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Housekeeping Items

• Submit questions through the question box at 
any time.  We will do a Q&A at the end of the 
webcast.

• Slides and a recording of the webcast will be 
available at www.waterrf.org.

• You will receive a certificate of completion at 
the end of the webcast. 

• Survey at the end of the webcast.

http://www.waterrf.org/
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Project Overview

• Principle Investigator - Dulcy Abraham, Ph.D.
• Goal to determine whether computational 

technologies such as deep learning and data mining 
can improve the consistency, accuracy, and speed 
of visual inspections and the evaluation of sewer 
pipe condition.

• An automated system was developed and 
evaluated detect fissures, root intrusions, and 
lateral connections in CCTV inspections of sewers. 
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The Problem

• 800,000 Miles of Public Sewage Pipes
– 3X Distance from Earth to the Moon

• 850 Billion Gallons of Sewage Overflows
• How Can the Condition of Sewers be Assessed?

– Rapidly, Economically, and Accurately
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Sewer Condition Assessment Process

CCTV Inspections

15.2 ft
4 o’clock

Fine Root

Manual Coding

Defect Distance Position

Fine Root 15.2 ft 4 o’clock

Spiral Crack 45.0 ft 1 o’clock

Deposit 80.0 ft 6 o’clock

Broken 100.0 ft 3 o’clock

Inspection Report

Calculate Pipe Condition 
Score (NASSCO PACP)

Structural Score: 15

Repeat for Sewer Network

Pipe 
Rehabilitation 

Decisions
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Slow, subjective, and prone to human error

Potential to improve the consistency and speed 
of inspections
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Sewer Condition Assessment Process

CCTV Inspections

15.2 ft
4 o’clock

Fine Root

Manual Coding

Defect Distance Position

Fine Root 15.2 ft 4 o’clock

Spiral Crack 45.0 ft 1 o’clock

Deposit 80.0 ft 6 o’clock

Broken 100.0 ft 3 o’clock

Inspection Report

Calculate Pipe Condition 
Score (NASSCO PACP)

Structural Score: 15

Repeat for Sewer Network

Pipe 
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Decisions

Big-Data Mining – Insights Into Sewer 
Deterioration
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Automated Inspection 
Coding

Objective 2

Predictive Analytics for 
Sewer Failure

Big-Data Mining of 
Sewer Condition 

History
State-of-the-Art 
Deep Learning

Objective 1
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Artificial Intelligence (AI)

“Making computers behave in ways that, until 
recently, we thought required human 

intelligence” (Andrew Moore)

Machine Learning

“Computer algorithms that automatically 
improve through experience” (Tom Mitchell)

Deep Learning

Subset of machine learning that 
uses multilayered neural 

networks 

Terminology
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Language Audio Vision

Machine Translation

English:
Have a nice day

Hindi:
आपका िदन शुभ हो

Virtual Assistant

What’s the weather 
like?

Object Detection

PersonBall

We use object detection extensively for 
automated CCTV coding

Terminology
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Training

Important to provide a diverse set of training images

Deep Neural 
Network

Testing

PersonBall

How to Implement Object Detection?
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How to Implement Object Detection?

Training

Deep Neural 
Network

Testing

Need for diversity in training images
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Original Image Horizontal Flip Vertical Flip Rotation

Adds Variation to the Training Images

Data Augmentation
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True Positive (TP)

“AI correctly 
detected a defect”

False Negative (FN)

“AI missed a defect”

Crack

Crack

False Positive (FP)

“AI predicted a defect 
which did not exist”

Crack

Recall
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇𝑜𝑜 𝐷𝐷𝑁𝑁𝑜𝑜𝑁𝑁𝐷𝐷𝑇𝑇𝐷𝐷

2
4

= 50%

Precision
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

2
3

= 67%

Evaluating Accuracy
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Recall
High Recall => Fewer Missed Defects
90% => 1 out of 10 defects are missed

Precision
High Precision => Fewer False Positives

90% => 1 false positive for every 10 defects the AI 
correctly identifies 

Accuracy Metrics
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Evaluated on 10 CCTV Videos of Vitrified Clay Pipe from Alabama 
and Ohio 

Evaluation

Recall 90%
Precision 50% 
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Desired Output
Type: Longitudinal Crack
Distance: 64.4 
Circumferential Position: 3, 6, 9, and 12 o’clock

1. On-screen text recognition
2. Distance files from inspection 

crawler

Time Distance Observation
1 sec 0 ft -
2 sec 1 ft -
3 sec 1 ft -
4 sec 2 ft Crack
5 sec 2 ft Crack
6 sec 3 ft -
7 sec 3 ft -
8 sec 3 ft -

Localization of Observations
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AI-Assisted Coding

Detected 
Fissure

Is this a correct 
detection by the 

automated 
system?

Detected 
Fissure

Image Added to 
Training Dataset as 

Fissure

Human Component
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Avoid time spent stopping and coding observations

Inspect in the field, code in the office (using AI)

Reprinted with Permission from SewerAI

Benefits of AI-Assisted Coding
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Extending the Work – Levels of 
Automation

Inspection Video

Level 1. Classification

Identify the presence of deterioration 
indicators

Roots

Level 2. Multi-Classification

Detect the position and extent of 
multiple instances of deterioration 
indicators

Level 4. Localization
Perform sub-classification and determine 
the position of deterioration indicators in 
pipes

TFD, 10 o’clock, 
192.0 ft

CL, 12 o’clock, 
198.3 ftTap Crack

Tap Factory 
Defective (TFD)

Longitudinal 
Crack (CL)

Level 3. Sub-Classification

Detect the position, extent, descriptors, 
and modifiers of deterioration indicators

Tap; Deposit
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Automated Inspection 
Coding

Objective 2

Predictive Analytics for 
Sewer Failure

Big-Data Mining of 
Sewer Condition 

History
State-of-the-Art 
Deep Learning

Objective 1
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After inspection, assign scores to defects (1 to 5)

3
2

4 3 3 1

3 + 2 + 4 + 3 + 3 + 1 = 16

10 12 27 5

11

16

15

35

2

13

819 22

Higher scores indicate higher likelihood of failure

Sewer Condition Assessment
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Clustered Defects => Higher Risk of Failure

Previous studies assume that both pipes have equal likelihood of failure 

Defect Clusters

Patch Repair vs Whole Pipe
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Demonstration Example
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High Cluster Severity

Medium Cluster Severity

o Draw attention to highly 
deteriorated sections

o Combine with contextual data 
such as:
soil type, locations of trees, etc.

Clay Sand

Risk of 
Sinkhole 
Formation

Avenues for Future Work
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This study was funded by the Water Research 
Foundation (WaterRF #4902). The contents of this 

presentation reflect the views of the authors, who are 
responsible for the facts and accuracy of the data 

presented herein. The content does not necessarily 
reflect the official views or policies of WRF at the time of 

publication.  
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Questions?
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Thank You
Comments or questions, please contact:
wgraf@waterrf.org

For more information, visit
www.waterrf.org

mailto:wgraf@waterrf.org
http://www.waterrf.org/
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