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TEAM  
A collaboration between the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC), 
the University of Illinois, and Ensaras, Inc. 
Dr. Kuldip Kumar, Senior Environmental Soil Scientist, MWRDGC Chicago (Team Leader and Utility Research), 
has more than 30 years of experience in the field, with research background in fate and transport of environmental 
stressors in the terrestrial and aquatic environment. He is a member of WERF Utility Innovation project and for the 
past few years has been involved in evaluation of new and innovative technologies to improve water and resource 
recovery at the MWRDGC.  

Dr. Dominic Brose, Environmental Soil Scientist, MWRDGC Chicago, (Utility Research), evaluates new 
technologies and processes for water resource recovery and solids treatment for the capital planning group at the 
MWRDGC. He has an extensive background in applying statistical and risk-based methods to understanding 
environmental processes. 

John Mulrow, PhD Candidate, University of Illinois at Chicago, (Data Management and Analytics Co-Lead), is a 
member of UIC’s Complex and Sustainable Urban Networks Laboratory, a team of researchers applying machine 
learning methods to civil and environmental engineering problems. He has extensive experience working in the 
compost and solid waste management industries. 

Nina Kshetry, PE, President, Ensaras Inc., Champaign, IL (Data Management and Analytics Co-Lead), is founder 
and president of Ensaras, Inc., a company providing advanced analytics and artificial intelligence solutions for water 
resource recovery management. She holds SB and SM degrees in Environmental Engineering from MIT and has 
over a decade of water resource recovery experience. She currently serves as chair of the IWEA-LIFT committee. 

Dr. Lav Varshney, Chief Scientist, Ensaras, Inc., and Assistant Professor, University of Illinois at Urbana-
Champaign (Data Analytics Co-Lead), is a professor of electrical and computer engineering, computer science, and 
neuroscience. His data analytics and artificial intelligence research—together with innovative industrial and social 
applications—have achieved worldwide acclaim. He currently serves on the advisory board of the IBM Watson AI 
XPRIZE ($5 million). 

Darshan Jain, MS Candidate, University of Illinois at Chicago, (Research Affiliate), is a data analytics and 
programming specialist in UIC’s Complex and Sustainable Urban Networks Laboratory. 
 
PLAN 
Our goal was to use 2.5 years of H2S sensor, environmental, and operational data to train an intelligent 
predictor of local odor complaints, for the purpose of implementing targeted odor prevention measures. 
PROBLEM STATEMENT A key component in the MWRDGC Tunnel and Reservoir Plan (TARP) is the 
Thornton Composite Reservoir (TCR). The TCR covers an area of 90 acres, is 300 ft. deep, and has a 
7.9 billion gallon storage capacity. The reservoir was completed in 2015 and provides flood protection 
benefits and water quality improvements to more than 500,000 people in 14 communities in the 
MWRDGC’s Calumet service area in the southern Chicago region. The MWRDGC operates the TCR to 
store excess combined sewer overflow (CSO) until wet weather events cease and the water in the TCR 
can be pumped via a 5-mile long 30-ft. diameter tunnel to the Calumet Water Reclamation Plant (CWRP) 
for treatment. The plant staff at the CWRP operate the pumps and gates between the plant, tunnel 
system, and TCR to control the volume of water the plant receives from the system.  
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Soon after the TCR was operational, the 
MWRDGC received odor complaints from 
the surrounding neighborhoods, see Fig. 
1. The exact source of odor creation, 
whether from the solids settling in the 
reservoir or within the tunnel system, has 
not been identified. In either case, the 
production and dispersion of hydrogen 
sulfide (H2S) is believed to be strongly 
associated with odor complaints. See Fig. 
2, which depicts odor production, dispersion, and human perception/behavior as three key steps. 

Given the complex nature of the system shown in Fig. 2, H2S sensor data must be analyzed together 
with other data on weather and TCR operations—such as TCR gate opening/closing, and water levels—
to better predict odors from the large-scale reservoir and develop effective odor mitigation strategies.  

CHARACTERIZATION OF THE INTELLIGENT WATER SYSTEM The MWRDGC installed a network of 
Odalog low-range (0.01 to 2.0 ppm) H2S loggers around the TCR and surrounding areas in early 2016. 
The loggers take readings at 15-min intervals and store the data until it is manually downloaded every 
two weeks. From 2016 to 2018, two to six loggers were operational at any given time and were moved 
between seven locations around the TCR. The MWRDGC also regularly monitors reservoir gate 
operations and the tunnel and TCR water elevations. Finally, the MWRDGC’s Incident Reporting System 
contains records of all odor complaints on file. The following is a summary of all data sources used for 
this project: 

• H2S concentrations from Odalog low-range loggers 
• Log of public complaints from the MWRDGC’s Incident Reporting System 
• Calumet TCR and tunnel system water elevation levels and gate positions  
• Meteorological data from the NOAA Climate Data Online database  

 
PLAN An algorithm has been developed to combine odor logger data with data from other physical, 
hydraulic, meteorological, and chemical processes to predict episodes of odor occurrence and complaint 
in the TCR system. Our goal in this project is to develop an advanced warning system for odors that will 
be used by the MWRDGC to predict odor events at the TCR. We decided to use supervised machine 
learning to achieve this objective, using H2S sensor, weather, and TCR operational data as training data, 
and odor complaints as labels. Time series of H2S was also considered (see Appendix C), but dispersion 

effects of H2S through the reservoir 
and surrounding neighborhoods 
would be hard to model with the 
limited number of sensors available, 
as would the human perception and 
social factors that prompt someone 
to call-in a complaint. Using machine 
learning to predict odor events 
provides the MWRDGC with 
actionable insight that is currently not 
available. Our approach to develop 
an algorithm for an advanced 
warning system for odors consisted 
of: (1) Data processing and Quality 

Figure 1. Odor Complaint Word Frequency 

Figure 2. Odor production, spreading, and human perception.  
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Assurance/Quality Control (QAQC) from Mar.-May 2018; (2) Algorithm development from May-Jun. 2018; 
and (3) Algorithm testing and evaluation from Jul.-Aug. 2018. Further planned actions are to (4) Develop 
action plans and guide in technology selection to reduce odor and complaints in Sep.-Oct. 2018; and (5) 
Full-scale implementation and deployment from Sep. 2018 to Sep. 2019. Note that once the algorithm 
was tested, it was handed over to MWRDGC through an open-source and license-free software 
implementation using Python.  
 
Beyond odor event prediction itself, algorithm development helped identify: i) highest priority locations for 
emissions of odorant gases and resource allocation for sensors, ii) correlation of H2S concentrations with 
odor complaints, iii) threshold concentration of H2S triggering complaints from the community, iv) 
attributes amongst all data sets most important in predicting odor complaints, and v) key insights for the 
development of odor mitigation strategies. 

 
IMPLEMENTATION 
Data pre-processing and exploration was followed by training and testing of a supervised classification 
algorithm. Results verify operational changes in H2S sensing and odor management at TCR. 

DATA With the goal of predicting an odor event with at least three days advance warning and suitable 
tradeoff between missed detections and false alarms, we trained several supervised learning algorithms. 
To do so, we compiled a data matrix with 872 observations (one observation for each data collection day 
between January 14, 2016 and July 2, 2018) and 312 quantitative attributes. A day level matrix was used 
since some data was only available at the day level, and therefore, other parameters were brought to the 
day level. The large number of data attributes for each day is due to the creation of several prior-day data 
attributes, and mathematical manipulations (e.g., minimum, mean, maximum values during a day or 
range of days), necessary for training a high performing advanced warning system. A key challenge faced 
during this project was the choice of a proper target variable that would adequately represent the 
occurrence of an odor event. Algorithm performance was ultimately tested on two different target 
variables: number of odor complaints logged through MWRDGC’s odor hotline, and maximum recorded 
H2S concentration. Past data compilation, target variable selection, and QAQC measures implemented 
are described in further detail below. 
Past Data Compilation MWRDGC required a target advance warning period of at least three days, so it 
was decided to train the prediction algorithm on data from 3, 4, 5, 6, and 7 days prior as well as on 
summary data for the one and two-week periods starting three days prior. 
Target Variable Selection Choosing a target variable to represent odor events was an important step in 
setting up a proper supervised machine learning analysis. There were three data types that could be 
used to represent the kind of odor event that MWRDGC desires to predict and prevent in the future: 1) 
Odor Patrol data, collected by MWRDGC staff from 2016-2017; 2) Odor Complaints, collected through 
the MWRDGC odor complaint hotline and provided by citizens reporting odor in surrounding areas; or 3) 
H2S concentration levels, which analysis showed could serve as a significant proxy for sensible odor (but 
does not capture human perception/behavior or aspects of dispersion; see Appendix C). Each data type 
had pros and cons related to consistency, accuracy, and cost of future monitoring. These are described 
in Table A1 (Appendix A). Odor complaints were selected as the final target variable because they 
represent direct observations made by the general public, which the MWRDGC seeks to minimize. 
QAQC Compiling disparate data types, formats, and frequencies into a single data matrix, with correct 
information for each day during the study period, was one of the main challenges faced during this project. 
Several months were spent processing and understanding the origins of the many datasets provided by 
the MWRDGC. QAQC steps were required to ensure the machine learning training data was unaltered 
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in content from original data sources. Additionally, QAQC was required during algorithm training and 
testing. The following actions constituted our QAQC approach: 
• Spot-checks of data files compiled from sub-spreadsheets (Odalogs and TCR elevation data) or from 

data in MS Word documents (Odor Patrol). Spot-checks conducted by QAQC Lead, J. Mulrow. 
• Use of shared Dropbox, enabling version tracking and file editing history. 
• Regular email/phone check-ins between Data Team (UIC and Ensaras) and MWRDGC staff. 
• Site visits to TCR to observe sensor locations and TCR Operations; these visits also allowed the 

data team to speak with MWRDGC technicians about odor sensing and control experiences since 
2016.  

• Use of Jupyter Notebooks, a platform for sharing data analysis scripts among the team, for 
verification of methodology and results. 

Further description of the data processing and QAQC steps taken for each data source is provided in 
Appendix B.  
ANALYSIS AND INTERPRETATION Supervised machine learning techniques were used for 
understanding the mapping to odor complaints from the almost 2.5 years of data compiled from the many 
sources described above. Results were used to not only develop a deployable predictive algorithm, but 
also confirm and reveal relationships important to MWRDGC odor monitoring and reservoir management 
operations. Upon exploring several kinds of supervised learning classification algorithms, the random 
forest family of algorithms emerged as most effective. This section focuses on the results of random 
forest classification and regression, trained and tested on all attributes and subsets of attributes, using 
Odor Complaints as the target variable. It is important to note that the data attributes represent data 
measurements taken at least three days prior to the incidence of odor complaints.  
 
Methods 
Random Forest (RF) Classification & Regression is a specific type of supervised learning algorithm, in 
which an ensemble of decision trees trained on random subsets of data is used to make a final 
classification decision or quantitative prediction. In our case, binary classifiers were developed to predict 
odor and non-odor days, or regressors were developed to predict the number of odor complaints 
expected. This type of algorithm has several advantages beneficial in our odor prediction problem, 
including the ability to overcome missing data (as many of the MWRDGC datasets are incomplete over 
the study period), and to extract feature importance from multi-dimensional data.  
Random Oversampling (ROS) is used to increase the number of observations used in creating decision 
trees within the random forest ensemble. This is required to deal with the class imbalance problem, since 
odor complaints were received on only 15% of the observation days included in the study period (129 of 
871 days), but identifying these correctly is the basic premise of our investigation. By randomly over 
sampling from the training data to create an equal number of complaint versus no-complaint days in the 
training dataset, better supervised training results can generally be achieved. Indeed, four of the top five 
algorithms we present below make use of random over-sampling. 
Attribute Subset Comparison was required to compare operational scenarios using various attribute 
subsets, so as to determine best resource allocation for implementing an advance warning system. 
Subset comparison provided information more applicable to operations than feature importance alone, 
where relevant features can become hidden if they are correlated with other important features. We use 
Receiver Operating Characteristic (ROC) curves to compare the performance of a variety of random 
forest algorithms applied to various data subsets. The area under these curves (AUC’s) are used as a 
quantitative measure of the quality of each trained algorithm. 
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MWRDGC Performance Criteria that the algorithm should predict odor events with greater than 60% 
accuracy (true positives) and less than 25% false positives was established by MWRDGC through 
systems-level concerns for suitable operational impact. Algorithm performance was measured against 
this stated goal for an Advance Warning System for Odor. 
 
Results 
ROC Comparison Fig. 3 depicts ROC curves for all trained classifier and regressor algorithms (35 total), 
each based on a different subset of data attributes. Because the goal of an odor prediction algorithm is 
to maximize the prediction of true odor events (true positives) and to minimize the prediction of odor 
events on non-odor days (false positives), a desirable ROC is concave down with increasing slope and 
maximum area under curve (AUC). Thus, the best prediction algorithm will generally demonstrate a curve 
that passes closest to the top-left corner of the graph. Algorithms that meet MWRDGC’s required 
performance criteria pass through the blue shaded area. The data subsets with best and worst-
performing predictive power are clearly seen in green and red, respectively. This collection of curves 
demonstrates the importance of combining H2S concentration data with weather and operational data 
from the MWRDGC in modeling and predicting odor events.  
 

 
Figure 3. All data and data subset ROCs, with target accuracy shaded area 

 
AUC Comparison A quantitative comparison of ROC curves is given by calculating AUCs, with a larger 
area representing better performance. When algorithms are ranked by AUC, we find the top performer is 
an RF Classifier with ROS, using weather and operational data together with H2S data only from the NE, 
SE, and NW corners of the TCR. AUCs are compared in Table 1 It is seen that algorithms trained on a 
combination of at least three odalog locations, weather, and operational data result in the highest 
performing predictive algorithms. 
 
The importance of H2S sensors, weather, and TCR operational data in predicting odor events accurately, 
points to the complexity of this system, involving odor production, dispersion, and human behavior 
components. Given the MWRDGC has only three odalogs for ongoing monitoring, algorithms that use 
only three odalog readings were tested. In our results the three corner (NW, NE, and SE) locations slightly 
outperformed the drop shaft locations. The SW corner odalog was not considered as a location given the 
poor association with odor complaints.However, given that the drop shafts are where the highest H2S 
readings are observed, it was decided that going forward odalogs will be kept at the dropshaft locations, 
therefore, the RFClassifier_ROS_DropShaft_All was the algorithm finally selected for implementation. 
This was the fourth best performing algorithm of all 35 tested. The most important attributes in this 
algorithm are: Wet Well Drop Shaft H2S, relative humidity, wind speed, wind direction, dry bulb 
temperature, and TCR elevation. 
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Table 1. Five Best and Worst Performing Algorithms, by AUC 

Algorithm Data Subset Description AUC 
Highest AUC’s 

RFClassifier_ROS_ThreeCorners_All - Odalog data from NW, NE, and SE corners  
- All weather and operational data 0.826 

RFRegressor_ROS_ThreeCorners_All - Odalog data from NW, NE, and SE corners  
- All weather and operational data 0.812 

RFClassifier_All - All available Odalog, weather and operational data 0.801 

RFClassifier_ROS_DropShaft_All - Odalog data from each of the 3 drop shafts 
- All weather and operational data 0.796 

RFRegressor_ROS_DropShaft_All - Odalog data from each of the 3 dropshafts 
- All weather and operational data 0.792 

Lowest AUC’s 
RFRegressor_NoOdalogs - All weather and operational data 0.705 
RFClassifier_ROS_WeatherOnly - All weather data 0.698 
RFClassifier_ROS_DropShaftOnly - Odalog data from each of the three dropshafts 0.682 
RFClassifier_ROS_ThreeCornersOnly - Odalog data from NW, NE, and SE corners 0.641 
RFRegressor_ROS_NoOdalongs - All weather and operational data 0.609 

 
KEY INSIGHTS FROM DATA ANALYSIS AND ALGORITHM TRAINING AND EVALUATION 

§ Three-day prior Odolog, weather, and operational data are able to predict odor events with true 
and false positive rates that exceed MWRD’s minimum standard. 

§ Using all categories of data resulted in high-performance odor complaint prediction. H2S readings 
alone, or weather/operational data alone predicted odor complaints with lower accuracy.  

§ Data from a three-sensor system will be able to exceed accuracy criteria. 
§ Important features include wet well drop shaft reading, relative humidity, wind speed, wind 

direction, dry bulb temperature, and TCR elevation level. 
§ The high performance of the drop shaft-based algorithm, along with operational considerations, 

supports the decision to implement ongoing monitoring at the three drop shafts. 
§ Trained algorithms exceed the MWRDGC accuracy requirement, achieving over 75% true positive 

and less than 25% false positive identification rates 

COMMUNICATION AND USE The algorithm’s original purpose was to provide a three-day advance 
notice of possible odor events to the MWRDGC, triggering the dosing of an odor-mitigation treatment at 
key sites throughout the TCR and Drop Shaft tunnel systems. The algorithm was meant to ensure efficient 
deployment of an expensive treatment system. Mid-way through the project, MWRDGC ruled that even 
given high-efficiency dosing schedules, a chemical treatment would be too costly at the TCR. While this 
changed our implementation scheme, the predictive algorithm still provided value and improvement to 
the odor control system at the reservoir. The predictive algorithm will now be used to evaluate odor-
mitigation strategies that are implemented at the TCR, as well as deployed at other reservoirs connected 
to the tunnel system that are believed to be causing odors. 

Odor Control Implementation Plan The MWRDGC is now planning the installation of an activated carbon 
filter in the wet well dropshaft on the northeast side of the TCR to absorb H2S before it can be dispersed 
to neighboring communities. The algorithm and analysis results strongly suggest the drop shafts as the 
source of H2S, and the wet well drop shaft specifically as an important feature. The sensors at the corners 
of the TCR are detecting elevated concentrations on days when dispersion of the fugitive odors is poor; 
this would explain why drop shaft and corner locations are both good predictors of odor complaints. The 
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algorithm will be used to compare the prediction of odor complaints with actual odor complaints received 
following the installation of this odor mitigation strategy. For effective odor mitigation, predicted odor 
complaints should be higher than actual complaints. This implementation scheme is described in Fig. 4. 

 
Figure 4. Algorithm deployment within the updated odor control system at TCR drop shafts 

To address dispersion of future H2S concentrations emitted from the reservoir, the MWRDGC will conduct 
Large Eddy Simulations at the corners of the TCR to study how trees (number and orientation) may 
impact dispersion of H2S. Trees mitigate odor both by taking up sulfur compounds and hosting microbial 
communities that attenuate odor. 

Data Collection Improvement Plan The MWRDGC is exploring other sensor technology that allows for 
wireless telemetry of the data to a remote location. The manual downloading of the Odalog sensors every 
two weeks was recognized as a cumbersome data management practice. Starting in August 2018, two 
Altech sensors, one with a detection limit of 10 ppb H2S and the other at 30 ppb H2S, are being piloted 
and compared to Odalog sensor data to determine the feasibility of discontinuing the Odalog sensor 
technology for prediction of odor complaints by the algorithm.  

Deployment Outside of the TCR The odor prediction approach and data management improvement plans 
presented here are not specific to the TCR; this supervised machine learning approach can be 
implemented at other utilities that have similar reservoirs and tunnel systems. The MWRDGC itself has 
plans to implement this odor prediction and data management approach at other reservoirs that are 
connected with the tunnel system. 

CONCLUSION 
This project confronted many of the problems that modern water resource recovery treatment facilities 
must tackle in mitigating odor emissions to their surrounding communities. The team was challenged to 
handle a variety of data types and qualities, as well as combine data-driven machine learning approaches 
with the MWRDGC’s expert knowledge of odor production and dispersion. Finally, the team developed 
the next stage of odor control measures at TCR, resulting in improved data sensor technology, better 
data handling, and deployment of a trained odor prediction algorithm for verifying the effectiveness of the 
new odor prevention scheme. We believe these efforts are relevant and informative for every water 
resource recovery utility that manages tunnel and reservoir systems. More broadly, our work provides a 
concrete example of how artificial intelligence and machine learning can be used along with sensor and 
operational data to solve important water resource recovery industry problems. 
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APPENDIX A 
Data Compilation & Target Variable Selection Figures 
 

Table A1. Target Variable Pros and Cons 
 

Data Type Pros Cons 
Used in 

algorithm 
training? 

 
Odor Patrol 

• Daily in-person 
observations 

• Made at consistent 
locations around TCR 

• Human sensor able to 
identify odor 
characteristics (rotten 
eggs, sewage, oil, etc.) 

• High cost of sending 
employees out on a daily 
basis 

• Inconsistency of odor 
patrol personnel 

• MWRDGC employees 
potentially less sensitive to 
odors (ie. biased 
observations) 

✗ 

 
Odor 

Complaints 

• Registered odor 
complaints are direct 
observations of public 
disturbance 

• Location of complaint 
contributes geospatial 
information 

• Subjectivity of data. Some 
residents are more likely to 
take time to call and 
complain 

• Inconsistency. Not all odor 
events get reported and 
non-odor days are not 
registered at all. 

 

✓ 

 
H2S 

Concentrations 
(Odalog 
sensors) 

• Consistent and known 
sensor locations 

• Quantitative measure 
• Reliably logged in usable 

spreadsheet format 

• Assumed as a proxy of 
odor; No human 
observation 

• Stationary observations 
• Unable to capture wide 

area surrounding TCR 

✓ 
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APPENDIX B 
QAQC Descriptions 
 
Table B1. Data Attributes, Processing and QAQC Summary 
Data Attribute Source Description Processing & QAQC 

H2S 
Concentration 

MWRDGC 
provided 
odalog 
summary 
spreadsheets 
compiled at 
2-week 
intervals 

OdaLog® Low Range H2S 
Loggers: 2-6 sensors were 
positioned around the TCR reservoir 
from Jan 2016 to June 2018. Each 
sensor takes an aerial H2S reading 
every 15 minutes. 
Primary sensor locations: 
• TCR corners: NE, SE, NW, SW 
• Tunnel drop shafts: N. Wet Well, 

N. Construction, S. Creek 

• 15-minute interval data was 
compiled for every day and every 
location into a single large array.  

• The compiled file was checked for 
duplicate entries, out-of-range H2S 
readings, and correct location. 

• Day-level summary of H2S readings 
was compiled using Max and Mean 
readings at each location.  

Precipitation NOAA 
weather 
station 
 

Daily precipitation records • Data units confirmed as American 
units (inches, Fahrenheit, etc.) 

Temperature, 
Humidity and 
Wind 
Speed/Direction 

Hourly temperature, humidity and 
wind speed/direction readings 

• Day-level summary of weather 
readings was compiled using Min, 
Max, and Mean readings. 

TCR Elevation 

MWRDGC 
provided 
spreadsheet 
with data 
beginning 
Oct 2016. 

Daily reading of reservoir water 
elevation 

• Confirmed no readings showing 
lower than -306 CCD (Chicago City 
Datum) 

TCR Tunnel 
Gate Position 

Position of the two gates leading from 
TCR to the tunnel leading to Calumet 
WRP.  
Daily summary of the % of time gate 
was open. (e.g. 0.5 = gate open for 
half of the day) 

• Translated text records (e.g. 
OPEN, CLOSED, X% OPEN, etc.) 
into numerical values, 0.0 – 0.1. 

• Created summary variable: 
Average of Gate 1 and Gate 2 
positions.  

TARP Tunnel 
Elevation 

Elevation of water in TARP tunnel, 
behind the gate leading to TCR. 

• Confirmed no readings outside the 
expected range of TARP depths.  

Odor Patrol 
Observations 

MWRDGC 
provided 
Microsoft 
Word 
document 
records 

Daily odor observations, recorded by 
MWRDGC Technicians on-site. 
Observations made at each corner of 
the TCR and at tunnel drop shafts.  

• Data held in separate Word 
documents was transferred to 
spreadsheet format 

• Spreadsheet spot-checked for 
alignment with original documents  

Odor 
Complaints 

MWRDGC 
provided 
spreadsheet 
log 

Record of all citizen-reported odor 
issues occurring between January 
2016 and June 2018. Reports are 
made through citizen hotline and 
online incident reporting system. 

• Complaint location checked to 
confirm proximity to TCR. 

• Data summarized at the day-level, 
showing number of total complaints 
each day during study period. 
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APPENDIX C 
Additional Analyses 

Figure C1. Percent of days with H2S readings above and below 0.1ppm threshold 
a) Among days with 1 or fewer complaints, b) Among days with more than 1 complaint 

	

	

Figure C2. H2S Readings At Each Location – Time Series 
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