

THE Water Research

Webcast

Integrating Watersheds and other Natural Assets into Utility Asset Management Programs for Built Systems (4727)

November 17, 2020

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Agenda

Торіс	Presenter	Timing
Introductions	Maureen Hodgins, WRF Peter Stangel, U.S. Endowment for Forestry and Communities	10 minutes
4727 Project Overview, Findings, & Insights	Bob Raucher , Raucher LLC Kurt Vause , StreamlineAM, LLC	35 minutes
Experiences in the Field	Rick Shean , Albuquerque Bernalillo County Water Utility Authority	20 minutes
	Roy Brooke, Municipal Natural Assets Initiative	
Q&A		15 minutes

Webcast Platform

Input your webcast questions

Q&A session at the end of the webcast.

Download presentation

Slides and recording will be available to WRF subscribers WITHIN 24 hours after the webcast

Playing
Ask a Question
Send
Answered Questions
✓ Event Resources
Presentation Download

advancing the science of water ®

Accomplishments in One Water

This series of synthesis reports details how WRF's research and innovation activities support all aspects of water.

VIEW THE REPORTS

www.waterrf.org

Redesigned website in 2019

Create a website account: Log In, Create Account

- Public Plus account for Free to Public content
- Subscriber account for all content

Accessing the Final Report

www.waterrf.org, search 4727

Dublic Plus

ð

Asset Management Framework for Forested and Natural Assets

REPORT #4727 10/12/2020 10/12/2020

> View Executive Summary

WRF related projects

Source Water Protection / Land Use

- *4595, Advancing and Optimizing Forested Watershed Protection. 2015.
- 4748, Evaluation of Risk Management Frameworks and Tools and their Application for Managing Source Water Risks in the United States. Estimate completion in 2020.
- 4702, Quantifying the Potential Benefits of Land Conservation on Water Supply to Optimize Return on Investments. 2019.
- 4651, Forest Cover Impacts on Drinking Water Utility Treatment Costs in a Large Watershed. 2018.
- 4570, Source Catchments as Water Quality Treatment Assets: Industry Best Practices and Triple Bottom Line Cost Evaluation of Catchment Management Practices. 2015.

Asset Management

- 1725 and 1726. Practitioner's Guide to Economic Decision Making in Asset Management. 2014.
- 4013, Sustainable Infrastructure Management Program Learning Environment. 2008.

Stormwater

- Holistic Stormwater Management with Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC), EPA National Priorities Grant 836173. 2016-2020, <u>https://www.waterrf.org/community-enabled-lifecycle-analysis-stormwater-infrastructure-costs-clasic</u>
- BMP Performance International Stormwater BMP database, https://www.bmpdatabase.org/
- 4852, Framework and Tool for Quantifying the Triple Bottom Line Benefits of Green Stormwater Infrastructure. Estimate completion in 2020.

THE Water Research

Origins

Peter Stangel Chief Operating Officer U.S. Endowment for Forestry and Communities

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

/ Origins

U.S. Endowment for Forestry and Communities

- 2009 Healthy Watersheds through Healthy Forests
- 2011 Convening: Systematically Engage Water Utilities
- 2015 WRF/Endowment Workshop-Research Agenda
- 2017 Asset Management Framework

THE Water Research

Integrating Watersheds and other Natural Assets into Utility Asset Management Programs for Built Systems

Bob Raucher, PhD Raucher LLC

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

What are Natural Assets?

Utilities rely on 3 types of Assets to fulfill their missions:

- Physical Assets
 - Built systems; E.g., treatment plants, transmission mains, dams
- Human Assets
 - Professional, qualified staff throughout the organization

Natural Assets

- Watersheds (rivers, streams, lakes, forests, prairies, wetlands, etc.)
- Aquifers and other natural systems
- Green infrastructure, nature-based solutions, etc.

Natural Assets Provide Valuable Goods and Services

- Water!
 - Quantity, conveyance, and timing of source water flows
 - Quality of source waters
 - Stormwater management; recharge/infiltration
- Ecosystem services
 - Fishery and wildlife habitat
 - Recreational opportunities
- Aesthetic values (viewsheds)
- Timber, plant products, other harvestable goods
- Carbon sequestration

Research Objectives

Strengthen water utilities' capacity to account for, invest in, and better manage their natural assets, by:

- Enhancing recognition of important goods and services provided by natural assets
- Developing a framework including forests and other natural assets in water utility AM programs for built systems
- Exploring avenues to *enhance funding* for managing natural assets

The Asset Management Wheel for Built Systems (source: AWWA)

13

Step 1: Align with Utility Mission

Asset Management ties directly to utility strategic objectives

- Sustainability and Resiliency Planning
- Risk Management
- Fiscal prudence

It does not matter whether a service comes from an engineered asset or a natural asset...

...What matters is that the service be well provided

Challenges

- **Ownership:** Rarely owned or managed by utility
- Accounting: Awkward fit
 - Value not reflected in cash flow
 - Value often in form of "avoided costs"
- Funding: Limited ability to tap capital accounts
- Building Support: For expenditures

Describe the Current State of Assets

Develop a Natural Asset Registry

- What natural assets contribute to achieving utility's level of service (LOS) targets?
- Who owns or has access to these assets, and how are they currently managed?

Assess Current Condition

- What is the current condition?
- How does the current condition influence LOS?

Step 3: Setting Level of Service Targets

- <u>Challenge</u>: Measuring and impacting ability of natural asset to deliver desired LOS
 - Harder than for built assets
 - Especially where asset is owned, managed, and/or accessed by others
- <u>Opportunity</u>: Iterating back along the AM Wheel may inform prior steps. LOS insights may:
 - Guide how to describe assets within the asset registry
 - Offer insight on how to assess and report asset condition

Step 4: Assess Risks: *Consequence* of Failure

- Health & Safety of Public and Employees
- Direct Financial Impact
- Water quality
- Public Image & Confidence
- Regulatory Compliance
- Service Delivery
- Inter-agency Coordination
- Environmental Impact
- 3rd party loss / Liability

Step 5: Managing Risks Associated with Natural Assets

• Actions:

- Protect, restore, enhance
- Forest management and watershed partnerships
- Agricultural BMPs (Farm Bill funds for conservation)

Utility Business Practice Integration

- CAPEX and OPEX resource allocation
- Making a Business Case
- Long-range financial planning

Step 6: Making Investments in Natural Assets

A utility can manage natural asset risk by:

Performing Maintenance

 E.g., supporting land management activities that reduce erosion, wildfire risk, etc.

Making Capital Investments

 E.g., acquiring or restoring sensitive source watershed lands to limit future development and degradation.

Step 7: Sustaining Long-Term Natural Asset Management (Unified AM Program)

- Commitment to continuous improvement business process
 - Plan=>Do/Implement=>Check/Review=>Adjust... repeat
 - Adaptive Management as a practical approach
 - Including within the Utility's Long-term Strategic Plan
- Effective Communication is a Key to Success
 - Numerous and diverse audiences: Internal and External
 - Requires planning, sustained effort, and continuous two-way dialogue

The Water Research Foundation, Project 4727: An Asset Management Framework for Forested and Natural Assets

- Co-funded by the US Endowment for Forests and Communities
- Research Team
 - Bob Raucher, Mark Lorie, Karen Raucher (Corona Environmental/Raucher LLC)
 - Kurt Vause, Co-PI; Todd Helgeson (StreamlineAM)
 - Jan Cassin (Forest Trends);
 - Jeff Hughes (Environmental Finance Center, Univ. of North Carolina)

Participating Utilities

- Albuquerque Bernalillo County Water Utility Authority
- American Water Company
- Bozeman Public Works
- California Water Service Company
- Central Arkansas Water
- City of Westminster

31

 Massachusetts Dept. of Conservation and Rec.

- Marin Municipal Water District
- Raleigh Public Utilities Department
- San Francisco Public Utilities Commission
- Seattle Public Utilities
- Seqwater (Australia)
- US Forest Service

Research Manager and Project Advisory Committee

- Maureen Hodgins, WRF Research Manager
- Peter Stangel (US Endowment for Forestry and Communities)
- Roy Brooke (Brooke and Associates)
- Nancy Toth (Eugene Water and Power)
- David Warne (NYCDEP)
- Seth Doull (Tacoma Water)
- Paul Hunt (Portland Water Dept., ME)
- Christina Burri (Denver Water)

THE Water Research

Exploring Key Elements of AM Framework for Natural Assets

Kurt Vause, PE StreamlineAM LLC

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Key elements are where heavy lifting is done

- Step 3: Setting Level of Service Targets
- Step 4: Assessing and Managing Risk
- Step 5: Moving to Risk Mitigation: Identify Investment/Maintenance Opportunities in Natural Assets

Step 3: Level of Service Targets

- Service levels expressions of desired outcomes from the perspective of customers and other stakeholders
- Service levels vary between organizations (size, region)
- Service levels can change within organizations over time
Step 3: Setting Level of Service Targets

- Differentiate LOS Targets supporting *core* business objectives
- Use KPIs to link specific asset performance measurement with LOS

Aim for developing "line of sight" in Service Levels

- Translating Guiding Principles into concrete actions: e.g.,
 - Existing assets maintained in "good operating condition"
 - Life cycle cost comparisons when evaluating alternatives for projects
- Alignment of staff to get most out of documenting, tracking, reporting results
 - Guiding principles
 - · Involves whole of organization

Existing assets maintained in "good" Strategic operating condition Customer Service Levels 90% of valves are operating and less Program Service than 5% of customers experience a Levels cumulative outage for more than 8 hours per year Program Key inspect and exercise all 2000 valves Performance annually Indicators

"Line of Sight"

KPIs

As applied to natural assets:

Strategic Customer Service Levels

Core: Manage watershed resources to protect water quality

Stewardship: Manage watershed resources to restore terrestrial and aquatic species and habitats

Program Service Levels

Protect water quality through conservation easements and/or fee title purchase of property

Program Key Performance Indicators Purchase X acres permanent easements and/or fee title of property draining into in Utility Raw Water Reservoirs A,B and C in next Y yrs.

AM Wheel for Natural Systems

Step 4: Starting out, a <u>Reconnaissance-</u> <u>Level</u> for Assessing and Managing Risks

Subjective risk profiling (e.g., risk matrix) is a starting point:

- Apply subjective likelihood and consequences (e.g., Low, Med, High)
- Document key assumptions and uncertainties
- Develop initial risk-driven priorities what risks "bubble to the top"

What we are on the lookout for?

- First natural assets affecting **core** utility services.
- Locations relative to raw water intakes, reservoirs, treatment facilities, & locations closely tied to regulatory requirements (e.g., sensitive stream reaches)
- Natural assets subject to disruption by human activities, e.g., mining, resource extraction, urban/industrial development

Recon-Level, Initial Risk Assessment and Prioritization

- b) Consequences
- c) Uncertainties

Moderate Low With better data and quantification, a <u>Deeper Dive</u> for Assessing and Managing Risks is possible

- Assets supporting "Core" business functions and carrying prioritized risks
- Fully consider all the potential adverse consequences (Triple Bottom Line perspective)
- 3. Consider moving from risk categorization toward risk unitization

A Deeper Dive: Consider where we are starting from:

 How do natural assets degrade and/or fail to provide functions?

Hydrological Service to Utility	Natural Asset Type				
	Aquifers and Aquifer Recharge Zones	Mountain Snowpack, Glaciers			
Hydrological Service to Utility: Maintain dry season flows / dry season supply	Aquifers that are connected to surface waters (e.g., floodplain aquifers, springs in headwaters to streams) can augment dry season flows as groundwater is discharged to streams or rivers.	By slowly releasing water stored in snowpack and glaciers during spring and summer, mountain snowpack and glaciers contribute significantly to maintaining dry season flow.			
Examples of notantial	Declining aquifer levels driven by reduced	Increasing temperatures due to			
examples of potential	becinning aquiter levels unvert by reduced	line to show a series due to			
degradation and	natural recharge due to numan uses of	climate change can reduce annual			
Failure to provide	recharge zones, including urban or	snowpack or increase long-term			
target Levels of Service	industrial development. Over-pumping (e.g., due to unregulated well development and use) can also deplete aquifer levels and discharge to streams.	melting of glaciers. Deposition of dust or other pollutants on glaciers can accelerate melting due to increase absorption of solar radiation.			

Appendix in Section 6 provides list of natural asset services. It is a start

Like built assets, modeling is sometimes used to assess probability (likelihood) of degradation of function

- Examples:
 - Source Water Assessments -- "Susceptibility" of water sources (surface and groundwater) to threats
 - Land Conservation Trust WQ preservation prioritization modeling
- Compare to models predicting failure of pipe segments in a distribution system (e.g., descriptive statistics)

Modeling similarities:

<u>Scored on</u> <u>0-3 scale</u>	<u>CPI</u> Conservation Priority Index	<u>RPI</u> Restoration Priority Index	<u>SWMPI</u> Storm Water Management
Land Use	3 = Forested, Natural Land Cover	3 = Ag, Barren, Sparse Veg 2 = Grasslands	3 = High Intensity Urban 1 = Low Intensity Urban
Proximity to Streams	<u>3 = 0-30 meters</u> <u>2 = 30-60 meters</u> <u>1 = 60-90 meters</u>	<u>3 = 0-30 meters</u> <u>2 = 30-60 meters</u> <u>1 = 60-90 meters</u>	<u>3 = 0-30 meters</u> <u>2 = 30-60 meters</u> <u>1 = 60-90 meters</u>
Proximity to ponds/wetlands	<u>3 = 0-30 meters</u> <u>2 = 30-60 meters</u> <u>1 = 60-90 meters</u>	<u>3 = 0-30 meters</u> <u>2 = 30-60 meters</u> <u>1 = 60-90 meters</u>	<u>3 = 0-30 meters</u> <u>2 = 30-60 meters</u> <u>1 = 60-90 meters</u>
<u>Soil Hydrologic</u> <u>Group</u>	<u>3 = C/D: Low Infiltration Rates</u> <u>2 = B: Moderate Infiltration</u> <u>1 = A: High Infiltration Rates</u>	<u>3 = C/D: Low Infiltration Rates</u> <u>2 = B: Moderate Infiltration</u> <u>1 = A: High Infiltration Rates</u>	<u>3 = C/D: Low Infiltration Rates</u> <u>2 = B: Moderate Infiltration</u> <u>1 = A: High Infiltration Rates</u>
Soil Erodibility (Kfact)	<u>3 = High</u> <u>2 = Moderate</u> <u>1 = Low</u>	3 = High 2 = Moderate 1 = Low	3 = High 2 = Moderate 1 = Low
Slope	3 = greater than 18% 2 = 8% - 18% 1 = less than 8%	3 = greater than 18% 2 = 8% - 18% 1 = less than 8%	<u>3 = greater than 18%</u> <u>2 = 8% - 18%</u> <u>1 = less than 8%</u>
<u>100 yr Floodplain</u>	3 = In Floodplain	3 = In Floodplain	3 = In Floodplain

	Columbia
Natural Assets – Forested	
Land	Augusta and a second
(Krueger, E. and Jordan, N. undated. Preserving Water Quality in the Savannah River: Protecting the Future of Drinking	
	Priority I Lands Priority 2 Lands Priority 2 Lands Priority 4 Lands Priority 4 Lands Priority 4 Lands Priority 4 Lands Environity 4 Lands

	Physical Condition	Performance	Operability	Maintainability	Reliability History	Age (EUL)	Detailed Description
A – Improbable	Sound physical condition	Asset performs as needed and meets future expectations	Asset operates as designed and intended	Asset likely to perform adequately without major work in the planning horizon	Asset has no history of emergancy or condition based repairs	>50% Remaining estimated useful life	Asset meets operational needs Asset likely to perform adequately without major work in the planning horizon.
	Acceptable condition	Asset has minor deterioration in performance	Asset is generally operable, but does not meet current sopecifications	Asset is generally maintainable, but does not meet current specifications	Asset has increased demand for PM's to maintain operability	50-75% Remaining estimated useful life	Minimal short-term failure risk, but potential for deterioration in the long- term (10 years plus). Only minor work required (and)
	Deterioration evident	Asset has moderate deterioration in performance	Asset is operable, but requires work- arounds	Asset is difficult to maintain due to physical condition o availability of parts	Asset has experienced failure or malfunction, but in repairable with low expectation of failure recurrance in short term window.	75-85% Remaining estimated useful life	Failure unlikely within next, years, but further deterioration likely and major regulacement likely needed within next 10 years. Minor companents or isolated sections of the assi Minor company need regulacement or repair now, but asset still functions at adequate level of service. Won'r required, but asset et all enviroable
	Failure likely in shor term	Asset has significant deterioration in performance	Asset is operable with significant effort, and is prone to failure	Asset is no longer current and repair parts are available, but difficult to obtain or require custum fabrication	Asset has a history of repeated failures	85-95% Remaining estimated useful life	Ukely need to repair or replace asset within 2 years to maintain service level. Substantial work required is short term, asset barely serviceable.
	In current state of failure	Asset does not meet current performance needs	Asset is not operable in current state	Asset is no longer able to be adequately maintained due to obsolesence and	Asset has a high occurance of failure related repairs and is therefore assertions	<95% Remaining estimated useful life	Immediate need to repair o replace asset to maintain service level.

Distribution Pipe

Total Likelihood	Linear Feet	Percent of System
3	488,962	68.52%
4	57,525	8.06%
5	2,217	0.31%
6	71,201	9.98%
8	7,086	0.99%
10	65,764	9.22%
12	13,214	1.85%
16	3,440	0.48%
18	1,438	0.20%
20	835	0.12%
24	939	0.13%
36	274	0.04%
40	671	0.09%
	713,567	100%

Modeling similarities continued:

SURFACE WATER SOURCE SUSCEPTIBILITY Susceptibility to all Susceptibility to all **Dispersed Sources Discrete Sources** Individual Susceptibility Scores Individual Susceptibility Scores for Dispersed Sources for Discrete Sources Individual Dispersed Individual Discrete Contaminant Source Threat Score Contaminant Source Threat Score Migration Potential Contaminant Hazard Potential Volume Likelihood of Release Physical Setting **Vulnerability Score** Average Soil Infiltration Rate Average Annual Average Percentage of Structural Integrity of Total Area of SWAA Precipitation of SWAA of SWAA Vegetative Cover of SWAA System

Colorado Method for estimating Susceptibility of DW Sources (after Eneco Tech, 2004)

Susceptibility defined: the state or fact of being *likely or liable* to be influenced or harmed by a particular thing (Google, 2019)

Health and Safe Emple	ty of Public and oyees	Direct Finar	icial Impact	
Safety (Employee & Public)	Public Health	One Time Event Costs	Recurring Operating	
Fatality, amputation of limb, person on life		>250K		
immediately life threatening incidents, widespread serious injuries or illnesses	Widespread illness and/or fatalities	Incident impact	> 20K Annual Impact	
A serious injury or long term illness or	Serious illness	100K-250K	10K - 20K Annual	
(minimum 1 day lost per injury)	hospitalization	Incident impact	Impact	
Significant near miss incident, iniury or illness	Deterioration in water quality parameters.	50K-100K	5 - 10K Annual	
requiring medical treatment	reportable event, increase in illnesses	Incident impact	Impact	
Illness or injury requiring first aid	Deterioration in water quality parameters,	25K-50K	3K - 5K Annual	
Eg. Minor burns, abrasions, strains	reportable event, no increase in illnesses	Incident impact	Impact	
Near misses/accidents	Non-reportable	<25K	< 3K Annual	
misespacedents	event	Incident impact	inpact	

Consider Consequences of Failure

Consequence Assessment	Health and Safe Emple	ty of Public and oyees	Direct Final	ncial Impact	Public Image & Confidence	Regulatory Compliance	Service Delivery	Environmental Impact	3rd Party Loss/Liability
	Safety (Employee & Public)	Public Health	One Time Event Costs	Recurring Operating					
5 – Extreme	Fatality, imputation of limb, person on life support, other immediately life threatening incidents, videspread serious	Widespread illness and/or fatalities	>250K Incident impact	> 20K Annual Impact	Widespread loss of community confidence in govt, sustained adverse large-scale media	Significant compliance breach may result in operating license sanction and/or high impact prosecution.	Complete Disruption to services > 1week and affecting > 30% of customers	Large Scale, Irreversable, uncontained harm to environment	>50K Incident impact
4 – High	A serious injury or ong term illness or lost time injury	Serious illness requiring	100K-250K	10K - 20K Annual	Considerable community	Compliance breach may result in severe enforcement	Partial disruption > 2 days, affecting 10-	Large Scale, Long- term (>2 years),	25K-50K
	(minimum 1 day lost per injury)	hospitalization	Incident impact	Impact	concern, adverse local media	action, regulatory sanction or prosecution	30% of customers in system	uncontained harm to the environment	Incident impact
3 – Medium-High	Significant near miss incident, injury or illness	Deterioration in water quality parameters,	50K-100K	5 - 10K Annual	Some public concern raised,	Compliance breach may result in ministerial corrective action or	5-10% of customers	Small Scale, Medium Term (1-2 years), uncontained harm to the environment.	10K-25K
o mediani ngi	requiring medical reporta treatment increase	reportable event, increase in illnesses	Incident impact	impact	concern	business requirement, Possible fine	complaints	Eg small fire on utility property that damages adjoining protected wilderness	Incident impact
2 – Medium	Illness or injury requiring first aid	Deterioration in water quality parameters,	25K-50K	3K - 5K Annual	Compl Minor public	Compliance breach - may result in minor corrective action or business requirement	Multiple customer	Short-term (<1 year), reversible, contained harm to the environment.	10K-20K
	Eg. Minor burns, abrasions, strains	no increase in illnesses	Incident impact	Impact	concern		complaints	Eg damage to a heritage building	Incident impact
1-Low	Near misses/accidents	Non-reportable event	<25K	< 3K Annual Impact	Minimal public concern	Technical compliance breach with limited	Isolated customer	Temporary reversible environmental degradation	<10K
			Incident impact			material impact		eg industrial noise emissions at night.	Incident impact

Consider comparable methods for consequence of failure

50

				Distrib	ution	Pipe R	isk M	atrix			
		Miles	%	Miles	%	Miles	%	Miles	%	Miles	%
High	5	1.36	0%	0.16	0%	0.20	0%	0.00	0%	0.00	0%
poc	4	3.79	1%	0.81	0%	0.31	0%	0.00	0%	0.00	0%
eliha	3	12.13	2%	1.53	0%	0.94	0%	0.00	0%	0.00	0%
Lik	2	31.92	5%	7.21	1%	5.44	1%	0.10	0%	0.00	0%
Low	1	447.71	71%	54.11	9%	61.42	10%	0.43	0%	0.00	0%
		1		2		3		4		5	
		Low	7			Conseq	uence			High	

Probability Category	5 Year Cumulative Break Probability
1	< 0.05
2	0.05 to 0.125
3	0.125 to 0.25
4	0.25 to 0.5
5	> 0.5

(Level 5 means there is a 50% chance the pipe will break in the next 5 years) Consequence
CategoryDirect and Indirect
Cost of Failure1 \leq \$50,0002\$50,001 to \$100,0003\$100,001 to \$200,0004\$200,001 to \$500,0005>\$500,000(Level 5 means one failure will have costs greater than

(Level 5 means one failure will have costs greater than \$500,000)

Before moving on to Step 5 – <u>Deeper</u> <u>Dive</u> Thoughts

- Use risk matrix to consider options to reduce risk
- Takeaways:
 - Define consequence in units of common measure based on factors uniquely important to your utility
 - Risk "Scores" comparable between built and natural assets (unitize risk!)
 - Look for consequence factors with sufficient data to be used with confidence
- Goal: Risk mitigation provides more benefit than costs to implement solutions

Step 5 : Identify Capital and/or O&M opportunities

(Like life cycle planning and risk management for built assets !)

- Manage natural asset risk by:
 - Performing maintenance (e.g., supporting land management activities that reduce erosion),
 - Making capital investments

(e.g., acquiring source watershed lands to conserve ecosystem services).

- Cooperative agreements with others
- Do nothing!
- Use risk management policy & risk response plan
 - Guide choices about expending resources (CAPEX, OPEX or from net income) to manage risk.

Within risk management policy place boundaries on options and prioritize response

- Risk Response: reflects risk tolerance and management guidance in utility policy
- Characteristics:
 - Type of management action necessary
 - Timeline for action
 - Can include CAPEX or OPEX actions
 - May involve "cost-effective" measures to core business, or meeting other strategic objectives
 - Unique to each utility driven by Utility Risk Management Policy

Examples:

Risk Level	Risk Description	Risk Response
Level 5	Catastrophic	Immediate Response Needed
Level 4	Major	Include on 0-5 Year CIP
Level 3	Moderate	Include on 6-15 Year CIP
Level 2	Minor	No Current Action Required
Level 1	Insignificant	No Current Action Required

Example Built Assets (Water and Wastewater mains) Risk Response

Australian Drinking Water Guidelines – Drinking Water Quality Management Framework – Relevant Element	Factor	Syaney Catchment Authority (AS4360)
Commitment to Drinkin	ng Water Quality	
Partnership Agencies	Internal	Yes
Assessment of the Dri	External nking Water Supply System	Water industry only
Water Supply System Analysis		GIS map of catchment and pollutant sources
Review of Water Quality Data		Raw water compliance and investigative sampling data used to identify key issues
Hazard Identification and Risk Assessment	Hazard or event based	Hazard based
	Hazard information – causes and scenarios Risk assessment level – qualitative or quantitative	Water quality evaluation parameters used to determine primary consequence Qualitative with outcomes that a re Semi-quantitative. Risk = Consequence Score × Probability of Occurrence
Corrective Action		Risk treatment actions contained in risk action implementation program.

Example Natural Assets (Sydney Catchment Authority) – after Miller, Whitehill and Deere, 2005)

Step 5: Figuring out risk mitigation efforts

- Develop business case for your selected alternative:
 - OPEX funds
 - Capital funds
 - External funds

Or combinations

- Recognize opportunities and constraints for each funding type
 - Capitalization Policy
 - Fund sources (restricted funds; loans; partnership options, etc.)
 - Regulatory rules: allowable expenses, Use of net income, etc.
 - Intergenerational equity
- Let's look at some examples:

Conservation of a Natural Asset

- Typical targets forested watersheds/wetlands/groundwater recharge areas
- Assets managed primary objective sustaining valued water quality & related services
- Non-core objectives may be included as well
- Accounting methods a definite consideration (discussed in Chapter 10)

(Photo credit: City and Borough of Sitka, Alaska)

Maintenance of Natural Assets

- Carrying out maintenance activities on natural assets for same reasons as maintenance on built assets
- Activities tailored to types of assets; tailored to stressors or hazards
- Utility partnerships with those who receive benefits too
- Accounting methods a definite consideration (discussed in Chapter 10)

(Photo credit: Anchorage Water Wastewater Utility)

THE Water Research

Albuquerque Bernalillo County (NM) Water Utility Authority's Natural Asset Management Efforts

Rick Shean, Water Rights Program Manager Diane Agnew, Environmental Manager Albuquerque Bernalillo County Water Utility Authority

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Water Authority's Natural Asset Efforts

60

• Water Rights

Environmental Plan

Water Rights / Resources Portfolio

Surface Water

Ground Water

Reservoir Storage

Aquifer Storage and Recovery Water (SJC)

Reuse Water

Water Rights

Senior Water Rights Assets

- What is a senior right?
 - NM is a prior appropriation state.... "first in time, first in line."
- Magic date = 1907
- Water Authority has over 4,900 AF of senior water rights.
- Appraisal of Value of senior rights
- Tracking transactions in Maximo (IBM), where they were purchased / acquired, State declaration of water rights, current application of rights ("use it or lose it," & beneficial use).

Environmental Plan

- Environmental Plan covers the implementation of policies in *Water 2120*
- 8 policies with subpolicies
- Source waters and watershed scale as well as localized components

Focus Areas, LOSs, and KPIs

- Grouped policies into five focus areas:
 - Water Resources Planning and Management
 - Source Water Protection
 - Endangered Species
 - Environmental and Cultural Resources
 - Public Involvement and Outreach
- Levels of Service (LOSs) \rightarrow Water 2120 Policy
- Key Performance Indicators (KPIs) outlined out we will make sure we are meeting the LOS/policy

Next Steps

- Metrics and reporting how do we track and how do we communicate with decision-makers?
- Assigning costs
- Integration with Water Authority built asset management

THE Water Research

Natural Asset Management An overview of the opportunities

Roy Brooke Executive Director Municipal Natural Assets Initiative (MNAI)

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Overview

- Introduce natural asset management and recent examples from Canada
- Discuss possible implications for USA

Core Idea

- Nature is:
 - one of our most vital assets
 - central to any resilient infrastructure system
 - potentially an investable asset

Natural Assets

Can deliver core services

Figure 1: Natural Capital creates Ecosystem Goods and Services (image source: Earth Economics http://www.eartheconomics.org/science-economics/)

Can be managed

Often over-used, under recognized

State of Infrastructure

Canada & USA much of existing infrastructure in very poor to fair condition.

StatsCan 2017: 164.3 billion litres of raw sewage overflows from combined sewers: systems are not handling downpours effectively.

New service delivery solutions needed in changing climate

CP 2019

Good News

Asset Management:

an integrated process, bringing together skills, expertise, and activities of **People**; with **Informatio** about a community's physical **Asset** and **Finances**; so that informed decisions can be made, supporting Sustainable Service Delivery.

Source: Adapted from Asset Management BC, 2014.

Asset management is proving to a be a valuable tool for managing natural assets.
A growing number of examples

(and not just the usual suspects...)

Core Work

Phase 1: Asset characteristics understood/documented, condition assessments, risk identification

Phase 2: Asset beneficiary assessments, modelling, scenario development

Phase 3: Asset valuations (i.e. costs calculated for substitute engineered asset & operating costs); service levels assessed (current & future)

Phase 4: Operation / financial plans; final reports and project evaluation

Ongoing: Implementation/monitoring

Comox Lake Watershed

City of Comox
City of Courtenay
Comox Valley RD
K'omoks First Nation
Village of Cumberland
Water source for 49,000 people

A growing enabling environment

IBC WWW BAC INTACT CENTRE CIISD WWW TERLOO [intact]

Combatting Canada's Rising Flood Costs:

Natural infrastructure is an underutilized option

Upcoming/ongoing opportunities:

- PSAB
- Engineering sector in BC & beyond and other professional disciplines
- Norms for asset management cycle
- Norms for data
- Funding environment

Possible US Implications

- Basic idea: no reason this can't work in USA
- Initial informal discussions with ELI, Earth Economics, WRF
- One possible approach:
- Explore context and method changes with US partners
- Adapt method for US use
- Run small number of pilots to determine if approach works well enough to be scaled

Other Considerations

- COVID-19 pandemic & possible rehabilitation restoration funding
- Inventory projects
- Royal Roads University & MNAI online course: <u>https://secure.royalroads.ca/cscourses/natural-asset-management-online</u>
- Swiss Re / IBC initiative
- Species at Risk
- First Nations cultural assets tool development

Discussion & Contacts

Find us at MNAI.ca

info.mnai@gmail.com

THE Water Research

Questions?

© 2020 The Water Research Foundation. ALL RIGHTS RESERVED. No part of this presentation may be copied, reproduced, or otherwise utilized without permission.

Thank You

Roy Brooke royb@mnai.ca

Maureen Hodgins mhodgins@waterrf.org Peter Stangel peter@usendowment.org

Bob Raucher braucher@Raucher.LLC

Rick Shean <u>flshean@abcwua.org</u>

Kurt Vause kurtvause@streamlineam.com

For more information, visit <u>www.waterrf.org</u>