

R트MVell In Situ Remediation Technology (InSRT)

Michelle Crimi mcrimi@clarkson.edu 315-261-8209

© 2021 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

REMVell

Michelle Crimi, PhD Co-founder, CEO

Fiona Laramay, PhD Co-founder, COO

- Michelle is a Professor at Clarkson with 20 years of experience developing and evaluating new technologies for treating contaminated groundwater
- Fiona is a former PhD candidate in Environmental Science & Engineering at Clarkson; now an Environmental Engineering at AECOM
- Business mentors: Joe Dickson, Brad Sparks

Groundwater Contamination

Pump-and-treat with granular activated carbon (P&T GAC)

5

The New Way... RemWell's InSRT

HRX Well[®] Description

The HRX well concept has been validated and demonstrated through ESTCP project ER-201631

 The HRX Well* is a large-diameter horizontal well installed along the groundwater flowpath that is filled with reactive or other treatment media *Patent US20120261125A1

- ➢ Passive in-situ treatment
- Many solid-phase reactive media options
- ➤Efficient use of reactive media
- Treatment train approach possible
- ➢Not limited to high-permeability aquifers

- ➤Can be applied in relatively deep settings
- Limited above-ground footprint
- ➤Minimal O&M
- No ongoing energy requirements
- ➢ Pumping can enhance treatment zone size

Field Demonstration

Courtesy of Arcadis

In situ reactor technology (InSRT)

Sonolysis-Background

Sound waves >19 kHz create cavities in liquids

PFAS sorb to the cavity interface

Cavities collapse at maximum radius creating extreme localized conditions

- High heat (5000 °K)
- High pressure (1000 bar)
- Cleaves bond between hydrophobic and hydrophilic portions of molecules

In situ remediation technology (InSRT)

RemWell offers 40% savings

in annual operating costs **compared to carbon treatment**

250

The Competition

Factor	RemWell	Pump-and-treat GAC	Incineration	Oxidation Reduction	Membrane Filtration
Destroys PFAS	-	X	-		X
Low Operational Cost	-	X	X	-	X
Fully On-site, In-place	-	X	X	1	X
Addresses Other Contaminants	-	—	1	-	-
Uses Existing Standard Equipment		~	1	1	1
Field Validated	Coming Soon	1	1	X	-

Experimental conditions

Experiment	Color	Matrix	Concentration (ug/L)	Percent Power	Treatment time
					(minutes)
1A		PFOA/DI water	100	60%	90
1B	_	PFOA, PFOS	10 each	60%	270
1C		PFOA, PFOS	10 each	75%	270
1D		PFOA, PFOS	1 each	60%	270
1E		PFOA, PFOS	1 each	75%	270
1F		Groundwater (Site 1)	C _{i,PFOS} = 351	60%	270
1G		Groundwater (Site 1)	C _{i,PFOS} = 402	60%	600
1H		Groundwater (Site 2)	C _{i,PFOS} = 241	60%	600
11		Groundwater (Site 3)	C _{i,PFOS} = 2000	60%	270
1J	_	Groundwater (Site 3)	C _{i,PFOS} = 4000	60%	1080
1K		Groundwater (Site 4)	$C_{i,PFOS} = 44$	60%	900
1L		PFBA	1300	60%	660
IM		Site 6	$C_{i,PFOS} = 0.08$	100%	270

Results

Values above bars = treatment time (min)

Results: Site 3, Condition J

Results

Results

 Shorter-chain compounds are produced as reaction intermediates, but are also degraded by sonolysis

Example:
PFBA in
spiked
system

Results: TOP Assay

Increase in PFCA concentrations

How can WRF help?

- Improved understanding of relationship between utilities and sources/owners of groundwater contamination
- Connections to sources/sites contributing to contaminated drinking water
- Identify opportunities for pilot testing
 - Can offer complimentary treatability tests

Questions?