
© 2016 Water Research Foundation. ALL RIGHTS RESERVED.© 2016 Water Research Foundation. ALL RIGHTS RESERVED.

CCT and WQPs
What’s New
David A. Cornwell

EE&T,INC
Philadelphia Workshop

March 29,2016



© 2016 Water Research Foundation. ALL RIGHTS RESERVED.

Historical Perspective on Managing 
Corrosivity
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• Longevity of piping, 
appurtenances, and plumbing 

• Reliable delivery of water
• Preventing staining/red water
• Control of release of metals 

(Particularly iron)

We still have to achieve iron corrosion control
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• Iron corrosion
— Prevent Tuberculation
— Prevent pipe loss
— Prevent red water

• Controlled by 
– Ferric oxides & calcium carbonate films at pH >8
– Polyphosphate addition –NOT orthophosphate
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Historical Corrosion Management—Still 
Important

Iron corrosion control is not necessarily lead corrosion control
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Lead Corrosion Control Strategies

Source: Brown, R. A., N. E. McTigue, and D. A. Cornwell. 2013. Strategies for assessing optimized corrosion control 
treatment of lead and copper. Journal AWWA 105(5) May 2013: 62 – 75. *permission pending

The three primary lead CCT 
methods.

Silicates can also be considered
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What Have We Learned about Pb CCT

• Particulate lead is very important and harder to 
control and harder to predict release

• There are often higher lead levels at the tap 
than 1st draw

• Houses are unique
• Polyphosphate is not a lead corrosion inhibitor—

might make Pb worse
• Changes in ORP can cause lead releases

8
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But, many times peak is absent or is before or after LSL
This sample is highly particulate Pb.
Particulates can come off any time
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Participating Water Systems
• 8 participating water systems
• 3 use free chlorine, 5 use chloramines
• All well below AL
• 6 systems use orthophosphate

— pH 7.2 to 7.6, except one >8.0
— Target PO4 residual = 0.3 to 0.8 mg/L as P

• Other systems
— One system = pH/alkalinity adjustment (pH ~9.3) 
— One system uses pH/alkalinity (pH ~8.5) plus Pb(IV)

• Sample Collection and analysis
— 37 locations (houses)
— 96 profiles

12



© 2016 Water Research Foundation. ALL RIGHTS RESERVED.© 2016 Water Research Foundation. ALL RIGHTS RESERVED.

13



© 2016 Water Research Foundation. ALL RIGHTS RESERVED.

Particulate Pb in all Profiles
• Total Profile Samples 1,152 (96 times 12)
• Of these

— 33 % dissolved lead 
— 67 % had particulate lead
— 31 % primarily particulate lead

• 143 of these 1,152 samples were 15 µg/L - of these
— 31 %  dissolved  lead
— 69 % had particulate lead
— 21 % primarily particulate lead

• Overall, as with peak, only about one-third of all samples 
were dissolved lead

14
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Additional Particulate Findings
• Independent of corrosion control approach, no participating 

utility was dominated system-wide by any lead form 
• i.e., none were all “particulate dominated” and none were all 

“dissolved dominated”

• Individual houses
• 12 % of houses were always “dissolved dominated”
• 21 % of houses were always “particulate dominated”
• 67 % were dominated by particulate Pb some dates, and dissolved Pb 

other dates

 Particulate lead release is a major factor in lead levels
Why do we get particulate lead?

15
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• Sampling protocol
• Intrinsic Pb solubility of surface material (water 

chemistry)
• Rate of dissolution in short stagnation times

—Galvanic driving force
—Diffusion from surface (reaches steady state)

• Length of contact with lead source
• Nature of lead release

—Particulate
—Soluble

Factors Governing Pb Levels

Source: Michael Schock EPA presentation to NDWAC working group 16
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Lets First Look at Lead 
Solubility—Dissolved Lead

17
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Classic Pb(II) Solubility, fresh 
surface
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Source: Michael Schock EPA presentation to NDWAC working group 18
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Orthophosphate Treatment for Pb(II)
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• More effective with low TIC

• Lower dosages at low TIC

• pH less critical at low TIC

• Point of diminishing returns 

higher with high TIC

Source: Michael Schock EPA presentation to NDWAC working group 19



© 2016 Water Research Foundation. ALL RIGHTS RESERVED.

20

Effect of pH and PO4 on Lead Release
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Source: Michael Schock EPA presentation to NDWAC working group
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21Schock, USEPA

pC-pH Diagram shows pH range 
of low solubility

Source: Michael Schock EPA presentation to NDWAC working group
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 Lead can be bound in post-treatment deposition
— Iron
— Manganese
— Aluminum
— Calcium 
— Phosphorus

 These mixed deposits are not very stable or “hard”
 Could cause erratic release of lead-rich particles
 Can  create Pb buildup in interior house or building plumbing
 Maybe different in zones in a distribution system

Now Let’s Look at Particulate Lead

22
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• Dominantly PbO2 Scales—these are more stable
• Dominantly Pb(II) carbonate and 

hydroxycarbonates—more stable 
• Dominantly lead/PO4—more stable
• Surface deposits creating barriers, rich in Ca, 

Al, often P, with some Pb (< 20%, often 5%)-less 
stable

• Surface deposits rich in Fe, Mn, Al, sometimes 
accumulating P and Pb  (< 10 %)-less stable

23

Major Classes of Pb Pipe Deposits
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• Can cause incomplete conversion to Pb(II) 
phosphate phase

• Residual carbonate phase often the higher-
solubility PbCO3 (cerussite) form

• Blended phosphate systems rarely (to never) 
show crystalline Pb(II) phases

24

Some have Pb(II) mixed 
carbonate/phosphate scales
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Poly and meta/hexamata 
phosphates

• Sequester metals so are good to minimize Fe 
and Mn colored water issues

• Can reduce calcium carbonate ppt
• Tend to prevent metal ppt—including lead
• React with lead to prevent Pb-ortho ppt from 

forming even in blended products
• Form amorphous Pb/Ca/Fe/Mn scales

25
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Representation of Poly v Ortho P

Source: Edwards, M., and L. S. McNeill. 2002. Effect of phosphate inhibitors on lead release 
from pipes. Journal AWWA 94(1) January 2002: 79–90.  *permission pending  26
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Orthophosphate vs 
Polyphosphate

Source: Edwards, M., and L. S. McNeill. 2002. Effect of phosphate inhibitors on lead release from pipes. Journal AWWA 94(1) 
January 2002: 79–90.   *permission pending

27

Blue = none
White = poly
Grey= ortho
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Pb Solubility 
Poly v Ortho P

Time Control Ortho Poly

Time 1 1.25 0.022 1.65

Time 2 2.25 0.009 0.42

Source: Boffardi, B.P., and A.M. Sherbondy. 1991. Control of lead corrosion by chemical treatment. NACE Corrosion
27(12): 966–975.   *permission pending
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Pb increase using Poly over Ortho P

Source: Edwards, M., and L. S. McNeill. 2002. Effect of phosphate inhibitors on lead release from pipes. Journal AWWA 94(1) 
January 2002: 79–90.  *permission pending 29

More research is needed
In balancing poly & ortho
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Source: Boffardi, B.P., and A.M. Sherbondy. 1991. Control of lead corrosion by chemical treatment. NACE Corrosion 27(12): 966–
975.   *permission pending 30

Ortho scales are Pb-PO4

Poly scales are loose mixtures
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Changes in ORP Can Mobilize Mn, 
Which Then Can Carry Sorbed Pb
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Source: Michael Schock EPA presentation to NDWAC working group 31

Example of ORP 
change altering 
Pb release
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 Water quality zones in distribution system can be 
different

 How we sample makes a difference
 Weak scales can release lead more readily
 Particulate release—faucet velocity
 Physical disturbance risk from repairs or 

infrastructure renewal--PLSLR
 Low water use makes CCT of all kinds less effective
 Polyphosphate
 WQ changes effecting scales or solubility

Summary of Important Pb issues

32
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• Pipe loops
—Harvest Pb pipe – keep moist
—New Cu pipe
—WaterRF 4317

• Coupon studies
• Desktop Studies
• Investigate potential for microbial growth w/ 

orthophosphate
—Limiting nutrient assessment (C:N:P)

• Systems with Galvanic Corrosion
—Benchtop laboratory study or pipe loop

Corrosion Control Evaluations

33
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Frame is:  
• 103.25 in length, 
• 26 in width, 
• 48 in height

Source:  

Edwards, M., P. Scardina, J. Parks, and A. Atassi. 
2011. Non-Intrusive Methodology for Assessing Lead 
and Copper Corrosion (Water Research Foundation 
Project 4317): Installation and Operation Manual for 
Corrosion Evaluation Rig – Revision 2 (October 26, 
2011). 

WaterRF 4317
Corrosion Evaluation Rig

34
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Coupon Study at EE&T: ZnPO4 (3:1)
Stainless Steel

Lead

35
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Example Coupon Result

Results are relative but coupon studies can be very effective tools

EE&T, 2015 Study

36
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• pH, alkalinity, T, Ca, conductivity, silica 
(if required) and phosphate (if 
required).

Which OWQP are typically monitored?

• Typically reviewed by District Engineers 
by hand to determine that the system is 
maintaining treatment. Typically not 
kept in database.

How were the monitoring data used? 

37



© 2016 Water Research Foundation. ALL RIGHTS RESERVED.

Example Required WQP

38

Source: Cornwell, D., R. Brown, and N. McTigue. 2015. Controlling lead and copper rule water quality parameters. Journal 
AWWA 107(2) February 2015: E86–E96.   *permission pending
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Example Required WQP

39Source: Cornwell, D., R. Brown, and N. McTigue. 2015. Controlling lead and copper rule water quality parameters. 
Journal AWWA 107(2) February 2015: E86–E96.    *permission pending
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How Should We Rethink WQPs

• What should we monitor for and goals
• Where should we monitor
• How frequently should we take samples
• How should we analyze the data

40
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What Should We Monitor for

• Larger utilities might consider pipe scale 
analysis to help define WQPs

• Certainly pH, Alkalinity, P if used
• Need Consider

—ORP
—Cl2/NH2CL
—Fe, Mn, Al
—Cl/SO4 ratio

41
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Control Charts
• WaterRF 4286

— Distribution System Water Quality Control 
Demonstration

— Process Research Solutions, LLC 
— This chart uses single data and means
— EE&T prefers Grouped data and medians

• “Out of Control” “In Control”
— Control chart terms—not a regulatory statement
— Out of control indicates room for operator 

improvement in reducing variability
— The better the chemicals are controlled the tighter 

the band gets
42
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Group Data Approach
• Doesn’t use individual data – uses statistical sub 

sets (“bins”)
• Can use median or mean
• Uses Control Limits for median or mean
• But median values eliminate outliers
• Follows original Shewhart control charts for 

process control 
• Upper limits (UCL) and lower limits (LCL) are 

based on a 3 sigma range
• Control charts are not compliance values– they 

are for process optimization and control

43
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Example Individual Data

• Next Graph shows individual PO4-P Data
— Operator would be reacting to data changes that are 

beyond operations control 
— Over-reaction can be worse than no reaction
— Contrast with subsequent graph on using statistics of 

data subsets for control charts

44
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Single Data is Difficult to Use &
Operators can Overreact

EE&T Control Chart Tool

45Source: Cornwell, D., R. Brown, and N. McTigue. 2015. Controlling lead and copper rule water quality 
parameters. Journal AWWA 107(2) February 2015: E86–E96.     *permission pending
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Example Grouped  Data
• Next Graph shows same data grouped in 1-week 

bins 
• Operator now can easily see trends in the plants control 

of phosphate dose over time 
— Operations can react to first low data trends seen in 

the plot and then high data trends seen
— Changes can be made slowly without over reacting
— Over time variability will be reduced and the 

upper/lower control lines will come closer together 
over time

46
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Goal = 0.7
Requirement = 0.33-1.3

EE&T Control Chart Tool

47Source: Cornwell, D., R. Brown, and N. McTigue. 2015. Controlling lead and copper rule water quality parameters. 
Journal AWWA 107(2) February 2015: E86–E96.    *permission pending
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We Have a Lot To Do
But Who Better Than Our 

Professionals in Water


