Reinventing CSO Solutions

City of South Bend, Indiana

Intelligent Water Network Summit

Alexandria, Virginia

February 2018

Kieran Fahey Environmental Scientist Chartered Engineer

South Bend, Indiana

Population:101,516Established:1865Treatment Plants:1 (70MGal/day)Outfalls:35CSO Overflow:1-2 BGal/yearAbatement Plan:\$860MM

Iniversity of Notre Da

LTCP Phase 2

Phase 2 is an exclusively grey infrastructure approach. Unfortunately no smart or green technology.

- 7 Storage tanks
- 1 Storage conduit
- 1 parallel interceptor

Residential Indicator across South Bend

Most densely monitored Sewer System in the World 11,826,000 hours or 1,350 years of data

#2 Operate the Sewershed

#3 Modeling; the basis of any LTCP

#3 Old/Existing LTCP Model

#3 New Data Driven Model

Revising the LTCP- summary of previous slides

- 1. Data-driven maintenance created increased capacity;
- 2. Real Time Control exceeded expectations in <u>reducing overflows;</u>
- 3. New hyper-accurate model shows <u>deficiencies in old LTCP model;</u>
- 4. Original LTCP builds infrastructure but would not address the problem.

Novel South Bend Proposal:

We use our smart sewer data and new model to optimize the LTCP in the cloud!

Revising the LTCP: OptiSWMM

Previously we described how we came up with a better model- meaning, from a quality perspective, it was a better, more quality, product.

The next step regards the frequency of 'running' that new model.

Introducing OptiSWMM- allows us to run 1000s upon 1000s of model runs, not just a few scenarios like before. This allows many more permeations of LTCP alternatives to be considered.

LTCP update- how we were able to change

Sewer sensors + time = system knowledge

System knowledge informing model with real data (CHRS data)

Real Data (CHRS data) + Optimization modelling x 10,000's runs (via OptiSWMM)

Next Generation Data Driven alternative Smarter Alternative for a Greener Alternative

Plus Green stormwater Infrastructure

Smart Infrastructure Results

Cost of Compliance

Conditions	Typical Year Overflow (MG)	Reduction (MG)	Cost (MM)	Cost/Gal (\$/Gal)
Baseline (no improvements)	2,000			
Now	607	1,393 (all projects) 462 (non-CSOnet) 931 (only CSOnet)	115 105 10	0.08 0.23 0.01

Note: South Bend separated approximately 3K acres of its 13K acres of combined sewers. Non CSOnet-attributed CSO reductions estimated as Dec 17 of baseline overflow volume or 462MG.

Revising the LTCP: Optimization

Try every possible grey, green, and smart infrastructure option.

\$608 savings per household/year

-

