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0 Background and Relevance 

The need to remove nitrogen and phosphorus from wastewater to meet increasingly stringent 
regulatory limits is the most common treatment challenge for water resource recovery facilities 
(WRRFs) in the U.S. today. A majority of WRRFs have responded by implementing biological 
nutrient removal (BNR) processes and are clearly motivated to minimize operational costs of 
chemical addition and aeration energy and allow market-ready options for phosphorus resource 
recovery. While BNR processes have been extensively studied, employed, and optimized for over 
a century in practice and in academia, recent advances in microbiology, genetics, instrumentation, 
and process control technologies have enabled our industry to achieve new heights in BNR process 
efficiency and stability. This allows WRRFs to remove nutrients in smaller systems, with less 
energy input, to lower effluent standards. Through work with BNR utilities throughout the U.S., 
we recognize that BNR process improvements at WRRFs hinge on the ability to design systems 
that allow operators to maintain more consistent and accurate aeration control.  
While every WRRF operator and engineer understands the importance of dissolved oxygen (DO) 
control for BNR processes performance, aeration remains one of the most complex and 
challenging systems in BNR facilities. Typical proportional-integral-derivative (PID) DO aeration 
control systems at WRRFs: 

1. largely ignore real-time nutrient process conditions; 
2. experience large fluctuations in air demand to maintain a single DO setpoint, which 

mechanically stresses the air blowers; and 
3. stresses BNR biology with the resulting large and rapid DO fluctuations. 

Model predictive aeration control (MPAC) is an alternative approach that can overcome PID 
control limitations. Incorporating real-time process data, MPAC can continuously fit model 
parameters to predict process conditions in the near future to allow for proactive control 
adjustments.  
 There are two main reasons why MPAC systems are not used more broadly by WRRFs:  
1. Lack of Understanding: Engineers and utilities are skeptical and hesitant to hand control over 
to "statistical" or “data-driven” tools that are not based on mechanistic linear process logic. 
Furthermore, the mathematics of the methods are often unfamiliar and/or challenging to 
understand.   
2. Lack of Experience: To date, there are only a handful of WRRFs in and outside of the U.S. 
who have implemented MPCA systems in their facilities. To our knowledge, there do not exist any 
side-by-side, full-scale comparisons of the efficiency and stability of MPCA with traditional PID 
control approaches. 
Our IWS Challenge team set out to address these two limitations with this project.  
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1 Challenge Team Members 

The members of Team 4 of the 2019 LIFT IWS challenge are listed in Table 1, and each covers a 
critical perspective and expertise related to the goal of this challenge. 
Table 1. Team 4 Participants 

Name  Title Organization Contact 

Christopher 
Marks 

Treatment Process 
Engineer 

City of Boulder 
Public Works 

marksc@bouldercolorado.gov 

Kathryn 
Newhart 

PhD Candidate 
Dept of Civil & 
Environmental 
Engineering 

Colorado School 
of Mines 

kbnewhart@mines.edu 

Tzahi Cath Professor 
Dept of Civil & 
Environmental 
Engineering 

Colorado School 
of Mines 

tcatch@mines.edu  

Amanda 
Hering 

Associate Professor 
Dept of Statistical 
Science 

Baylor 
University 

Mandy_Hering@baylor.edu 

Tanja Rauch-
Williams 

Carollo's Wastewater 
Innovation Lead and 
Principal Technologist 

Carollo 
Engineers 

TRauch-
Williams@carollo.com 

 

The participating utility was the City of Boulder (City) Water Resource Recovery Facility 
(BWRRF, Boulder, CO). The City invested in major BNR process improvements by upgrading 
the facility to an activated sludge (AS) process in 2008 and a Four-Stage Bardenpho process in 
2017. BWRRF operations staff recognizes that AS aeration control is vital to meeting energy 
efficiency goals as well as being a key factor in enhancing internal carbon management, 
maximizing nitrogen removal, and maintaining sludge settling quality. The City was interested in 
systematically evaluating the performance of the new ammonia-based aeration control (ABAC) 
system and evaluating the path of implementing MPAC as a means to gain more advanced control 
and further process goals.  
Carollo Engineers (Carollo) has planned and designed the recent BNR process improvements for 
the City of Boulder and developed the PID control description for the ABAC system implemented 
at the BWRRF in 2017. Through BNR process optimization with the City and other utilities, 
Carollo has witnessed the need for advanced control systems in our industry. In 2017, Carollo 
therefore decided to dedicate a portion of its strategic annual research funds towards developing 
advanced automated process control solutions. 
The Civil and Environmental Engineering Department at Colorado School of Mines (Mines, 
Golden, CO) and the Department of Statistical Sciences at Baylor University (BU, Waco, TX) 

mailto:marksc@bouldercolorado.gov
mailto:kbnewhart@mines.edu
mailto:tcatch@mines.edu
mailto:Mandy_Hering@baylor.edu
mailto:TRauch-Williams@carollo.com
mailto:TRauch-Williams@carollo.com
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have worked as university partners in recent years on developing novel multivariate statistical 
process monitoring (MSPM) solutions to enhance BNR performance and stability (Kazor et al., 
2016; Odom et al., 2018). This project allowed CSM and BU to apply their experience with MSPM 
and their history of collaborative, interdisciplinary work to MPAC at the BWRRF. 
 

2 Problem Statement 

The Boulder Water Resource Recovery Facility (BWRRF) is a 25 MGD facility that utilizes an 
activated sludge (AS) process configured as a Four-Stage Bardenpho for secondary treatment. 
Aeration control previously used DO sensors and supervisory control and data acquisition 
(SCADA) setpoints to manage demands on the blower system. The current DO control mode 
frequently over-aerates causing conditions that inhibit denitrification in downstream anoxic zones, 
resulting in unnecessary high chemical carbon addition demands and in a poor allocation of blower 
demand that leads to energy inefficiencies.  
To help address these problems, a non-proprietary ABAC scheme was programed into SCADA as 
part of the last BNR improvements in 2017. A control error during initial testing of the original 
ABAC system led the BWRRF operations team to continue conventional DO control instead of 
ABAC. A patch was created to fix the error, but operations never fully exercised the ABAC system 
and continued to regard DO control as a more reliable alternative.  
The ABAC system itself is a four-level cascade control logic as depicted in Figure 1. Blue boxes 
indicate manually entered setpoints that determine the desired ammonia concentration and 
upper/lower DO setpoint limits. Black boxes indicate actual field measurements from ammonia 
sensors, DO sensors, flow meters, and valve position sensors.  

 
Figure 1. Four-level cascade control logic for ABAC. DO control removes the first level of 
control and functions without ammonia readings in the same fashion. 
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This IWS Challenge project set out to address two problems:  
1. The PID logic can result in significant DO fluctuations when ammonia measurements exceed 
the ammonia concentration setpoint and the controller calculates DO setpoint adjustments that are 
the process must respond to rapidly. PID tuning can reduce these DO setpoint fluctuations, but the 
PID parameters perform best only within a narrow range of operating conditions. The first 
objective of this project was to determine a systematic method for testing and comparing ABAC 
tuning parameters by characterizing the stability of the overall process under different testing 
conditions. 
2. If the ammonia concentration in each aeration basin used in ABAC for the DO setpoint 
definition could be forecast in advance of the required system changes, this could overcome the 
inherent response lag time of the PID controller that can lead to excessive changes in blower 
demands. Our team employed statistical modeling tools and online data collected from the process 
(ammonia, DO, airflow, etc.) to attempt to forecast the ammonia concentration. Forecast ammonia 
values (if sufficiently accurate) can then be used in lieu of the sensor ammonia values for DO 
setpoint adjustments. (i.e., as a software or ‘soft’ sensor). This could help stabilize the changes in 
aeration demand. 
 
The questions being addressed for the Challenge are: 

1. Can ABAC be a stable operating mode for BWRRF's activated sludge system compared to 
the traditional DO control?  

2. Can ammonia concentrations in the aeration basins be forecast with sufficient accuracy to 
be a useful soft-sensor within the ABAC control logic to further stabilize aeration control?  

The desired outcomes of this project and testing phase are multi-tiered. The primary goals directly 
relevant for the City are to: 

a) improve energy efficiency by reducing blower system demand;  
b) eliminate DO-poisoning of denitrification zones from over-aeration; and   
c) gain trust of BWRRF operations staff for long-term use of ABAC system. 

The secondary goals are generally of broader interest for WRRFs to: 
a) develop appropriate mathematical metrics to characterize and compare process variability 

between different aeration control conditions (i.e., DO, ABAC, tuning parameters, etc.); 
b) use real-time process data to model and forecast ammonia concentrations in the aeration 

basins that can then be used to improve DO setpoint selection in the ABAC logic; and 
c) outline the path beyond this project for implementing MPAC feedforward control at the 

BWRRF. 
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3 Characterization of the Intelligent Water System 

3.1 Boulder Water Resource and Recovery Facility 

The BWRRF utilizes three parallel aeration basins depicted in Figure 2 that operate in a Four-
Stage Bardenpho process configuration. The effluent from these basins combines in the mixed 
liquor channel before entering a final polishing aeration basin. Primary clarifier effluent is 
combined with return activated sludge (RAS) and internal mixed liquor return in a chimney baffle 
located at the inlet of zone 1 in each aeration basin. Each basin contains three influent anoxic 
zones, five aerated zones, and a second anoxic zone in a three-pass layout. Zone 8 is the last aerated 
zone in the basins from where mixed liquor is recycled to the chimney baffle at the head of each 
respective basin. Zone 9 is typically operated as the second anoxic zone in the Bardenpho 
configuration. The solids retention time (SRT) is controlled using mixed liquor wasting from the 
mixed liquor channel. Effluent from the final polishing aeration basin is routed to the secondary 
clarifiers, and all RAS from the clarifiers is combined and then split evenly among the chimney 
baffles of the aeration basins in service. 
The ABAC uses ammonia concentrations measured in the second pass of each aeration basin for 
control of the DO setpoints in each aerated zone. The four setpoints in the ABAC control logic 
are: ammonia, DO, airflow, and valve position (see Figure 1). The ABAC uses five operator 
defined parameters for each of the three aeration basins:  

1. ammonia setpoint;  
2. high and low DO setpoint;  
3. time delay for control setpoint adjustments;  
4. small and large step ammonia measurement deviation; and  
5. DO setpoint in each aerated zone.  

The ABAC logic compares the actual ammonia concentration with the ammonia setpoint (typically 
set for Zone 7). If the measured concentration deviation is larger than the defined “large step 
deviation” (LSD), then the DO setpoint for each aerated zone changes according to the defined 
associated step value. If the measured deviation is between the small and larger step deviation, 
then the DO setpoint is adjusted using the small step. Finally, the system makes no changes if the 
ammonia measurement deviation is smaller than the defined the small step deviation (SSD). 
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Figure 2. Activated sludge process overview at the BWRRF. The purple box in upper left 
indicates the RAS splitting structure. One of the three aeration basins is outlined in orange on the 
right and shows the direction of flow through the three-pass system. The green boxes with yellow 
text overlain in the middle basin indicate the different zones within each of the three basins. Red 
boxes indicate where ammonia (Zone 7 or Z7) and nitrate (Z3 & Z9) instrumentation is located in 
each basin, and blue boxes indicate the location of DO sensors in each basin. 

The DO setpoint values are restricted by maximum and minimum DO setpoints set by the operator, 
however Zone 8 has only a maximum DO setpoint. Each aerated zone also has a minimum air flow 
rate to satisfy minimum mixing requirements and airflows per diffuser.  
 
3.2 Data Collection and QA/QC 

The DO concentrations in Zones 6, 7, 8, and 9 of the aeration basins were continuously monitored 
using Endress Hauser (Reinach, Switzerland) COS61D optical DO sensors. In these zones, blower 
flowrate and valve position are also monitored and recorded in SCADA. AmmoLyt® Plus 700 
ion-selective ammonia sensors from YSI (Yellow Springs, OH) are located in the aeration basin 
influent channel and in all three aeration basins in Zone 7. Ion-selective nitrate/nitrite sensors from 
YSI are located in Zones 3 and 9 of each basin; and the effluent channel after the final polishing 
aeration basin has an AmTax and NitraTax online analyzer (HACH, Loveland, CO). Aeration 
basin influent flow rates, wastewater temperature, and pH of the plant influent were also 
monitored. Online sensors were regularly maintained and calibrated by operations staff and 
readings periodically compared to laboratory results. 
Data are collected and managed in the GE Proficy® system. For analysis, data was exported in 5-
minute intervals into Microsoft Excel and imported to the statistical platform, R, for analysis. 
Observations that were identified as “Bad” within the Proficy system (i.e., due to sensor calibration 
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or during power loss) were not used. For QA/QC, all Proficy exports were kept in their native 
format, and the same R functions were used to analyze all datasets to ensure repeatability. 
 

4 Testing and Analytical Plan 

The project was executed in the following three phases:  
Phase 1: Implementation and Functional Testing of ABAC 
Initially, the ABAC control scheme was operated only in one of the aeration basins during the day 
when supervised for functional testing. Then, operation was extended to overnight and on 
weekends. An initial ammonia setpoint of 3.5 mg-N/L was used for the middle of Zone 7 based on 
previous ammonia profiles in the aeration basins that indicated that this concentration would result 
in near complete nitrification by the end of Zone 8. Other ABAC setpoints were maintained 
throughout Phase 1 as follows: 

LSD: 0.50 mg-N/L  LSD Gain: 0.10 mg/L as DO 
SSD: 0.15 mg-N/L  SSD Gain: 0.30 mg/L as DO 
Time delay for control setpoint adjustments: 90 s  

Phase 1 lasted from April 2 – April 17, 2019. 
 
Phase 2: ABAC Setpoint and Performance Testing  
Once operators had gained confidence that the ABAC system could be run continuously, various 
tuning parameters were tested, and performance data was collected for each test run (Table 2).   
Each of the three test runs was conducted for at least 8 days, and online process data were collected 
for statistical process evaluation and modeling. Test Run 1 was conducted with the default ABAC 
tuning parameter. In Test Runs 2 and 3, the Ammonia Setpoint and Time Delay parameters were 
increased to assess whether this would positively impact the aeration variability and process 
stability. The parameters for the LSD and SSD were kept as in Phase 1. During Test Run 0, process 
data for DO Control were collected from one of the three aeration basins.  
 
Table 2. Phase 2 ABAC Setpoint and Performance Test Runs 

Test Run Date (2019) Test Condition ABAC Setpoints 

0 1/1-4/1 DO Control  NA 

1 4/18-4/28 Default ABAC Tuning 
Parameters 

Ammonia Setpoint:      3.5 mg/L   
Time delay:                   90 s 

2 4/30-5/13 Increased Ammonia Setpoint Ammonia Setpoint:      4.0 mg/L 
Time delay:                   90 s 

3 5/14-5/21 Increased Time Delay Ammonia Setpoint:      4.0 mg/L 
Time delay:                  300 s 
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Phase 3: Analysis and Forecasting 
In Phase 3, our team used the data collected during the Test Runs in Phase 2 to quantify and 
compare the variability and stability of the DO and ABAC control conditions. We also quantified 
the operating parameters that had the greatest impact on control variability. Secondly, our team 
developed a data-driven model using a combination of multiple regression models in order to 
forecast ammonia concentrations in Zone 7 of the aeration basin. 
 

5 Testing and Analysis Results 

5.1 Implementation and Functional Testing of ABAC 

Initial deployment of ABAC at the BWRRF supervised by operations confirmed that DO 
concentrations were maintained and ammonia concentrations did not increase in the effluent of the 
secondary process. These two conditions were met in each of the three aeration basins for at least 
three consecutive days between the hours of 07:00 and 18:00 (while the BWRRF is staffed). Based 
on this, ABAC was operated continuously to collect data and refine ABAC setpoints in Phase 2. 
 
5.2 Comparison of Aeration Control Logic Process Performance  

Air flow to aeration basin 3 (AB3) is depicted in Figure 3 for all Test Runs (see Table 2). The data 
collected in April and May 2019 represent both DO and ABAC control systems, and for ABAC 
two different ammonia setpoints for Zone 7, and two different time delay setpoints.  
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Figure 3. Time series plot of air flow to AB3 (sum of airflow to all aeration zones in AB3) in 
standard cubic feet per minute (SCFM) during the four Test Runs in Phase 2. 

The maximum airflow was the same between Test Run 0 and 1 (DO and the first iteration of ABAC 
at 3.5 mg/L N and 90 s time delay) but the maximum daily airflow did decline as the ABAC 
parameters changed (i.e., increase ammonia setpoint and increase time delay). The minimum 
mixing air flow required in AB3 (approx. 1000 SCFM) was never achieved by DO control, but 
ABAC control reached the minimum mixing air demand every night during low flow conditions.  
The daily average air flow for all test runs is depicted in Figure 4 by day of the week and as weekly 
averages. Average concentrations of DO within Zones 6 to 9 are depicted in Figure 5 for each 
aeration control logic tested. From the mean weekly air demand, ABAC could achieve an average 
reduction of 200 to 840 standard cubic feet per minute (SCFM) of air flow to the aeration basins. 
From an operations perspective, this air flow reduction to the secondary treatment process allows 
the utility to operate on a single blower during a wider range of treatment scenarios, and ultimately 
reduces energy demand and the cost of treating water. 
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Figure 4. Average daily aeration blower flow, and average weekly demand during Phase 2 
testing. 

 
Figure 5. DO concentrations in Zones 6 - 9 during all Test Runs in Phase 2. 

 
In all ABAC Test Runs, the DO concentrations in the aerated zones continuously decreased. Test 
Run 3 (ammonia setpoint of 4.0 mg-N/L, time delay: 300-s) resulted in a DO reduction entering 
Zone 9 of 50%, thereby significantly reducing DO poisoning of the final anoxic zone and reducing 
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the amount of external carbon addition. At no time during Phase 2 testing was ammonia detected 
in the final plant effluent indicating incomplete nitrification. Also, the low DO filaments that 
commonly overwhelm secondary settling when aeration is reduced too much have not been a 
problem, nor have increases been apparent in weekly biological assessments by operations. 
These test results have been well received by operations staff due to an observable reduction in 
aeration demand and the lack of process upsets or failures during ABAC testing. After the 
successful deployment and operation of ABAC in AB3, this control has now been completely 
adopted by operations staff at the BWRRF in all aeration basins. 
 
5.3 Development of Metrics to Characterize and Compare Process Variability  

Process variability is often "eyeballed" based on time series plots and simple statistics shown in 
Figures 3, 4, and 5. However, these methods only allow a cause-effect comparison of a very limited 
number of process parameters (e.g. ammonia setpoint and air flow).  
Our team was interested in identifying metrics that allow a quantitative assessment of the 
variability of the aeration basin system as a whole, rather than monitoring each online process 
variable individually (e.g., air flow, nitrate, ammonia, DO, valve position). This approach has clear 
advantages to assess the overall performance of complex systems, such as activated sludge that 
include mechanical components, process, and water quality variables. 
Two statistical methods and two metrics for each method were compared to assess the system 
variability in response to the four Test Run conditions in Phase 2 (Table 3). Total sample variation 
(TSV) incorporates the individual variances of process variables. Whereas generalized sample 
variance (GSV) incorporates the individual variances of process variables as well as the pairwise 
correlations between process variables. To compare the variation (i.e., stability) between two Test 
Run conditions, the TSV and GSV values for each Test Run were compared.  
 
Table 3. Variability Assessment Methods and Metrics 

Method Explanation Metric Hypothesis Test 

Total sample variation 
(TSV) 

The trace (sum of the 
diagonal elements) of the 
sample variance-
covariance matrix  

Difference between 
TSVs of two data sets. 

H0: TSVi – 
TSVj = 0 
H1: TSVi – 
TSVj ≠ 0 

Ratio of TSVs of two 
data sets. 

H0: TSVi / 
TSVj = 1 
H1: TSVi / 
TSVj ≠ 1 

Generalized sample 
variance (GSV) 

Difference between 
GSVs of two data sets. 

H0: GSVi – 
GSVj = 0 
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The determinant of the 
sample variance-
covariance matrix 

H1: GSVi – 
GSVj ≠ 0 

Ratio of GSVs of two 
data sets. 

H0: GSVi / 
GSVj = 1 
H1: GSVi / 
GSVj ≠ 1 

 
The TSV and GSV were calculated using all process variables identified in Section 3.2 in 5-minute 
intervals. Figure 6 shows the TSV for each Test Run conducted under Phase 2 (Table 2). It is 
hypothesized that if the ABAC system is more stable, then the ABAC TSV will be smaller than 
the TSV of data collected under the Test Run 0 (DO control). This is demonstrated for the ABAC 
Test Run 2 and 3 conditions that each have a smaller TSV than the Test Run 0 (DO Control).  
However, the TSV for Test Run 1 (ABAC with ammonia set point 3.5 mg/L) was greater than for 
Test Run 0 (DO control). In fact, when plotting ammonia concentrations in Zone 7 over time for 
each Test Run, it becomes evident that Test Run 1 resulted in different environmental conditions 
than the other three Test Runs (Figure 7). The first half of the Test Run 1 (up until about 3.5 days) 
did not exhibit the same dual-peak daily pattern as the second half of the Test Run or in any of the 
other Test Run conditions. Secondly, the daily ammonia peak concentration was significantly 
greater than in the other test conditions (i.e., 6-10 mg/L). Both factors contributed to a higher TSV 
for Test Run 1 than anticipated. It is therefore recommended that the ABAC Test Run 1 condition 
be either repeated or excluded from the interpretation of the results. 
 

 
Figure 6. TSV for 7 days of process data under different control logic Test Run conditions in 
Phase 2.  
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Figure 7. Time series plots of ammonia concentrations in Zone 7 for Test Runs in Phase 2. 
Red lines indicate ABAC ammonia setpoint. The highlighted portion of the Test Run 1 test 
condition deviates from the distinct patterns of the second half of the test condition as well as the 
other control conditions.  

The smaller TSV of Test Run 2 compared to Test Run 3 (ABAC with ammonia set point 4.0 mg/L) 
indicates that increasing the time delay in the PID control from 90 seconds to 300 seconds led to 
an overall more stable process system (Figure 6). This is illustrated by the number of instances 
when the ammonia concentration measured in Zone 7 exceeded the 4.0 mg/L threshold (see Figure 
7) (i.e., Test Run 3 resulted in more exceedances than Test Run 4). 
To demonstrate that the difference in TSV or GSV is statistically significant between two Test 
Run conditions (A and B, to illustrate), we test the difference between (the TSV or GSV) condition 
A and B or the ratio between (the TSV or GSV) A and B. First, a Monte Carlo simulation is used 
to simulate the probability distribution of a homogenous population. In the Monte Carlo analysis, 
all data from two Test Run conditions are mixed and randomly split into two new sample datasets. 
The TSV or GSV of each of these sample datasets is calculated, and their difference and ratio are  
recorded. This process is repeated 10,000 times. In this way, we can obtain the distribution of the 
difference or ratio of GSV’s and TSV’s under the assumption that there is no difference between 
the two Test Run conditions (null hypothesis, H0, in Table 3). If the observed difference or ratio 
in TSV or GSV of the actual Test Run conditions is substantially different than those calculated 
for the mixed datasets, then we conclude that the variability was significantly different between 
the two operating conditions.  
The difference and ratio of the GSV for all Test Run comparisons were found to be unstable. That 
is, when the difference and ratio of the GSV were calculated for the mixed populations, the results 
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were not centered about 0 or 1, respectively. Thus, GSV was not used to compare Test Run 
conditions. However, TSV was found to be stable and thus used. The Monte Carlo analysis showed 
that all Test Run conditions had TSV’s that were significantly greater than the distribution of TSVs 
developed from randomly selected subsamples.  
Figure 8 shows a comparison of the Test Run 0 (DO Control) and Test Run 2 (ABAC, ammonia 
set point 4.0 mg/L, time delay 90 seconds). The left figure shows the variability metric as 
differences in TSVs and the right figure as the ratio in TSVs. The histograms represent the 
distribution of the difference or ratio of TSV under the null hypothesis (no statistical difference 
between both Test Runs). The difference and ratio of TSV’s for the full Test Run data sets (called 
"observed") is denoted with the red dot in both figures. Since the observed difference and ratio in 
TSV was much larger than would be expected under the null hypothesis, we can conclude that the 
variability in the data collected under Test Run 0 (DO Control) is significantly greater than the 
variability of the data collected under Test Run 3 (ABAC, ammonia set point 4.0 mg/L, time delay 
90 seconds). 

 
Figure 8. TSV comparison of Test Run 0 (DO Control) and Test Run 2 (ABAC, ammonia set 
point 4.0 mg/L, time delay 90 seconds) using the difference of TSV (TSVDO – TSV4.0-90) and 
the ratio of TSV (TSVDO/TSV4.0-90). The red dot (far right on each x-axis) is the observed 
difference or ratio in TSV whereas the vertical bars are a histogram of the observed TSV under 
the assumption that both datasets were mixed indiscriminately. Due to the substantial difference 
between the observed and mixed TSV, we conclude that the TSV for DO is significantly greater 
than the TSV for the 4.0 mg/L 90 s condition.  

Visual inspection and simple statistical features (e.g., mean, confidence intervals) are intuitive 
methods of determining if a process change at a WRRF improves stability. However, for a 
quantitative metric that incorporates multiple variables, it is recommended that the TSV is used. 
By selecting a multivariate assessment method, it can be said that process instabilities or 
fluctuations overall have been reduced rather than that of a single process variable. This is 
important when balancing reducing excessive wear-and-tear on equipment and consistency in 
environmental conditions for nitrifying and denitrifying microbial communities. To compare the 
TSV values of two different conditions, either the difference or the ratio of the TSV can be used. 
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While in this work the difference and ratio showed similar results, it should be confirmed that the 
mixed population metrics are centered at 0 or 1, respectively. To determine if the difference 
between two conditions is significant, a p-value can be calculated by dividing the number of 
observations from the mixed population that exceed the observed TSV by the total number of 
observations from the mixed population. In this work, the p-value for all TSV tests were 0, but 
0.01 is a common threshold for determining significance.  

 

5.4 Ammonia Forecasting in the Aeration Basins and Soft Sensor Development 

To proactively induce DO setpoint changes to eliminate the PID system response time, the 
ammonia concentration in Zone 7 is forecast. This response time is comprised of the time it takes 
for the ammonia sensor to measure a reliable concentration, for the PID loop to make setpoint 
adjustments when necessary, for the mechanical aeration system to make the necessary air flow 
changes, for the process to equilibrate to the new DO conditions, and for the biological system to 
adapt to the new DO conditions and reduce ammonia concentrations. Our team estimated that the 
response time for ammonia lasts between 5 and 20 minutes. Adding the average hydraulic retention 
time between the aeration basin inlet and Zone 7 where ammonia is measured, the goal of this task 
was to develop a model that would forecast ammonia concentrations by 50 minutes. We further 
defined that the required accuracy in ammonia concentration prediction should be at least within 
1 mg/L to limit the required PID control response.  
The MPAC model was developed by combining diurnal and linear model components to predict 
the ammonia concentration in Zone 7. To adapt model predictions to the continuously changing 
operating and environmental conditions in the aeration basins, a "moving-window training 
approach" was used. First, m days of data (observations 1 through n) were used to fit the diurnal-
linear model. Then, observation n+1 (or the first observation of day m+1) is forecast by inputting 
current values of variables into the fitted model. The model was then retrained to include 
observations 2 though n+1, and then observation n+2 was forecast, and so forth. The moving 
window kept always the same size (n) and included only the most recent observations. Once all 
forecasts have been made, we compare the model predicted values to the actual values using root 
mean squared error (RMSE). We can also assess the fit of each window’s model by computing the 
coefficient of variation, R2.  
The diurnal model (Figure 9) was developed by fitting a second order sine-cosine curve to a 24-
hour (1440-minute) cycle of ammonia concentrations in 5-minute increments as follows: 

𝐷𝐷𝑡𝑡 = 𝑑𝑑0 + 𝑑𝑑1 sin �
2𝜋𝜋𝜋𝜋

1440�
+ 𝑑𝑑2 cos �

2𝜋𝜋𝜋𝜋
1440�

+ 𝑑𝑑3 sin �
4𝜋𝜋𝜋𝜋

1440�
+ 𝑑𝑑4 cos �

4𝜋𝜋𝜋𝜋
1440�

 

for t = 0, 5, 10, …, 1440, where di are model parameters that are estimated using the training 
window data. The differences between the fitted diurnal model ammonia predictions and the actual 
ammonia measurements are referred to as the ammonia residuals. These represent the portion of 
the ammonia concentration not captured (predicted) by the diurnal model. 
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Figure 9. Boxplot of ammonia concentrations in Zone 7 binned by hour of the day. Red 
triangles indicate the mean of each hour. The diurnal trend is distinct with low values in the early 
morning and peaks occurring in early to mid-afternoon. 

A multiple linear model was then fit to the residuals of the diurnal model at time t to forecast 
ammonia δ minutes ahead:  

𝑌𝑌𝑡𝑡+𝛿𝛿 = 𝑏𝑏 + 𝑚𝑚1𝑌𝑌𝑡𝑡 + 𝑚𝑚2𝑋𝑋1𝑡𝑡 + ⋯+ 𝑚𝑚𝑝𝑝+1𝑋𝑋𝑝𝑝𝑡𝑡 

The predictors in the model (Xi) include the residual ammonia value at the current time, Yt, and 
the current values of the process variables identified in Section 3.2. 
To achieve both variable selection and parameter estimation in this model simultaneously, we use 
adaptive lasso (Zou and Qiu, 2009; Zou, 2006). Adaptive lasso is a method to estimate model 
parameters such that the sum of squared errors is minimized along with a penalty on the size of 
the regression coefficients (mi). A preliminary estimate of the coefficients is needed, and we use 
ordinary least squares estimates. A required tuning parameter, λ, is often chosen through cross 
validation in which multiple iterations of training and testing are performed, and the results are 
combined to reduce variability. With increasing values of λ, more and more coefficient estimates 
are driven to zero (i.e., variable selection is performed by removing extraneous process variables). 
We used the largest value of λ such that the model prediction error is within one standard deviation 
of the minimum. We find that this value works very well in practice.    
When selecting the size of the window used to train a model, too few observations could limit the 
predictions to a narrow range of operating and environmental conditions. Too many observations 
could unintendedly incorporate error and train to noise into the model. Various training window 
sizes (1 – 7 days) were tested to determine the optimum number of training observations to predict 
ammonia at time t. The model was updated (i.e., re-fit) at every timestep by removing the oldest 
observation and including the most recent observation to keep a constant training window size and 
adapt to new conditions, also known as a rolling window. The 3-day training window was found 
to have the lowest RMSE and was selected for further investigation (Table 4). 
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Table 4. Average root mean squared error (RMSE) of forecasts from Test Run 0 (DO 
Control) and Test Run 3 (ABAC, ammonia set point 4.0 mg-N/L, time delay 300 seconds) 

Training Window Size/Dataset RMSE 

Test Run 0  
(DO Control) 

Test Run 3  
(ABAC) 

1 day 0.5656 0.5699 

2 day 0.4638 0.4289 

3 day 0.4539 0.4263 

4 day 0.4647 0.4343 

5 day 0.4829 0.4391 

6 day 0.4891 0.4389 

7 day 0.4851 0.4392 

 
The 3-day diurnal-linear ammonia forecasting model can be further examined by forecasting 
horizon and by model component (i.e., diurnal or linear). In general, the average R2 values decrease 
as the forecast horizon increases (Figure 10). However, the model is still fairly accurate at 
forecasting ammonia (R2 0.87 at 75 minutes ahead and 0.99 at 5 minutes ahead). When R2 values 
are plotted for the diurnal and linear model components in real-time, it is observed that the R2 
varies for each component with operating and environmental conditions (Figure 11). During the 
week, when the diurnal trend is more predictive of the ammonia concentrations, the R2 of the 
diurnal model increases. During the weekend, the linear model compensates for the unusual 
ammonia loading patterns. This demonstrates that the dual-component model is able to achieve 
high levels of accuracy and flexibility.  
 

 
Figure 10. The proportion of the variability in actual ammonia (R2) in Zone. 7 explained by 
the diurnal and linear forecasting model components. Data is fit to three days of observations 
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for the Test Run 3 condition, updated at 5-minute intervals, and tested on seven days of data. Red 
diamonds are the total R2 for the combined model, which are the sum of the diurnal (green circle) 
and linear (blue triangle) R2 values. As expected, as the forecast horizon increases, the accuracy 
of the linear model decreases.  

 
Figure 11. Instantaneous R2 of the combination diurnal-linear forecasting model fit to three 
days of observations for the Test Run 3 conditions. Data updated at 5-minute intervals (left y-
axis, solid lines) and the influent ammonia concentration (right y-axis, dashed line). During the 
transition between weekend to weekday, the dual-model structure is able to maintain a high total 
R2 by shifting between the diurnal and linear model.   

Figure 12(a) compares the actual and 50-minute forecast ammonia concentration in Zone 7, and 
Figure 12(b) plots the difference between both series as the ammonia forecasting error. Ammonia 
concentrations were forecast 50 minutes in advance to provide sufficient time between the forecast 
of ammonia concentrations and (1) the average hydraulic retention time between the inlet of the 
aeration basin and where ammonia is being measured in Zone 7 and (2) the response time for 
ammonia in Zone 7 (see discussion in Section 5.3). 
Overall, the forecasts are very close to the actual ammonia concentrations in Zone 7. The model 
has difficulties forecasting ammonia when the actual ammonia concentration is recorded as 0 mg/L 
in Zone 7. However, the forecast ammonia value is able to capture the increasing and decreasing 
ammonia trends throughout the weekend and weekdays as well as the magnitude of daily peaks.  
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Figure 12. (a) Diurnal-linear model forecast of ammonia in Zone 7 of AB3 for the Test Run 
3 (ABAC, ammonia set point 4.0 mg-N/L, time delay 300 seconds) (red) compared to the actual 
concentration at the forecast time (black). (b) Forecast error and persistence forecast of 
ammonia in Zone 7. The performance of the combined diurnal-linear model forecast is compared 
to the current measured value of ammonia, which is often termed the persistence forecast.   
 
To assess the usefulness of the forecast ammonia concentration in DO and ABAC control, 
respectively, ammonia concentrations forecast by the diurnal-linear model were compared to the 
so-called persistence forecast. The persistence forecast assumes that the current value of ammonia 
measured in Zone 7 will remain the same value 50 minutes into the future. In Figure 12(b) and 
Table 5, the error of the diurnal-linear model forecast and the persistence forecast (essentially the 
actual ammonia concentration 50 min in the past) are compared. The comparison shows that for 
all but the 5-minute forecast horizon, the diurnal-linear model is a more accurate forecast of 
ammonia conditions than the use of the current ammonia measurement. 
 

(b) 

(a) 
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Table 5. Root mean squared error (RMSE) by duration of forecast horizon for Test Run 0 
(DO Control) and Test Run 3 (ABAC, ammonia set point 4.0 mg-N/L, time delay 300 
seconds) (3-day training window). 

Horizon / Method 

RMSE 

Test Run 0 Test Run 3 

(DO Control) (ABAC) 

Persistence Model Persistence Model 

  5 minute 0.1109 0.1127 0.1047 0.1107 

10 minute 0.1584 0.1540 0.1450 0.1380 

15 minute 0.2066 0.1931 0.1893 0.1699 

20 minute 0.2563 0.2343 0.2378 0.2097 

25 minute 0.3065 0.2694 0.2863 0.2499 

30 minute 0.3593 0.3105 0.3357 0.2951 

35 minute 0.4129 0.3574 0.3857 0.3386 

40 minute 0.4674 0.4012 0.4348 0.3823 

45 minute 0.5207 0.4502 0.4831 0.4243 

50 minute 0.5731 0.5015 0.5303 0.4696 

55 minute 0.6243 0.5518 0.5769 0.5134 

60 minute 0.6755 0.5980 0.6234 0.5576 

65 minute 0.7273 0.6416 0.6690 0.5997 

70 minute 0.7779 0.6804 0.7132 0.6453 

75 minute 0.8273 0.7238 0.7568 0.6842 

 

6 Next Steps 

Using advanced data analysis and modeling, our team demonstrated that the model predicted 
ammonia concentrations in Zone 7 may result in a more accurate process input parameter for the 
PID ABAC logic than the measured concentrations given the response time delay of the system. 
As a next step, the City is therefore interested in using the forecasted ammonia concentrations of 
the diurnal-linear model within the existing ABAC control scheme to test whether this approach 
can further reduce process variability and unnecessary ramping up or down of the aeration blowers. 
Our team and the BWRRF have initiated first steps to perform a controlled test of this ammonia-
forecasted ABAC  in the coming weeks to demonstrate the benefits of this approach.  
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7 Summary and Conclusions  

The need to remove nitrogen and phosphorus from wastewater to increasingly stringent regulatory 
limits is the most common treatment challenge of water resource recovery facilities (WRRFs) in 
the U.S. today. The widest and largest potential for efficient biological nutrient removal hinges on 
our ability to maintain tight and more accurate aeration control.  
Aeration remains one of the most complex and challenging systems. PID aeration control systems 
are very common but come with inherent limitations. Model predictive aeration control (MPAC) 
is an alternative approach that uses real-time process data to continuously predict process 
conditions in the near future based on past conditions to allow for proactive control adjustments.  
In this project, we formed an interdisciplinary team to investigate side-by-side DO and ABAC PID 
control systems at the BWRRF using advanced statistical methods to assess the overall process 
variability in response to various control logics and set points. The proposed metrics to conduct 
this analysis are useful to assess the entire response of many process parameters simultaneously 
rather than one or two parameters at a time. The analysis was instrumental in convincing operations 
staff of the functionality and superior process stability of ABAC compared to traditional DO 
control. Energy reduction was apparent in the field as the facility was able to operate largely on a 
single blower using ABAC.  
Next, our team aimed to enhance ABAC operation further, by addressing one main limitation of 
the system, that is relying on past ammonia measurements as control loop inputs. We developed 
an open-source predictive model code using diurnal and linear model components that achieved 
over 90% accuracy in predicting ammonia concentrations at the ABAC control location in the 
aeration basins about 50 minutes into the future. The model predicted ammonia concentrations 
were shown to be more accurate inputs for the ABAC system than ammonia measurements that 
were taken 50 minutes in the past.  
Through this project, the BWRRF's utility staff created a new level of understanding and comfort 
with statistical and data-driven process control approaches. This collaboration led to the City's 
willingness to conduct a side-by-side full-scale test to demonstrate the efficiency and stability of 
MPAC using forecast ammonia concentrations as a soft-sensor ABAC input and compare results 
to the current ABAC control.  
 
Specific to the questions and goals that our team set out to answer as part of this IWS Challenge, 
we were able to draw the following conclusions:  

1. After preliminary tuning, ABAC was a more stable aeration control mode for BWRRF's 
activated sludge system compared to the traditional DO control. Additional PID loop 
tuning may further improve the process stability.  

2. ABAC operation improved the energy efficiency by reducing blower system demand. This 
allowed the facility to operate mostly with a single blower. Additional energy savings are 
possible when  

a. All three aeration basins are operated consistently in ABAC mode. 
b. ABAC tuning is further optimized. 
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c. The ammonia concentration setpoint is further increased (and the aeration safety 
factor decreased). Throughout all Test Runs in this project, the final effluent 
ammonia concentration was essentially non-detect. At this time, the City does not 
feel comfortable to decrease aeration further but would consider doing so with an 
additional ammonia sensor located in the aeration basin effluent channel to better 
monitor the ammonia profile through the secondary process. 

3. The variation was statistically significantly reduced under ABAC operation, primarily 
influenced by the reduction in air supply to the aeration basin as was the reduction in DO 
carry over into the second anoxic zone. This improved denitrification and reduced the need 
for external carbon addition.  

4. The difference and ratio of the Total sample variation (TSV) of two operational datasets 
are proposed as useful metrics to characterize and compare total process variability 
between different (aeration) control conditions.  

a. These two metrics allow an assessment of the variability of the entire aeration basin 
system simultaneously, rather than one parameter at a time. 

5. The ammonia concentrations in Zone 7 of the aeration basins can be forecast with sufficient 
accuracy to become a useful soft-sensor within the ABAC control logic.  

a. The forecast accuracy is about 90% for a 50-minute forecast window, keeping 
ammonia prediction errors typically to less than 0.5 mg/L. 

b. The facility is interested in testing the forecast ammonia concentrations as a soft-
sensor input to the ABAC PID controller. By preemptively triggering a small-
change DO setpoint in BWRRF’s existing ABAC configuration, differences 
between the actual and setpoint ammonia and DO are projected to be smaller. The 
blower can then ramp up slowly as opposed to increasing speed over a shorter 
period of time. 

6. The systematic evaluation of the DO and ABAC aeration control gained the trust of 
BWRRF operations staff for long-term use of the ABAC system. 
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