M Costs: 20 (\$/yr-ton)	Financial / Economic Analysis How to use this form Print Back

26

Geothermal Heat Pump: User Inputs (2 of 2)


Existing System / Baseline System Description												
	1. ł	leating & C	ooling Fuel —		3. Fraction of Space Heated by Each System/Fuel							
Fuel Name	Natural Gas	-	Fuel therm	•	Heating System Electric Natural Ga	<u>15</u>						
Conversion Factor: 10.000 (therm/MMBtu)		10.000	Fuel Emission Facto (lb/the		Furnaces Boilers with Water Loop Heat Pumps:							
Mont	Consum (therm)	(MMBtu)	Total Cost:	Unit Cost: (\$/MMBtu)	Boilers: 0.8	\$						
Jan 🛛	9000	900	18000	20.0000	Packaged Heating Units: 0.2	2						
Feb	9000	900	18000	20.0000	Individual Space Heaters:							
Mar	6000	600	12000	20.0000	Air-Source Heat Pumps:							
Apr	6000	600	12000	20.0000	Variable Refrigerant Flow Heat Pump:							
May	6000	600	12000	20.0000	Other:							
Jun	3000	300	6000	20.0000	4. Fraction of Space Cooled by Each System/Fuel							
Jul 🗍	3000	300	6000	20.0000	Cooling System <u>Electric</u> <u>Natural Ga</u>	as						
Aug	3000	300	6000	20.0000	Packaged 0.2	- -						
Sep	6000	600	12000	20.0000	Res Type Central A/C:	i						
Oct 🛛	6000	600	12000	20.0000	Individual Room A/C:	i						
Nov	6000	600	12000	20.0000	Water Loop Heat Pumps with Heat Rejection:	i						
Dec	9000	900	18000	20.0000	Air-Source Heat Pumps:	-						
Annual	72,000	7,200	144,000	20.0000	Variable Refrigerant Flow Heat Pump:							
			Converte d Doto		Air Cooled Chiller: 0.8							
Average u	Jtility Rate: (\$/therm)	2.00	Converted Rate: (\$/MMBtu)	20	Water Cooled Chiller:							
					Absorption Chiller:							
<u> </u>	Energy Effic	iency and (GHG/Carbon Cre	dits	Evaporative Cooler:	1						
Energy Effi	ciency Credi (\$/MMBtu)		EE Credits Escala (% per		Other:							
GHG/C	Carbon Credit (\$/lb)	t s: 0	GHG Credits Escal (% per	ation: 0	How to use this form Print Back							

Geothermal Heat Pump: Load Analysis / BPT

Summary	of GHP Load	Analysi	s Output	at Balanc	e Point Te	emparatu	re (BPT) S	cenarios	Created at:	3/7/2016 1	0:59						
			Current BPT	BPT_40	BPT_45	BPT_50	BPT_55		How to	Detail View	ial Load Analy	ata Pa	ck to GHP M	nin Manu			
Annu	al Output Variab	les	50	40	45	50	55] –	HOW TO	Detail Visu	iai Load Anaiy	SIS		ammenu			
Financial	Installed Cost (D	ollar)	1,428,571	1,428,571	1,428,571	1,428,571	1,428,571										
Overview:	Annual Savings (Dollar)	101,574	96,553	98,784	101,574	104,886			Savi	ngs: Tota	al (MN	1Btu)				
Overview:	Simple Payback ((Year)	14.1	14.8	14.5	14.1	13.6	5,500						5,46	3		
	Electricity (kWh)		259,102	298,409	277,494	259,102	243,071							5,10			
	Electricity (kW)		548	548	548	548	548	5,400									
Existing	Electricity Cost (Dollar)	20,728	23,873	22,199	20,728	19,446										
System	Natural Gas (the		64,818	60,850	62,664	64,818	67,291	5,300 -					5,285				
(Baseline):	Natural Gas Cost	t (\$)	129,636	121,700	125,328	129,636	134,582										
	Total (MMBtu)		7,366	7,103	7,213	7,366	7,558	5,200 -			5,134						
	Total Cost (Dolla		150,364	145,573	147,527	150,364	154,028				5,134						
Geothermal	Electricity (kWh)		609,886	612,750	609,292	609,886	614,269	5,100 -			-	_					
Heat Pump:	Electricity (kW)		419	419	419	419	419		5,012								
neuer ump.	Electricity Cost (Dollar)	48,791	49,020	48,743	48,791	49,142	5,000 -				_					
	Electricity (kWh)		(350,784)	(314,341)	(331,798)	(350,784)	(371,198)										
	Electricity (kW)		129	129	129	129	129	4,900			-						
	Electricity Cost ((28,063)	(25,147)	(26,544)	(28,063)	(29,696)										
Savings:	Natural Gas (the		64,818	60,850	62,664	64,818	67,291	4,800 -			-						
	Natural Gas Cost	t (Dollar)	129,636	121,700	125,328	129,636	134,582	4,700									
	Total (MMBtu)		5,285	5,012	5,134	5,285	5,463	4,700 -	40		45		50	55			
	Total Cost (Dolla	,	101,574	96,553	98,784	101,574	104,886		40		45		50				
Monthly En	ergy Report at B	PT: 50															
				Existing				Geo	thermal Hea					Savings			
Month		ctricity			ral Gas		tal		Electricity			Electricity			ral Gas	To	
		(kW)	Cost (\$)	(therm)	Cost (\$)	(MMBtu)	Cost (\$)	(kWh)	(kW)	Cost (\$)	(kWh)	(kW)	Cost (\$)	(therm)	Cost (\$)	(MMBtu)	Cos
Jan	0	0	0	15,293	30,587	1,529	30,587	99,350	419	7,948	(99,350)	(419)	(7,948)	15,293	30,587	1,190	22,
Feb	0	0	0	14,199	28,398	1,420	28,398	92,242	389	7,379	(92,242)	(389)	(7,379)	14,199	28,398	1,105	21,
Mar	5,897	48	472	9,077	18,154	928	18,626	63,265	249	5,061	(57,368)	(200)	(4,589)	9,077	18,154	712	13,
Apr	10,430	85	834	3,532	7,064	389	7,898	30,545	97	2,444	(20,115)	(11)	(1,609)	3,532	7,064	285	5,4

Month	onth Electricity		Natural Gas Total			Electricity			Electricity			Natural Gas		Total			
	(kWh)	(kW)	Cost (\$)	(therm)	Cost (\$)	(MMBtu)	Cost (\$)	(kWh)	(kW)	Cost (\$)	(kWh)	(kW)	Cost (\$)	(therm)	Cost (\$)	(MMBtu)	Cost (\$)
Jan	0	0	0	15,293	30,587	1,529	30,587	99,350	419	7,948	(99,350)	(419)	(7,948)	15,293	30,587	1,190	22,639
Feb	0	0	0	14,199	28,398	1,420	28,398	92,242	389	7,379	(92,242)	(389)	(7,379)	14,199	28,398	1,105	21,019
Mar	5,897	48	472	9,077	18,154	928	18,626	63,265	249	5,061	(57,368)	(200)	(4,589)	9,077	18,154	712	13,565
Apr	10,430	85	834	3,532	7,064	389	7,898	30,545	97	2,444	(20,115)	(11)	(1,609)	3,532	7,064	285	5,455
May	29,907	245	2,393	142	284	116	2,677	22,717	179	1,817	7,190	66	575	142	284	39	860
Jun	47,679	391	3,814	0	0	163	3,814	34,744	286	2,779	12,936	105	1,035	0	0	44	1,035
Jul	66,869	548	5,350	0	0	228	5,350	48,727	401	3,898	18,142	147	1,451	0	0	62	1,451
Aug	55,237	452	4,419	0	0	188	4,419	40,251	331	3,220	14,986	121	1,199	0	0	51	1,199
Sep	33,354	273	2,668	306	613	144	3,281	26,295	200	2,104	7,059	73	565	306	613	55	1,177
Oct	6,992	57	559	1,761	3,523	200	4,082	16,538	48	1,323	(9,546)	9	(764)	1,761	3,523	144	2,759
Nov	2,738	22	219	6,189	12,378	628	12,597	42,199	169	3,376	(39,462)	(147)	(3,157)	6,189	12,378	484	9,221
Dec	0	0	0	14,318	28,635	1,432	28,635	93,012	392	7,441	(93,012)	(392)	(7,441)	14,318	28,635	1,114	21,194
Total	259,102	548	20,728	64,818	129,636	7,366	150,364	609,886	419	48,791	(350,784)	129	(28,063)	64,818	129,636	5,285	101,574
20																	

Geothermal Heat Pump: Financial Analysis

Co-benefits Evaluation Framework: Overview

- New module
- Written guidance and scoring tool
- Considerations for qualitative assessment of co-benefits (i.e. project impacts other than costs/savings and GHGs)
- Co-benefits captured in Framework:
 - Relationship With Other Initiatives
 - Job Creation
 - Energy Security
 - Human Health
 - Environmental Impacts
 - Environmental Policy Compliance or Goal Achievement
 - Leadership

Co-benefits Framework: Scoring Guidance

Job Creation:

Scoring Level	Primary Consideration	Secondary Consideration	Tertiary Consideration
Low – 0 to 3	Project will cause a net loss of jobs, or create few if any new jobs.	Any newly created jobs are temporary and relatively short term.	Most or all newly created jobs are overseas.
Medium – 4 to 7	Project will create a moderate number of new jobs.	Some newly created jobs are temporary and relatively short term while others are permanent or temporary but long-term.	Most or all newly created jobs are domestic but few if any are local.
High – 8 to 10	Project will create a significant number of new jobs.	Most or all newly created jobs are permanent or temporary but long-term.	Most or all newly created jobs are local.

Human Health:

Scoring Level	Primary Consideration	Secondary Consideration			
Low – 0 to 3	Significant number of negative impacts with	Positive impacts are localized and/or			
	limited or no positive impacts	negative impacts are widespread			
Medium – 4 to 7	Moderate number of positive and/or negative	Positive and negative impacts are			
	impacts	approximately regional			
High – 8 to 10	Significant number of positive impacts with	Positive impacts are widespread and/or			
	limited or no negative impacts	negative impacts are localized			

Co-benefits Framework: Scoring Tool

Review Co-benefits Evaluation Framework Guidance

Back

Project Scoring Matrix - Use the cells in the table to weight the co-benefits according to their relative importance and score the green project options according to their performance or impact relative to each co-benefit. Additional co-benefits may be entered in the gray column as indicated by the red text. Green energy project options should be named in the header of the green cells as indicated by the red text. A total score is calculated for the baseline scenario and each green energy project in the last row of the table. Projects receiving the highest scores are the best performers with respect to co-benefits.

	Relative	Baseline/Business- as-Usual Scenario	Green Energy Project Scoring (scale 0-10)							
Co-benefit	Importance of Co- benefit (scale 0-10)		Micro Hydro	Solar PV Project B	[ENTER GREEN ENERGY PROJECT NAME HERE]					
Relationship to Other Existing or Planned Initiatives	5	4	5	5						
Job Creation	6	2	6	7						
Energy Security	8	2	9	7						
Human Health	10	2	9	9						
Environmental Impacts	10	3	9	8						
Environmental Policy Compliance or Goal Achievement	10	8	10	10						
Leadership	7	3	9	9						
[ENTER ADDITIONAL CO- BENEFITS HERE]					·					
[ENTER ADDITIONAL CO- BENEFITS HERE]										
[ENTER ADDITIONAL CO- BENEFITS HERE]										
[ENTER ADDITIONAL CO- BENEFITS HERE]										
[ENTER ADDITIONAL CO- BENEFITS HERE]										
TOTAL SCORE		199	476	456	0	0	0	0	0	0

WaterRF Project No. 4464

Thank you!

Peter Kobylarek 202-488-6620 peter.d.kobylarek@leidos.com leidos.com/engineering

