

National Water Pipeline Database – PIPEiD Webcast

June 10, 2021

© 2021 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Housekeeping

- Submit questions through the question box at any time. We will do a Q&A at the end of the webcast.
- Slides and a recording of the webcast will be available at <u>www.waterrf.org</u>.
- A certificate of completion will be automatically generated at the end of the webcast. Any questions, please contact Michelle Suazo at <u>msuazo@waterrf.org</u>.
- Survey at the end of the webcast.

National Water Pipeline Database - PIPEiD

Dr. Sunil Sinha, Professor and Director, Virginia Tech Anmol Vishwakarma, Doctoral Student, Virginia Tech Kathleen Laskowski, Deputy Director, SWIM Center

Sustainable Water Infrastructure Management

© 2021 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

National Water Pipeline Infrastructure Database Webcast Series

June 3rd: Water Pipeline Infrastructure System Knowledge and Understanding, and Data Structure and Database Management for Asset Management

June 8th: Water Pipeline Infrastructure System Descriptive and Correlation Analysis, and Survival/Weibull Curve Analysis for Asset Management

June 10th: Water Pipeline Infrastructure System Performance and Risk Analysis, and Life Cycle Economic Analysis for Advanced Asset Management

100 Federal Facilities

500 Water Utilities

UNDER CONGRESSIONAL DIRECTION

United States Senate Committee on Appropriations for Water & Energy Development

Federal Register - OMB Control Number: 1006-0031

COLLECTION AND COMPILATION OF WATER PIPELINE FIELD PERFORMANCE DATA

- The purpose of this project is to collect high-quality field performance data on pipeline reliability for water pipelines of different materials, including cast iron, ductile iron, pre-tensioned concrete, reinforced concrete, steel, pvc, hdpe, others.
- This project will also develop a database capable of efficiently storing the collected data and supporting data analytics and analysis of the performance of water pipeline infrastructure systems across the county.

This Project will lay the Foundation of a National Database of Water Utility Infrastructure.

Virginia Tech News & Release of Reports Friday, April 23, 2021

Researchers collect data from water utilities for insights on the health of the nation's pipelines

The team will fold the data and tools for its analysis into an online database designed to improve management of pipeline infrastructure systems for performance, resilience, and sustainability. *April 22, 2021*

Artificial Intelligence Application for Water Pipelines

Artificial Intelligence Application for Water Pipelines

System-Centric aspect would focus on systems of systems Understanding of water pipelines Data-Centric aspect would focus on substantial datasets of water pipeline *Model-Centric* aspect would focus on annotation and sharing of robust models

Data Source

Water Utility

- For specific

Local -

PIPEID Database Architecture

© 2021 The Water Research Foundation. ALL RIGHTS RESERVED. 9

Water Utilities Data and Analysis

Key Findings & Deliverables

- 1. Understanding the Pipeline Infrastructure Systems
- 2. Developing the data Standard to Support Analysis
- 3. Developing the Protocol for Database Management
- 4. Understanding the Pipeline Descriptive Analytics
- 5. Understanding Pipeline Performance Characteristics
- 6. Understanding Risk Assessment & Management
- 7. Life-Cycle Cost and Economic Analysis

Visualization & Decision-Support System – PIPEiD Website

Benefits for Participating Water Utilities

- Standardized Data
 - Comprehensive Standardized Data
 - External Data Service
 - Utility data will be combined with external data sources like EPA, USGS, SSURGO, NLCD, etc.

Data Analytics

- Strategical General Information
- Tactical Pipe Performance Analysis
- Operational Advanced Models/Tools

- Preliminary Analysis of the Standardized Utility Data
- Visualization of GIS Web-applications for decision support

Correlation Analysis

WATER PIPELINE PERFORMANCE INFLUENCING FACTORS

Key Performance Influencers for Water Pipelines

● AC ● CI ● DI ● HDPE ● PCCP (Overall Failures) ● PCCP #WB ● PVC ● RCCP ● Steel

Metallic			Cementitious			Plastic	
Steel	CI	DI	PCCP	RCCP	AC	PVC	HDPE
Cation Exchange Potential	Soil pH	Soil pH	Cation Exchange Potential	Cation Exchange Potential	Land Subsidence	Bedrock Depth	Frost Action
Traffic Loading	Soil Corrosivity	Soil Chlorides	Concrete Corrosivity	Frost Action		Bedding Quality	Traffic Loading
Internal Water Pressure	Redox Potential	Redox Potential	Soil Moisture				Internal Water Pressure
Corrosion Protection	Soil Resistivity	C Factor (Unlined)	Traffic Loading				Bedding Quality
	C Factor (Unlined)	Internal Water Pressure	Carbonate Presence and Reactivity				
	Internal Water Pressure	Corrosion Protection	Bedding Quality				
Soil Corrosivity	Land Subsidence	Soil Sulfates	Metallic Corrosivity	Traffic Loading	Bedrock Depth	Soil Slip Potential	Soil Slip Potential
Soil Moisture	Internal Water Agg.	Soil Resistivity	Soil Slip Potential	Soil Moisture	Soil Moisture	Soil Temp.	Soil Temp.
Frost Action	Stray Current	Soil Type	Frost Action	Concrete Corrosivity	Internal Water Aggressivity	Frost Action	Water Temp.
Soil Temp.		Soil Slip Potential	Internal Water Pressure	Bedrock Depth	Carbonate Presence and Reactivity	Traffic Loading	Soil Type
Soil Type		Frost Action	Corrosion Protection	Corrosion Protection		Internal Water Pressure	Buried Depth
G/W Table Depth		G/W Table Depth	Internal Water Aggressivity	Internal Water Aggressivity		Water Temp.	
Stray Current		Stray Current		Carbonate Presence and Reactivity		Soil Type	
		Internal Water Agg.				Buried Depth	
	Soil Sulfates	Soil Moisture	Soil Temperature		Frost Action		
	Soil Moisture	Soil Temp.		Soil Type	Soil Type		
	Soil Chlorides	Internal Water Pressure					
	Traffic Loading						
	Internal Water Pressure						

Descriptive Analysis

WATER PIPELINE FAILURE MODE & MECHANISMS

Remaining Useful Life Estimation Using Mixed Methods

Modeling is based on Cohort Analysis

Water Pipeline Performance Analysis Model can run on the pipe segment

Given the different scaling methods, the 1-5 scale is mostly widely used, and it is also proved to be a balanced tradeoff between the granularity and statistical significance.

Grade	Representation	Range
1	Excellent	100-81
2	Good	80-61
3	Fair	60-41
4	Poor	40-21
5	Failed	20-0

Water Pipeline Risk Matrix Development

Model can run on the pipe segment

- LoF values obtained from Performance model
- CoF values obtained from Fuzzy Logic model
- LoF and CoF obtained on 1-5 scale
- 5x5 Risk Matrix
- CoF model takes a triple bottom line approach
 - 5 modules: Economic Impact, Environmental Impact, Social Impact, Operational Impact and Renewal Complexity capture 19 parameters Models assumptions vary with
 - diameter range Model can be applied to all
 - materials

Consequence of Failure Score	Color Coding	Description	
1	Dark Green	Insignificant	
2	Light Green	Minor	
3	Yellow	Moderate	
4	Orange	Major	
5	Red	Catastrophic	

Likelihood of Failure and Consequence of Failure

Lifecycle Economic Analysis of Water Pipelines

- Probabilistic estimates for parameters based on Monte Carlo simulation of data distributions
- Renewal timings predicted based on pipe performance in ecological conditions
- Results presented for Lifecycle costs and Expected Service Lives with 95% confidence intervals
- Currently in piloting stage with participating water utilities
- Analysis performed in the preliminary results (on the right) for material and diameter stratifications.
 Final results will include estimates for ecological conditions

Lifecycle Costs for Water Pipeline Material and Diameter Categories					
		Lifecycle Costs	Expected		
Material	Diameter	(\$/segment) ± 95%	Service Life		
		CI	(Years)		
	<16"	\$180,913±490	125		
DI	16"-36"	\$100,571.4±609	136		
	>36"	\$834,961.4±16,622	53		
Steel	eel >36" \$3,754,072±75721		94		
	<16"	\$281,417±594	130		
CI	16"-36"	\$122,948±824	127		
	>36"	\$1,136,365±34,520	94		
RCCP	CCP >36" \$7,113,151 CCP >36" \$8,630,177		81		
РССР			65		
BWP	>36"	\$4,443,579±81,368	60		
PVC	<16"	\$119,769±411	55		
	<16"	\$241,715.6±6,278	78		
	16"-36"	\$98,286±9,551	54		

Analysis should be based on service life – not the design life

Piloting of AI-Driven Platform at National Scale

SENSITIVITY ANALYSIS

EXISTING UTILITY MODELS

BLIND TESTING

Water Pipeline System Risk Management and Life-cycle Economic Analysis

RISK AND ECONOMIC ANALYSIS-METHODOLOGY

Building on results from Performance Analysis and combining with results from CoF model to develop Risk Matrix. Risk Analysis used for prioritizing pipes for renewal

COF MODEL DATA STRUCTURE

 Balanced trade-off between granularity and statistical analysis

Score	Category	Description	
0-1	Insignificant	Minimum to no renewal costs, environmental impacts, social	
		disruption, easily renewable	
1-2	Minor	Minor impact due to failure on renewal costs, environmental impact	
		or social impact and is easy to renew	
2-3	Moderate	Some CoF parameters have moderate impacts on renewal costs,	
		environmental impact or social impact or is not very easy to renew	
3-4	Major	May have a high impact on renewal costs, environmental impact or	
		social impact or is very hard to renew	
4-5	Catastrophic	C Critical and may have a very high impact on renewal costs,	
		environmental impact or social impact.	

• Includes 5 modules and 21 parameters

- Covers TBL parameters and Operational and Renewal Complexities
- Based on extensive literature, practice review, and interview with water utility experts

COF MODEL DEVELOPMENT USING FUZZY LOGIC

 Mamdani Fuzzy Inference System

- Widely used
- Easier to develop
- Centroid method for defuzzification

Defuzzification Method

FUZZY INFERENCE SYSTEM DEVELOPMENT

- Model divided into 6 modules
- Reduces number of rules
- Helps in model evaluation

SENSITIVITY ANALYSIS

Internal Verification of Models based on Global Sensitivity Analysis to understand influence of parameters on outputs

MODEL CORRELATION WITH INPUT PARAMETERS

Economic Impact module and associated parameters has one of the highest impacts on the overall model output

Correlation Coefficient of Model Inputs with Outputs

RISK MATRIX DEVELOPMENT

- LoF values obtained from Performance model
- CoF values obtained from Fuzzy Logic model
- LoF and CoF obtained on 1-5 scale
- 5x5 Risk Matrix
- CoF model takes a triple bottom line approach
 - 5 modules: Economic Impact, Environmental Impact, Social Impact, Operational Impact and Renewal Complexity capture 19 parameters
 - Models assumptions vary with diameter range
 - Model can be applied to all materials

Likelihood of Failure Score	Description	Color		Consequence of Failure Score	Color Coding
1	Very Good	Dark Green		1	
2	Good	Light Green		2	Light Green
3	Fair	Yellow		3	Yellow
4	Poor	Orange		4	Orange
5	Very Poor	Red		5	Red
		Periodic Monitoring and Strategy Low Risk	tion ement enewal egy	High Risk Prompt Condition Assessment and Renewal Failure Impact Mitigation Strategy	

Consequence of Failure

Description

Insignificant

Minor

Moderate

Major

Catastrophic

RISK MATRIX DEVELOPMENT

- 5x5 risk matrix plotted with 4 different risk zones
 - Red- Very High Risk
 - Orange High Risk
 - Yellow Moderate Risk
 - Green Low Risk
- Risk Matrices developed for different scenarios
 - Pipes in high corrosivity ecological cohorts
 - Serving critical infrastructures
 - Different pipe materials
 - Large and small diameter pipes
- Piloting with water utilities emphasized importance of Risk Policy.

Pipe information provided to help support prioritization decisions based on Risk Policy

RISK ANALYSIS RESULTS

Model responds to complex risky scenarios like

- Cascading functional disruption: Transmission pipes
- Higher societal disruption potential: Interstates and rail tracks; hospitals and high density commercial areas
- Higher environmental damage: Protected wetlands, landslides
- Operational impacts: Fire flow
- Renewal Complexity: Pipes underneath bridges, near interstates or water bodies

High consequence pipe near primary roadways

High consequence pipe near critical facilities (hospitals)

LIFECYCLE ECONOMIC ANALYSIS- METHODOLOGY

- Probabilistic analysis for uncertain variables based on data availability (point estimates where data is scarce)
- Renewal (Repair, Rehabilitation and Replacement) timings predicted based on performance analysis, not predefined/recurring assumptions.
- NPV compared for each alternative

Need to move from Design Life to Performance Life based LCCA

DATA STRUCTURE

Comprehensive data structure developed using extensive literature, practice review and interviews with water utility experts

LIFECYCLE ECONOMIC ANALYSIS- RESULTS

Lifecycle cost estimates should be based on performance life rather than design life. Less than 16in DI and PVC had among the lowest lifecycle costs. For larger diameter cementitious pipes, Bar Wrapped Pipes (BWP) had one of the lowest normalized lifecycle costs.

Analysis performed for different cohorts like soil corrosivity, pipe protections and lifecycle stages

OPTIMAL REPLACEMENT TIME-METHODOLOGY

- Based on minimization of cost function
- Optimal Replacement Times based on Multicriteria cost optimization (For example, cost minimization and service life maximization) investigated through advanced mathematical techniques
- Previous studies included optimal replacement times without account for repair times.

OPTIMAL REPLACEMENT TIME- RESULTS

Economic lives of metallic pipes can vary based on soil corrosivity and corrosion protection.

For DI pipe, PE encasement with cathodic protection extends the economic life by at least 20 years compared with only PE

encasement.

Steel pipes with bonded dielectric coatings and cement mortar linings can have better economic lives than other corrosion mitigation measures.

PCCP with bonding straps show better economic lives than impressed current.

ignored. Economic Life= 35, 49 years)

ECONOMIC ANALYSIS RESULTS SUMMARY

Lifecycle Economic Analysis and Optimal Replacement Time analyses can help in replacement decision making and evaluate replacement material alternatives

Local environmental conditions, and water utility management practices can cause these figures to vary.

Material	Diameter	Lifecycle Costs (\$/segment) ± 95% CI	Economic Life	Costs/Year
	<16"	\$180,913±491	116	\$1,560
DI	16"-36"	\$324,194±609	134	\$751
	>36"	\$1,708,974±16,622	49	\$17,040
Steel	>36"	\$1,939,023±37,861	70	\$53 <i>,</i> 630
	<16"	\$281,417.2±594	120	\$2 <i>,</i> 345
CI	16"-36"	\$266,946±1,649	119	\$1,033
	>36"	\$1,173,886±34,520	57	\$19,936
RCCP	>36"	\$7,113,151±72,677	57	\$124,792
РССР	>36"	\$8,630,177±6,133	35	\$246,576
BWP	>36"	\$2,973,169±74,587	54	\$82,289
	<16"	\$83,564±274	51	\$2,348
PVC	16"-36"	\$140,601±26,000	72	\$1953
	<16"	\$241,715±6,278	72	\$3,357
HUPE	16"-36"	\$411,795±38,204	52	\$1,890

Lifecycle Economic Analysis and Optimal Replacement Life Results Summary

National Water Pipeline Database Summary

More than 500 Water Utilities and 100 Federal Facilities across the U.S. participated in the study.

Around 275,000 Miles of Water Pipeline Data Collected and about 150 Water Pipeline Performance Parameters Analyzed.

- Reports submitted to the U.S. Senate Committee on Appropriations for Water and Energy development and Standing Committee on Energy & Natural Resources
- Reports are peer reviewed by 25-Member Technical Review Committee appointed by OMB, Washington D.C., and 7-Member External Review Panel appointed by the U.S. Bureau of Reclamation

Key Findings & Deliverables

- **1. Understanding the Pipeline Infrastructure Systems**
- 2. Developing the data Standard to Support Analysis
- **3. Developing the Protocol for Database Management**
- **4. Understanding the Pipeline Descriptive Analytics**
- **5. Understanding Pipeline Performance Characteristics**
- 6. Understanding Risk Assessment & Management
- 7. Life-Cycle Cost and Economic Analysis

Visualization & Decision-Support System – PIPEiD Website

PIPEiD Research Primer

NATIONAL WATER PIPELINE INFRASTRUCTURE DATABASE: REPORT TO THE U.S. CONGRESS

Collection and Compilation of Water Pipeline Field Performance Data

to support the National Pipeline Infrastructure Database (PIPEiD)

REPORT PRIMER

February 1st, 2021

Copyright © 2021 by SWIM Center at Virginia Tech ALL RIGHTS RESERVED No part of this publication may be copied, reproduced or otherwise utilized without written permission.

Congressional Reports <u>https://www.swim.cee.vt.edu/congressional-</u> <u>reports/</u>

41

SWIM Center Core Activities

National Water Pipeline Infrastructure Database Webcast Series

June 3rd: Water Pipeline Infrastructure System Knowledge and Understanding, and Data Structure and Database Management for Asset Management

June 8th: Water Pipeline Infrastructure System Descriptive and Correlation Analysis, and Survival/Weibull Curve Analysis for Asset Management

<u>June 10th:</u> Water Pipeline Infrastructure System Performance and Risk Analysis, and Life Cycle Economic Analysis for Advanced Asset Management

© 2021 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Thank you!

Comments or questions, please contact:

Jian Zhang: jzhang@waterrf.org Sunil K. Sinha, <u>ssinha@vt.edu</u> Anmol Vishwakarma, <u>vanmol93@vt.edu</u> Kathy Laskowski, <u>klaskows@vt.edu</u>

For more information, visit <u>www.waterrf.org</u>

© 2021 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.