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2. The Problem Statement  

2.1 Objectives 
The Physical-Chemical Wastewater Treatment Plant (PChem Plant) in the Village of Sauget, 
Illinois mainly provides preliminary and primary treatment for industrial wastewater. The treated 
water then is conveyed to American Bottoms Biological Wastewater Treatment Plant for 
secondary biological activated sludge treatment. The industrial wastewater entering the PChem 
Plant typically has a low pH of less than 3. Due to the extremely low pH of the influent 
wastewater, a large quantity of lime is required to neutralize pH; otherwise, it will result in 
corrosions of facility equipment and severe damage to the downstream biological treatment 
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process. The existing neutralization process includes a lime-dosing system and three neutralizing 
tanks in series to increase the pH. The flow rate of lime slurry delivered to each tank is 
controlled by the position of the lime addition valve, which is determined by a proportional-
integral-derivative (PID) controller. One of the problems is that the existing PID controller fails 
to provide an accurate and robust control of downstream pH due to the complexity of the system 
thermodynamics and kinetics. Outliers of extremely low or high pH were observed, threatening 
the stability of downstream biological treatment. The second problem is that the PID settings are 
fixed with the slow response of the chemical system, failing to comply with the occurrence of 
various influent wastewater. This indicates a high requirement for the skills and experience of 
operators and results in uncertainty of the effluent pH. Consequently, this causes lime waste and 
thus higher costs. The first objective of our work is to predict the pH of three neutralizer tanks 
using well-trained machine learning (ML) models based on the current datasets of the 
wastewater treatment system; the results will serve as a reference for PID settings adjustment. In 
addition, an alert for pH control can be provided when an extreme pH is predicted. The second 
objective is to recommend lime addition valve position, which can serve as a good reference for 
manual control of valve position. For future work, a real-time supervisory system is expected to 
be developed. The well-trained “dose-response” ML model will serve as a Virtual Work Space to 
run the Digital Twin simulation. A data pipeline will be developed to automatically provide real-
time data for the ML model. Real-time monitoring of the system performance will be visualized 
on a data dashboard.  Also, recommended valve position is provided as a reference for better 
control of the pH. The solution shall achieve high accuracy in ML models with minimum 
impacts on the whole wastewater treatment plant.  

 

2.2 The Intelligent Water System 
2.2.1 Data Source 
The data sets used in this challenge were provided by AB PChem Plant for a period of three 
years. The data sets are summarized as shown in Table 1.  

Online Monitoring Data: data were collected in the influent, and three neutralizers, including 1) 
daily data: temperature; and 2) data at a 5-minute interval: flow rate, pH, and lime addition valve 
output from the supervisory control and data acquisition (SCADA) system.   

Water Quality Analysis Data: routine plant monitoring daily data in the influent, and three 
neutralizers, including biological oxygen demand (BOD), total suspended solids (TSS), and total 
Kjeldahl nitrogen (TKN). 

 

Table 1. Summary of data sets 

Parameter Unit Time interval 
Temperature ℃ 1 day 
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Influent 

PC Influent Flow MGD 5 minutes 
PC Influent pH / 5 minutes 
Influent BOD mg L-1 1 day 
Influent TSS  mg L-1 1 day 
Influent TKN mg L-1 1 day 

Neutralizer 

Neutralizer #1 pH / 5 minutes 
Neutralizer #2 pH / 5 minutes 
Neutralizer #3 pH / 5 minutes 
Neutralizer TSS mg L-1 1 day 
Neutralizer #1 lime valve % closed 5 minutes 
Neutralizer #2 lime valve % closed 5 minutes 
Neutralizer #3 lime valve % closed 5 minutes 

Effluent 

PC Effluent Flow MGD 5 minutes 
Effluent pH / 5 minutes 
Effluent BOD mg L-1 1 day 
Effluent TSS mg L-1 1 day 
Effluent TKN mg L-1 1 day 

 

2.2.2 Lime Control System 
The lime slurry is used for the neutralization of wastewater pH. It is recirculated in the lime 
system after slaking the ½ inch to ¾ inch pebble lime in the lime slake tank and stored in the 
lime storage tank. The programmable logic controller named P-CHEM PLC was initially 
installed as an industrial digital computer for data monitoring points and control of the lime 
system. The lime system consists of lime pumps, lime addition valves, and neutralizer gates. The 
pumps are used to circulate lime slurry at a specified flow rate. Three automatically controlled 
valves are used to control pH to a setpoint in each of the three neutralization chambers. The 
valve positions are controlled by the PLC and shown in % closed. The valves can also be 
manually controlled. When the valve is in the Auto mode, the PID controller calculates a 
position signal of lime addition valves based on the pH setpoint, the current pH, and the PID 
settings. Two neutralizer slide gates separate the three neutralizer chambers. These gates are 
opened automatically when the plant goes into a rain mode to permit higher flows. Each 
neutralizer chamber has an agitator. The lime dosing can be sufficient to control wastewater pH, 
but the lime dosing amount is based on a conservative setpoint, which could cause lime 
overdosing. One of the outcomes of this work is to develop a lime dosing strategy to minimize 
overdosing and thus to save the operational costs.        
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2.3 Work Design 
2.3.1 Work Plan 
We use online monitoring data and water quality analysis data to predict neutralizer pH. The 
lime addition valve position can be recommended with well-trained ML models, which will 
serve as a reference parameter for the PID control. The well-trained model, as a “dose-response” 
ML model, is built to simulate the pH response concerning different wastewater characteristics 
data and lime dosing amounts. This simulation dataset will serve as a Virtual Work Space to run 
the Digital Twin simulation. A wide range of valve position values from 0 to 100 are applied to 
the ML models, resulting in a set of predicted pH values produced. The recommend lime 
addition valve position is obtained when the predicted pH is equal to the target pH.  Finally, a 
real-time supervisory system is developed where a well-trained ML model is applied and a data 
pipeline is built to feed data into the model. And a data dashboard for real-time data visualization 
and an alarming system for abnormal influent occurrence are included. 

 

 

Figure 1. Work plan for the final solution  

 

2.3.2 Method 

i. Correlation analysis  
The correlation analysis was used to identify the relevant attributes of the features to the output 
feature in the dataset. The correlation matrix was generated showing the positive or negative 
correlations between two features. The input features were decided due to their obvious attributes 
to the output feature.  

ii. Data normalization  
Since values of input feature varied in different ranges, normalization was applied to change the 
values to a common scale without distorting differences in the value distribution. Several scaling 
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methods were compared and applied on input data of ML models, including Min_max scaler, 
Standard scaler, and Normalizer. In general, standard scalers performed best among the three 
methods.  

iii. Machine learning models  
The commonly used ML models, such as Support Vector Machine (SVM), Decision Tree (DT), 
Random Forest (RF), Ada Boost (AB), Artificial Neural Network (ANN) and XGBoost were 
chosen for regression modeling.  

iv. Cross-validation and hyperparameter tuning 
For all ML models, 80% of data was selected for training while the remaining 20% of data was 
for testing. Cross-Validation was applied to test the ability of the model to predict new data. It 
was used to avoid problems like overfitting or selection bias. And the Grid Search was used to 
tune hyperparameters and choose the best-performed ML models.  

v. Sensitivity analysis 
The sensitivity analysis is considered a powerful way to understand an ML model. It examined 
the impact each feature has on the model’s prediction. The impacts of each feature on neutralizer 
pH were illustrated with this analysis.   

 

3. Solutions 

3.1 Benchmarking the Existing System Performance  
The performance of the existing system was evaluated based on the frequency and severity of 
overdosing as well as the condition under which overdosing would happen. These overdosing 
events can be vividly illustrated through data visualization. 

The influent pH fluctuates in a wide range between 0 and 13, with most remained at low pH 
values between 1 and 2.5 (Fig. 2a). The influent pH was required to be accurately adjusted, and 
expected to reach a target pH of 8 after the neutralization process. The neutralization was 
designed to increase the pH stepwise with setpoints of 5.6, 6.8 and 8.2 among three neutralizers. 
Here, the results of pH control were illustrated through data visualization (Fig. 2b, 2c & 2d). The 
occurrence of real pH values was counted, and the dashed lines illustrated the target pH. The 
extreme pH conditions should be avoided as much as possible, or it will disrupt the downstream 
biological process. In addition, the varying alkalinity condition will increase the difficulty to 
O&M. More improvements can be applied to avoid outliers of extreme pH and control the 
process more accurately. For example, pH outliers at low pH of 2.5 and high pH of 10 can be 
further eliminated in neutralizer 1 (Fig. 2b). It can be avoided that the pH distribution of 
neutralizer #2 was divided into two peaks in Fig. 1c. And pH outliers at 10 and 11 can be 
prevented in neutralizer #3 (Fig. 2d). The control alerts will be provided if the pH is predicted 
with ML models, and these outliers can be prevented with in-time lime dosing adjustment.      
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Figure 2. The pH performance of the existing neutralization process. The boxplots show the 
maximum, minimum, median, first quartile and third quantile values for influent and three 
neutralizer pH. 

 

3.2 Data Preprocessing   
The raw datasets were collected and preprocessed as follows: 

3.2.1 Data Cleaning 
The raw data were provided with time intervals of one day or five minutes (Table 1). So, all data 
were unified into two intervals as two separate datasets, i.e., one dataset at a daily interval and 
the other at a five-minute interval: 1) Daily dataset: the average values were used as daily data; 
2) Five-minute interval dataset: the daily data were replicated to align time interval of 5 minutes. 
Besides, the observations with missing values were moved out. 

3.2.2 Correlation Analysis 
The correlation analysis was used to evaluate the strength of the relationship between two 
variables (or features in ML models). The values of correlation coefficients are between -1 and 1, 
showing a strong positive correlation with 1, a strong negative correlation with -1, and no 
correlation with 0. For example, as shown in Fig. 3, the neutralizer #1 pH may be correlated with 
valve #1 position, influent pH, influent TKN and temperature. And these features were chosen as 
inputs to predict neutralizer #1 pH in ML models. Appendix A shows the correlation matrix for 
all features, which served as a reference for choosing input features in ML models. 
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Figure 3. Correlation matrix among features for neutralizer #1. The color and size of circles, and 
values indicate the correlation between two features. 

 

3.3 Module One: pH Prediction in Neutralizer #1 & #2 & #3  
The existing lime control system mainly relies on PID controller to determine lime dosing valve 
position. However, some outliers of extreme pH values were still found. This issue can be 
addressed by extra operations when pH is predicted, and an outlier alert is provided. 

3.3.1 Data, Modeling, and QA/QC 
In this module, online monitoring data (pH, flow rate, and valve position) and water quality 
analysis data (temperature, BOD, TKN, and TSS) were used. The results of the five-minute 
interval dataset outperformed the daily dataset. So, all data were unified with a time interval of 
five minutes. Because the water quality analysis data were collected daily, all daily data were 
replicated to align with 5-minute data. The lime dosing valve position of three neutralizers was 
started to be recorded on march 30th 2021, and collected on June 7th 2021. After data cleaning 
and removing missing data, 14,395 data were used in ML models.  

Because the range of pH was narrow, the regression models were conducted to predict pH. The 
ML models including SVM, DT, RF and ANN were used and compared.  

Based on the correlation matrix shown in Appendix A, correlations between neutralizer pH and 
other features were illustrated, which provided a good reference to choose input features in ML 
models (as shown in Table 2). For neutralizer #1 pH, obvious positive correlations with influent 
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pH and lime addition valve #1 were found. Besides, neutralizer #2 pH was positively correlated 
to influent pH, neutralizer #1 pH, lime addition valve #2 and temperature. Finally, neutralizer #3 
pH was mainly related to neutralizer #2 pH and no obvious correlation was found with lime 
addition valve #3. It was indicated that lime addition made a difference in the first two 
neutralizers, but affected pH less in the last neutralizer. All input features were normalized since 
the input features fell in various ranges. All data were shuffled and split into training and testing 
sets. 

 

Table 2. Input features for the prediction of three neutralizer pH 

 Input features  
Neutralizer #1 pH Influent pH, lime addition valve #1 position, influent flow, influent BOD, 

influent TKN, influent TSS, and temperature. 
Neutralizer #2 pH Influent pH, neutralizer #1 pH, lime addition valve #2, temperature, 

influent flow, lime addition valve #1, influent BOD, influent TSS, and 
influent TKN. 

Neutralizer #3 pH Neutralizer #2 pH, Influent pH, neutralizer #1 pH, lime addition valve #2, 
lime addition valve #3, temperature, influent flow, lime addition valve #1, 
influent BOD, influent TSS, and influent TKN 

 

3.3.2 The pH Prediction of Neutralizers  
The 80% of data were first used to training ML models. The data training was implemented with 
Cross-Validation and selected with the Grid Search technique. The training results were 
evaluated based on R2 score, and more details were shown in Appendix B. The rest 20% of data 
were applied for model testing, and the results were concluded in Table 3. The models were 
proved to predict pH with R2 score of at least 0.7. The RF model performed best, and predict pH 
of three neutralizers with 0.718, 0.714 and 0.895 in R2. The performance of the RF model for 
neutralizer #1 pH was visualized as shown in Fig. 4, where the predicted and actual pH values 
were compared. The performance of RF models for the other two neutralizers was introduced in 
Appendix C. And it was illustrated that the outliers caused challenges for ML model prediction. 

 

Table 3. Machine learning regression model testing results for Module one: pH prediction of 
three neutralizers 

R2 score SVM DT RF ANN 
Neutralizer #1 pH 0.637 0.619 0.718 0.703 
Neutralizer #2 pH 0.616 0.634 0.714 0.689 
Neutralizer #3 pH 0.672 0.812 0.895 0.859 
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Figure 4. Predicted (red line) and actual (green line) pH of neutralizer #1 with the Random 
Forest regression model. 

 

3.3.3 The Sensitivity Analysis  
Based on the RF models, the impacts of other features on neutralizer pH were examined through 
sensitivity analysis. To achieve target pH, the impacting features need to be precisely controlled. 
In the neutralization process, the pH was mainly adjusted by lime addition, whose dosage was 
determined by the valve position. So, the sensitivity analysis was conducted to check the impact 
of lime addition valve position on pH. As shown in Fig. 5, the impacts of features on neutralizer 
#1 pH were ranked. The temperature showed the largest impact but it was not manually 
adjustable. The lime addition valve #1 ranked second, confirming its feasibility and effectiveness 
in pH adjustment. So, in Module two, recommended valve positions were calculated with ML 
models to optimize pH control, which could serve as a good reference for the lime system 
control. The sensitivity analysis for the other two neutralizers was mentioned in Appendix D. For 
neutralizer #2 pH, it was mainly impacted by neutralizer #1 pH and temperature, which were 
followed by lime addition valve #2 position. However, neutralizer #3 pH was slightly affected by 
lime addition valve #3 (ranked 5), but mainly by influent BOD. This indicated a challenge for the 
following valve position prediction based on pH in neutralizer #3. 
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Figure 5. Sensitivity analysis of neutralizer #1 pH with the Random Forest regression model 

 

3.4 Module two: recommended lime addition valve position   
The lime dosing is represented by the lime addition valve position. The impacts of valve position 
on neutralizer pH were confirmed in Module one by sensitivity analysis. Besides, the existing 
lime control system is operated with PID control and is usually in auto mode. However, 
sometimes manual mode is used when extreme pH is observed, which shows a high requirement 
for skilled and experienced operators. So, the recommended valve position for lime dosing can 
also serve as a reference to optimize pH control.  

3.4.1 Data, modeling and QA/QC 
Both online monitoring data and water quality analysis data were used as input features. The 
water quality analysis data were aligned to the time interval of five minutes by duplicating. The 
well-trained RF regression models (from Module one) were used to predict the neutralizer pH. 
The difference compared to Module one was that the input valve position swept from 0 to 100. 
And the corresponding predicted pH values were collected, and compared with the target pH. 
The recommended valve position was chosen when the predicted pH was closest to the target 
pH.       

Based on the correlation matrix shown in Appendix A, correlations between valve position and 
other features were demonstrated. The lime addition valve #1 was positively correlated with 
neutralizer #1 pH. For lime addition valve #2, obvious positive correlations were observed with 
pH of neutralizer #2. However, lime addition valve #3 pH was mainly related to neutralizer #2 
pH and no obvious correlation was found with neutralizer #3 pH, indicating a challenge to adjust 
neutralizer #3 pH through lime addition valve #3.  
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3.4.2. The Recommendation of lime addition valve position  
For example, different values of lime addition valve #1 (from 0 to 100) were input to the well-
performed RF model, and the neutralizer #1 pH was predicted as shown in Fig. 6. According to 
the target pH of 5.6 for neutralizer #1, the recommended valve #1 position was in the range 
between 45 and 70.  

 

Figure 6. The recommended lime addition valve #1 position for neutralizer #1 pH 

 

3.5 Future work: development of a real-time supervisory system  
A real-time supervisory system is developed where well-trained “dose-response” ML models are 
included, and a data pipeline is built to feed real-time data into the model. A data dashboard is 
built for real-time data visualization and an alarming system for abnormal influent occurrence. 
Also, recommended lime addition valve position can be provided through ML models, serving as 
a reference for pH control.    

 

4. Conclusions  
This work aimed to apply data-driven methods to solve real-life problems in wastewater 
treatment plants and optimize the facility performance with big data calculation. It is a good 
example and case study for the application of machine learning models in wastewater plant 
management. The machine learning models can assist to prevent the extreme pH conditions in 
PChem Plant, which will benefit biological treatment downstream and decrease the O&M related 
cost. The well-trained machine learning models are capable of predicting pH in each neutralizer, 
and address the drawbacks of PID control for lime dosing system. The recommend lime dosing 
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can be provided by choosing the lime addition valve position to reach the target pH. This work 
will serve as a good reference for PID control of lime dosing. The performance of the 
neutralization process will be further optimized. We are confident that those data-driven methods 
can be employed to address pH and chemical dosage problems in other wastewater treatment 
facilities. 
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Appendix A – Correlation matrix for all features  
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Appendix B – ML model training results for Module One  
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Appendix C – ML model prediction for neutralizer 2 & 3 pH with the Random 
Forest model 
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Appendix D – Sensitivity analysis of neutralizer 2 & 3 pH with the Random Forest 
model 

 

 


