

# Using StrongPIPE Hybrid FRP for PCCP Rehab in Miami-Dade System

Luis Aguiar
Miami-Dade Water & Sewer Department

Anna Pridmore, PhD
Structural Technologies



#### **PROJECT BACKGROUND**

## Miami-Dade Water & Sewer Department (MDWASD):

- 7,900 miles of water mains from 2"-120" in diameter across 400 square miles
- 1,400 miles of sanitary sewer mains





#### **PROJECT BACKGROUND**

In response to a series of high profile catastrophic failures in 2010 & 2011:

MDWASD implemented a comprehensive asset management program, and established the Infrastructure Assessment and Rehabilitation Program (IAARP)



**Ruptured 54-inch PCCP water transmission main** 



## **INFRASTRUCTURE ASSESSMENT & REHABILITATION PROGRAM (IAARP)**

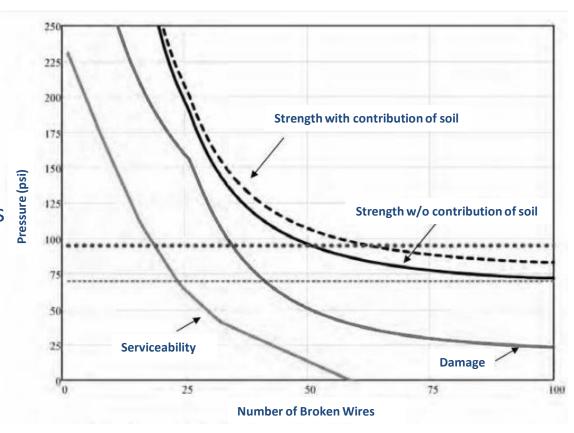
Routine rotating inspections of pipeline Adoption of best industry practices

- Precision inspection
- Replacement
- Structural upgrade





#### **ELECTROMAGNETIC INSPECTION**


Identifies pipe segments with broken wires





#### **FAILURE RISK ANALYSIS & REPAIR PRIORITIZATION**

- Failure risk analysis performed
  - Prestressing wire pitch and spacing
  - Cylinder thickness
  - Concrete core thickness
  - Internal and external loads on pipe
- Facilitates prioritizing repairs or replacements before failures occur





#### **OPTIONS ANALYSIS**

#### Factors:

- Many MDWASD's pipelines are located underneath major roadways making trenchless rehabilitation advantageous.
- For 5 years MDWASD has used FRP for PCCP upgrades
- Established an on-call emergency response team of prequalified contractors



**Construction alongside roadways** 



#### **PROJECT SCOPE**

## 13 Segments of 54 inch PCCP

- 10 Segments of FRP repair
- 3 Segments of Hybrid FRP

| Constituents                                           | CFRP System                        | Hybrid FRP System                                             |
|--------------------------------------------------------|------------------------------------|---------------------------------------------------------------|
| Primer, saturating resin, intermediate filler, topcoat | 2 part 100% solids epoxy           | 2 part 100% solids epoxy                                      |
| Longitudinal reinforcement                             | Hand applied layers of GFRP & CFRP | Hand applied layers of GFRP & CFRP                            |
| Hoop reinforcement                                     | Hand applied layers of GFRP & CFRP | Robotically installed continuous steel wire embedded in epoxy |



### **DESIGN REQUIREMENTS**

Both FRP and Hybrid FRP systems are stand alone systems designed to resist the following loads without reliance on the host pipe:

| • | Working pressure                | 150 psi   |
|---|---------------------------------|-----------|
| • | Working plus transient pressure | 225 psi   |
| • | Vacuum pressure                 | -14.7 psi |
| • | Soil Cover                      | 5.5 ft    |
| • | Ground water height above crown | 5.5 ft    |
| • | Surface live load               | HS-20     |



## StrongPIPE® Hybrid FRP System Overview

- StrongPIPE® is fully structural repair system comparable to the use of carbon fiber reinforcement.
- Two (2) installations for Miami-Dade Water & Sewer completed in past 18 months. One installation was inspected after 10 months in service with no issues.
- Objective is to utilize for extended runs of pipe because it is more cost effective than other structural repair systems.






StrongPIPE® inspection @ Miami-Dade after 10 months in service



## StrongPIPE® Hybrid FRP System Overview



#### Legend

- 1st Glass FRP Layer (longitudinal)
- 2. High Str. Steel Wire
- 3. Polymer Matrix
- 2<sup>nd</sup> Glass FRP Layer (longitudinal)
- Flexible Topcoat

**Basic composition for Hybrid FRP system** 



#### **HYBRID FRP INSTALLATION PROCESS**

- Dewatering
- Surface preparation
- Adhesion testing verifying surface prep
- Installation of longitudinal FRP
- Application of thickened epoxy
- Installation of steel reinforcement
- Application of thickened epoxy
- Installation of longitudinal FRP
- Application of topcoat





Prepared concrete substrate -54-inch PCCP





Drilling the holes to set the test pucks for adhesion tests





**Mechanical saturation equipment** 

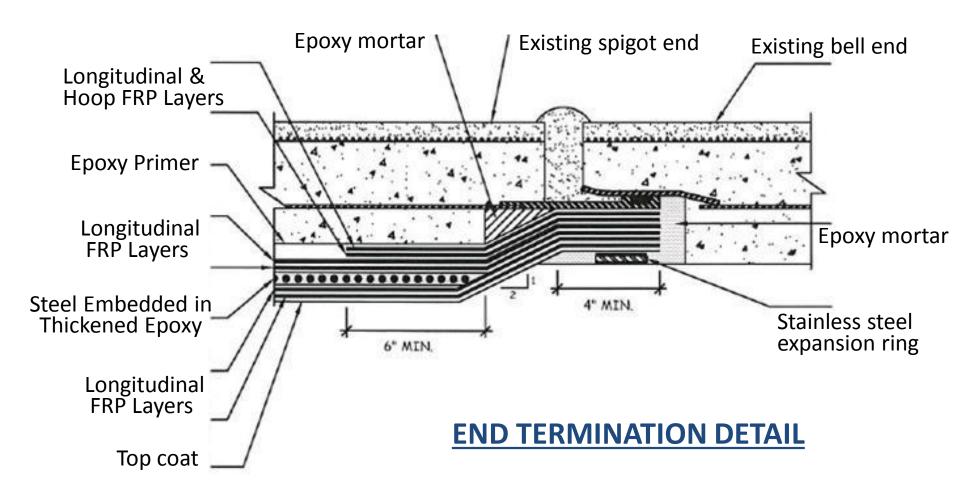




Installation of longitudinal layer of fiber reinforced polymer






**Truck mounted unit for Hybrid FRP System** 





**Hybrid FRP System – Steel reinforcement installation** 



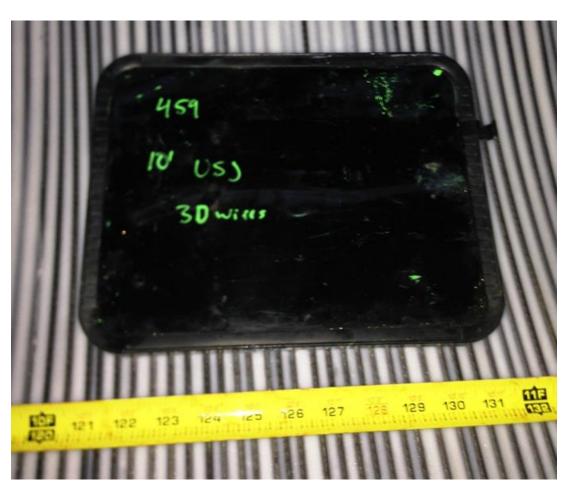











#### **HYBRID FRP INSTALLATION VIDEO**



## MAJOR STEPS IN QA/QC PROCESS:

- Monitor temperature and humidity
- Verification of surface prep
- Calibration of mechanical saturator
- Adhesion testing
- Preparation of witness panels for tensile testing
- Verification of FRP alignment
- Verification of FRP overlaps
- Verification of spacing of steel reinforcement
- Verification of embedment of steel in epoxy





**Verification of steel wire placement** 



## **QUESTIONS?**

## **CONTACT INFORMATION**

**Luis Aguiar** 

**Miami-Dade Water & Sewer Department** 

lagui@miamidade.gov

786.552.8185

Anna Pridmore, PhD

**Structural Technologies** 

apridmore@structuraltec.com

714.869.8824