Cloud Based Applications & Courses With Predictive Analytics for Water & Wastewater Operations

Presentation at The Water Research Foundation Seminar on November 17, 2020

COPYRIGHT ENVIRO/SCI CORP. 2020

Applications & Beneficial Impacts

- Online applications for operation optimization & troubleshooting
- Energy conservation
- Process optimization
- Interactive staff training
- Cloud storage for each application
- Integrate Cloud Based Operator Training Courses

Development History

- Modeling of applications begun 1983 employing software platform
- 36 years of development of applications and use for water & wastewater operations
- Development of Cloud based modeling and deployment software enhancements
- 3 years of model adaptations to cloud based system
- 2 years of prototype testing in sewage & engineering arenas
- Presently developing AI and predictive analytics interfacing

Cloud Based Applications

Devenueten		Outrout	Unit	State Daint Flux Outring CCA					
Parameter	Input Name	Output	Unit	State Point Flux Curves CSA	a colo	TIND IN PARALLEL	,	_	
Effluent Flow rate	2 Qe		MGD V	00		ON AND DRY	< · ·	Pur	ip System Head Curve Analysis & Design
Recycle Flow rate	1 R		MGD 🗸	70	D. A.	×			
Return Sludge Ratio to Effluent Flow Test 1	RR	0.50	Ratio	10		NORAND INCOME NAMES			Copyright Enviro/Sci Corp. 2018
Mixed Liquor Suspended Solids - input value	5 Xf		g/l	₴ 60		+0			
30 min settling test	300 Settle_30	nin	ml	2-9	A REAL PROPERTY OF	-0-			
Sludge Volume Index	SVI	60.	ml/g	€ 50					==> Input Data <===
Surface Overflow Rate per unit area	SOR	714.	gal/day-f \vee	₽ N	50	L		ft 🗸 🗸	Pipe Length
Surface Underflow Rate per unit area	SUR	357.	gal/day-f ∨	8 40 ·····	1000	Flowrate		gal/mir \vee	Pipe Flowrate
Settling Velocity	20.8 Vo		ft/hr	0 2 20	6	Diameter		Inch	Pipe Diameter
·······	20.0				.00001076	Viscosity		Ft^2/Sec	Fluid Viscosity (default is water)
Gs_status_test1 Clarification failure				20	32.2	g		ft/sec^2	Gravity
									Pump Inlet & Outlet Elevations
Clarifier Specifications: Select the type of clarifi	ers by entering a 1 for	rectangular or a 2 for		10	7	InletElevation		ft v	Inlet Elevation (change elevation for EQ tank
circular. Next enter the size and number of cla	rifiers that are online.	The app will compute			0.5	OutletElevation		ft V	Outlet Elevation (level in EQ tank)
				0	0.0	Slope	0.6000	in/ft V	NOTE: Change InletElvation to adjust float level.
Clarifier Specifications				0 5 10 15 20		Cicpo		III/IC ·	Computed Slope for Total Losses for Inputed Bine Leng
1 = Rectangular 2 = Circular	1 Clarifier1	уре		MLSS Range					Computed Stope for Total Losses for inputed Pipe Leng
Selected Type	Ctype	Rectangula	r		Select Pipe Material fr	om Drop Down Menu			Output Data
Clarifier Diameter	Clarifier)ia	ft		PVC	V Pipe			Pipe type (selected from Startup menu)
Number of Clarifiers in Service	4 Units_in_	service	ft^2 ~	(-(k1 + (k2 · SVI)) · F7)		e	0.00050	ft 🗸	Pipe Roughness (based on pipe type)
Clarifier Length	50 length		ft	Gs=F7 · Vo · e		f	0.0196		Computed IterativelyColebrook Equation Friction Factor
Clarifier Width	14 width		ft			D	0.50	ft 🗸	Diameter in Feet
ClarifiersTotalArea	Total Clarifi	ers Area 2800	# A2			Re	5.27E5		Reynolds Number
		to Arta				V	11.35	Ft/Sec	Fluid Velocity
Gs 24.74 Ib/da	y-fi √ Solids Loadir	ig Flux				RelativeRoughness	1E-3		Relative Roughness
				_		VelocityHead	2.00	ft/sec^2	Velocity Head

State Point Analysis Course with Integrated Cloud Based Application

Auto Solve 🖓 Discussions 🖿 Settings 🖿 Report 👻

State Point Analysis

Copyright Enviro/Sci Corp. 2019

The State Point Analysis is a practical tool that can be used to perform a "what if" analysis based on site specific data. It enables Operators to examine clarifier behavior under various flow and loading scenarios. Utilizing the SPA Operators can predict impending problems early, implement corrective measures in a timely fashion, and adapt to upstream changes in the biological process. State point analysis can be used to determine if a secondary clarifier is overloaded, critically loaded, or underloaded with respect to both its clarification and thickening capacities

Instructions:

· Enter the Effluent Flow Rate "Qe"

Enter the Return Activated Sludge Flow Rate "R"

• Enter the Mixed Liquor Suspended Solids value "xf". Not the this is in g/l which is mg/l divided by 1,000.

· Enter the 30-minute settling test value in ml "Settle 30min"

Computed Values: The Return Sludge Flow Rate Ratio "RR" is computed.

The Sludge Volume Index "SVI" is computed.

The Clarifier Surface Overflow Rate "SOR" is computed.

. The Calrifer Surface Underflow Rate "SUR" is computed

Clarifier Specifications: Select the type of clarifiers by entering a 1 for rectangular or a 2 for circular. Next enter the size and number of clarifiers that are online. The app will compute

Clarifier	Specifications			
1	ClarifierType			1 = Rectangular 2 = Circular
	Ctype	Rectangular		Selected Type
	ClarifierDia		ft	Clarifier Diameter
4	Units_in_service		# Online	Number of Clarifiers Online
50	length		ft	Clarifier Length
14	width		ft	Clarifier Width
	Clarifiers Total Area	2800	∫ ft^2 ∽	Total Clarifiers Area

Click Image to Left to access app; click image below to access course

15

MLSS Range [g/l]

Chart Interpretation:

- The Chart has two straight lines and one curve.
 - The Curved line is the Flux Curve
 - The Blue Line is Underflow Flux Line its slope represents the Clarifiers Return Sludge Flowrate.
 - The Red line is the Overflow Flux Line its slope represents the Clarifiers Return Sludge Flowrate.
 - The Intersection of the Red Line and Blue Line represents the State Point.
- Location of the State Point
 - If the location of the State Point intersection is less than 90% of the curve value on the Y-Axis for an inputted MLSS value, the App will return a value of **"Ok"**.
 - If the location of the State Point intersection is greater than 90% of the curve value and less than the curve value on the Y-Axis for an inputted MLSS value the App will return a value of **"Thickener Failure"**.
 - If the location of the State Point intersection is greater than 100% of the curve value and less than the curve value on the Y-Axis for an inputted MLSS value the App will return a value of **"Clarifier Failure"**.

• Adjustments in Response to State Point location and Flux Curve change

- Increase in "Qe": The slope of the Red Line will get steeper with an increase in flow and less steep with a decrease in flow. This will move the "State Point" location, the intersection of the two straight lines. Changes in the "Qe" will relocate the "State Point" with respect to the Curved Flux Line and therefore change the condition of the clarifier condition and the respective performance notifications.
- Increase in "R": The slope of the Blue Line will get steeper with an increase in flow and less steep with a decrease in flow. This will move the "State Point" location, the intersection of the two straight lines. Changes in the "R" will relocate the "State Point" with respect to the Curved Flux Line and therefore change the condition of the clarifier condition and the respective performance' notifications.
- A change in the 30-minute settling test **"Settle_30min"** will change the Flux Curve Line. The larger the value the higher the "State Point" location is on the Y-axis. At some value of the **"Settle_30min"** the location of the **"State Point"** will cause the app to indicate **"Thickener Failure"** or **"Clarification Failure"**. Under these circumstances either decreasing the **"Qe"** or improving the "Settle_30min" or decreasing the Mixed Liquor Suspended Solids **"xf"** are options for adjusting the performance of the clarifies.
- A change in the Mixed Liquor Suspended Solids "xf" will change the location of the "State Point". As "xf" increases while all other variables stay the same, the "State Point" will move closer to and/or above the Flux Curve Line.

Chart Interpretation:

- The Chart has two straight lines and one curve.
- The Curved line is the Flux Curve
- The Blue Line is Underflow Flux Line its slope represents the Clarifiers Return Sludge Flowrate.
- The Red line is the Overflow Flux Line its slope represents the Clarifiers Return Sludge Flowrate.
- The Intersection of the Red Line and Blue Line represents the State Point.
- Location of the State Point
- If the location of the State Point intersection is less than 90% of the curve value or the Y-Axis for an inputted MLSS value, the App will return a value of "Ok".
- If the location of the State Point intersection is greater than 90% of the curve value and less than the curve value on the Y-Axis for an inputted MLSS value the App will return a value of "Thickener Failure".
- If the location of the State Point intersection is greater than 100% of the curve value and less than the curve value on the Y-Axis for an inputted MLSS value the App will return a value of "Clarifier Failure".

Adjustments in Response to State Point location and Flux Curve change

- Increase in "Qe": The slope of the Red Line will get steeper with an increase in flow and less steep
 with a decrease in flow. This will move the "State Point" location, the intersection of the two
 straight lines. Changes in the "Qe" will relocate the "State Point" with respect to the Curved Flux
 Line and therefore change the condition of the clarifier condition and the respective performance
 notifications.
- Increase in "R": The slope of the Blue Line will get steeper with an increase in flow and less steep
 with a decrease in flow. This will move the "State Point" location, the intersection of the two
 straight lines. Changes in the "R" will relocate the "State Point" with respect to the Curved Flux
 Line and therefore change the condition of the clarifier condition and the respective
 performance' notifications.
- A change in the 30-minute settling test "Settle_30min" will change the Flux Curve Line. The larger the value the higher the "State Point" location is on the Y-axis. At some value of the "Settle_30min" the location of the "State Point" will cause the app to indicate "Thickener Failure" or "Clarification Failure". Under these circumstances either decreasing the "Qe" or improving the "Settle_30min" or decreasing the Mixed Liquor Suspended Solids "xf" are options for adjusting the performance of the clarifies.
- A change in the Mixed Liquor Suspended Solids "xf" will change the location of the "State Point". As "xf" increases while all other variables stay the same, the "State Point" will move closer to and/or above the Flux Curve Line.

Adjusting the MLSS concentration: The adjustment of the **MLSS** concentration affects the clarifier performance. The State Point will move up towards the Flux Curve and past the Flux Curve creating Thickener for Clarifier failures. The increase in the MLSS values are reflected on the X-Axis.

Adjusting the Recycle Flow Rate: The adjustment of the Recycle Flow Rate affects the clarifier performance by changing the slope of the Underflow Line but not the location of the State Point.

<u>Changes in the Sludge Volume Index</u>: SVI Changes in the value of the SVI creates the follow response in the Flux Curve affects the clarifier performance.

Changes in the Effluent Flow Rate: "Qe" Changes in the value of the "Qe" creates the follow response in the State Point location.

Pumps & Hydraulics Course with Integrated Cloud Based Application

Manning Equation

 $Q = V \cdot A$

Input Data		Variable	Output
1,200,000.		Q	
12.00		d	
100.00		UpstreamElev	
99.00		DownstreamElev	
110.00		SectionLength	
		g	32.18
Sanitary Sewers with slimes	~	type	

Input Data	Variable
	S
	У
	r
	V
	Pipe_Flow_Status_Up
	F
	yopt
	Qmax
	ymax
	VelocityMSG
	PipeVol
	PipeHydDtn

Manning Equation Calculations for Circular Open Channel Flow

Copyright Enviro/Sci Corp 2017

Units

dal/dav 🗸

ft/sec^2

Units

in/ft

in

ft/sec

Froude

dal/dav

in

dal

min

 \sim

 \sim

Output

0.1091

6.40

6.00

4.36

1.0534

11.26

8 7 9

350.

0.4202

2.320.432

Sediment Scour

Supercritical

INSTRUCTIONS: Enter the input values for the variables. Click the Input box for Pipe Material and select the type of pipe material employed. The roughness coefficient will be automatically chosen.

====> Input Data <====

Flow (may be an input or output) Diameter of Pipe (typically input unless y, r, or V are...

- Upstream Pipe Section Elevation
- Downstream Pipe Section Elevation Pipe Section Length

Force of Gravity (defaults to 32.18 ft/sec^2) Pipe Material Selected from list

Roughness Coefficient Slope Depth of Flow Radius of Pipe Velocity Flow & Depth Status Froude Number - can only be an output value

Depth of flow for max, flow rate Max. flow rate for given geometry Max. possible depth for given flow rate

====> Sediment Transport Data <==== Sediment Scour or Deposit Status based on velocity Liquid Volume in Pipe Section Pipe Section Hydraulic Detention Time

WW-M09: Basics of Pumps and Hydraulics

Launch course 🖸

Authored By

Bill Smith

About This Course

(Approved by PADEP)

This course includes mathematical models, audio file, videos cloud based CalcEdge Applications developed by Enviro/Sci Corp. The enhancements have been added to a baseline course initially developed by the Pennsylvania Department of Environmental Protection in cooperation with its various contractors.

Associated Calculations

Click Image to Left to access app; click image above to access course

Manning Equation Application

		Q = V · A Manning Equati	Man on	Copyright Copyright INSTRUCTIC Input box 1 employed. T	ion Calculations for Circular Open Channel Flow Enviro/Sci Corp 2017 DNS: Enter the input values for the variables. Click the for Pipe Material and select the type of pipe material the roughness coefficient will be automatically chosen.
Input Data		Variable	Output	Units	====> Input Data <====
1,200,000.		Q		gal/day ∽	Flow (may be an input or output)
12.00		d		in v	Diameter of Pipe (typically input unless y, r, or V are
100.00		UpstreamElev		ft 🗸	Upstream Pipe Section Elevation
99.00		DownstreamElev		ft 🗸	Downstream Pipe Section Elevation
110.00		SectionLength		ft 🗸	Pipe Section Length
		g	32.18	ft/sec^2	Force of Gravity (defaults to 32.18 ft/sec^2)
Sanitary Se	wers with slimes \sim	type			Pipe Material Selected from list
Input Data	Variable	Output	Units	Rough	ness Coefficient
·	S	0.1091	in/ft	✓ Slope	
	V	6.40	in	✓ Depth o	f Flow
	r	6.00	in	✓ Radius	of Pipe
	V	4.36	ft/sec	Velocity	
	Pipe_Flow_Status_U	p Supercritical		Flow &	Depth Status
	F	1.0534	Froude	Froude	Number - can only be an output value

Example with Flow, Pipe Diameter, Elevations, Section Length & Pipe Material Specified – Depth of Flow Determined

Manning Equation Application

$R = \frac{A}{WP}$ Stops = $\frac{A'}{\Delta X}$	Q = V · A
Prov.	Man

lanning Equation

32.

Variable

UpstreamElev

DownstreamElev

Q

d

g

Manning Equation Calculations for Circular Open Channel Flow

Copyright Enviro/Sci Corp 2017

INSTRUCTIONS: Enter the input values for the variables. Click the Input box for Pipe Material and select the type of pipe material employed. The roughness coefficient will be automatically chosen.

Input Data				
12.00				
100.00				
99.00				

110.00 SectionLength

Sanitary Sewers with slimes type \sim

Input Data	Variable	Output	Units
	S	0.1091	in/ft
7.25	у		in
	r	6.00	in
	V	4.57	ft/sec
	Pipe_Flow_Status_Up	Supercritical	
	F	1.0359	Froude

Units	
gal/da	ay 🗸
in	~
ft	~
ft	~
ft	~
ft/sec^	2
	gal/da in ft ft ft ft/sec^

====> Input Data <====

Flow (may be an input or output) Diameter of Pipe (typically input unless y, r, or V are... Upstream Pipe Section Elevation Downstream Pipe Section Elevation Pipe Section Length Force of Gravity (defaults to 32.18 ft/sec^2) Pipe Material Selected from list

Roughness Coefficient
Slope
Depth of Flow
Radius of Pipe
Velocity
Flow & Depth Status
Froude Number - can only be an output value

Example with Pipe Diameter, Elevations, Section Length, Pipe Material, Depth of Flow Specified – Flow Determined

Manning Equation Application

	Stope = AV	$\mathbf{Q} = \mathbf{V} \cdot \mathbf{A}$	Mar	nning Equ	ation Calculations for Circular Open Channel Flow
	Post.	Manning Equat	ion	Copyrigi INSTRUC Input box employed	ht Enviro/Sci Corp 2017 TIONS: Enter the input values for the variables. Click the c for Pipe Material and select the type of pipe material l. The roughness coefficient will be automatically chosen.
Input Data		Variable	Output	Units	====> Input Data <====
1,300,000. 100 99.00 110.00 Sanitary Se	wers with slimes	Q d UpstreamElev DownstreamElev SectionLength g type	10.87 32.18	gal/day in ft ft ft ft ft ft/sec^2	 Flow (may be an input or output) Diameter of Pipe (typically input unless y, r, or V are Upstream Pipe Section Elevation Downstream Pipe Section Elevation Pipe Section Length Force of Gravity (defaults to 32.18 ft/sec^2) Pipe Material Selected from list
Input Data 7.25	Variable S y r V Pipe_Flow_Status	Output 0.1091 5.44 4.40 Subcritical 0.9988	Units in/ft in in ft/sec Froude	 Rou Slope Depti Radi Veloc Flow Froud 	ghness Coefficient e h of Flow us of Pipe city & Depth Status de Number - can only be an output value

Example with Flow, Elevations, Section Length, Pipe Material, Depth of Flow Specified - Pipe Diameter Determined Copyright Enviro/Sci Corp. 2020

Application For Alkalinity Feed System

Instructions:

1.Enter the values for the Influent and Effluent Parameters 2.Select the type of Alkalinity from the drop-down menu to the right of 3.Enter the Volume of the Alkalinity Storage Tank 4.Enter the Mass of the Alkalinity added to the Storage Tank

Alkalinity for Nitrification Copyright Enviro/Sci Corporation 2017

100. **RawWasteAlk** g/m^3 15.000. Q gal/day 45.0 RawNH3 a/m^3 3.0 EffNH3 g/m^3 100.0 E.tf/Aik a/m^3

Magnesium Hydroxid 🗸 type

5. The pertinent Output Data is displayed

100.00	DayTankVol
75.	Day Tank Mass

AlkChemMass

AlkChemEqv

NitrificationAlk

FeedSoInStatus ChemFeedRate

AlkFeedSaturation 90.

DayTankRunTime 5.08

FeedSoln%

saturation

gal
lb

g/l

6,696.

17.028.

Saturated

1.68

8.98

20.

1

Input Data Alkalinity of Raw Wastewater Daily Flow of Wastewater Applied Ammonia to wastewater treatment process Effluent Ammonia concentration Efficient Aikalinity

Selected Form of Alkalinity

Alkalinity Feed System Volume of Day Tank Mass of Chemcial added to Day Tank

Output Data

~

g/day	~	Mass of Alkalinity Selected Required for Nitrifcation		
g Alk Chem/g Alkalinity		Equivalent Alkalinity of Chemical Employed		
g/day	~	Mass of Alkalinity Consumed by Nitrification		
%		Percent Alkalinity Feed Soluditon		
g/l	~	Concentration of Alkalinity Chemical in Feed Tank		
		Alkalinity Feed Solution Saturation Status		
gal/day	~	Feed Rate of Alkalinity Chemical		
day		Time to empty day tank		

Saturation point for Alkalinity Chemical Employed

In this example the flow, NH₃, **Effluent NH3** and **Desired** Effluent **Alkalinity are** input values.

The Tank Volume and Mass of **Chemical as** well as **Alkalinity form** were input values.

The Day Tank run time and **Feed Rate** were determined.

Copyright Enviro/Sci Corp. 2020 Click Image above to access application

Application For Alkalinity Feed System

1.Enter the values for the Influent and Effluent Parameters

2.Select the type of Alkalinity from the drop-down menu to the right of

3.Enter the Volume of the Alkalinity Storage Tank

4.Enter the Mass of the Alkalinity added to the Storage Tank

5. The pertinent Output Data is displayed

100.	RawWasteAlk		a/m^3	~	Alkalinity of Raw Wastewater
15,000.	Q		gal/day	~	Daily Flow of Wastewater
45.0	RawNH3		g/m^3	~	Applied Ammonia to wastewater treat
3.0	EffNH3		g/m^3	~	Effluent Ammonia concentration
100.0	EffAlk		g/m^3	~	Effluent Alkalinity
Sodium Hyd	roxide 🗸 type				Selected Form of Alkalinity
					Alkalinity Feed System
100.00	DayTankVol		gal	~	Volume of Day Tank
75.	Day Tank Mass		lb	~	Mass of Chemcial added to Day Ta
					Output Data
	AlkChemMass	9,000.	g/day	~	Mass of Alkalinity Selected Required
	AlkChemEqv	1.25	g Alk Chem/g Alkali	nity	Equivalent Alkalinity of Chemical Emp
	NitrificationAlk	17,028.	g/day	~	Mass of Alkalinity Consumed by Nitrif
	FeedSoln%	8.98	%		Percent Alkalinity Feed Soluditon
	AlkFeedSaturation	90.	g/l	~	Concentration of Alkalinity Chemical i
	FeedSoInStatus	UnSatur			Alkalinity Feed Solution Saturation St
	ChemFeedRate	26.	gal/day	~	Feed Rate of Alkalinity Chemical
	DayTankRunTime	3.78	day		Time to empty day tank
	saturation	500	a/l	~	Saturation point for Alkalinity Chemica

Alkalinity for Nitrification **Copyright Enviro/Sci Corporation 2017**

Input Data

	Alkalinity of Raw Wastewater
7	Daily Flow of Wastewater
7	Applied Ammonia to wastewater treatment process
7	Effluent Ammonia concentration
7	Effluent Alkalinity

	Alkalinity Feed System
	Volume of Day Tank
Ĩ	Mass of Chemcial added to Day Tank

for Nitrifcation bloyed cation n Feed Tank tatus al Employed

In this example the flow, NH₃, **Effluent NH3** and Desired Effluent **Alkalinity are** input values.

The Tank Volume and Mass of Chemical as well as a different **Alkalinity form** were input values.

The Day Tank run time and **Feed Rate** were determined.

Copyright Enviro/Sci Corp. 2020 Click Image above to access application

Application For Alkalinity Feed System

1.Enter the values for the Influent and Effluent Parameters

2.Select the type of Alkalinity from the drop-down menu to the right of

3.Enter the Volume of the Alkalinity Storage Tank

4.Enter the Mass of the Alkalinity added to the Storage Tank

5. The pertinent Output Data is displayed

					input bata
100.	RawWasteAlk		g/m^3	~ ^	Ikalinity of Raw Wastewater
15,000.	Q		gal/day	- C	Daily Flow of Wastewater
45.0	RawNH3		g/m^3	~ A	pplied Ammonia to wastewater treatment process
3.0	EffNH3		g/m^3	- E	ffluent Ammonia concentration
100.0	EffAlk		g/m^3	~ E	Effluent Alkalinity
Magnesium	Hydroxid ~ ^{type}			5	Selected Form of Alkalinity
				4	Alkalinity Feed System
100.00	DayTankVol		gal	~ \	/olume of Day Tank
	Day T ank Mass	103.	lb	~	Mass of Chemcial added to Day Tank
				C	Dutput Data
	AlkChemMass	6,696.	g/day	~ 1	Mass of Alkalinity Selected Required for Nitrifcation
	AlkChemEqv	1.68	g Alk Chem/g Alkalinity	E	Equivalent Alkalinity of Chemical Employed
	NitrificationAlk	17,028.	g/day	~ 1	Mass of Alkalinity Consumed by Nitrification
	FeedSoln%	12.38	%	F	Percent Alkalinity Feed Soluditon
	AlkFeedSaturation	124.	g/l	~ (Concentration of Alkalinity Chemical in Feed Tank
	FeedSoInStatus	Saturated		F	Alkalinity Feed Solution Saturation Status
	ChemFeedRate	14.	gal/dav	F	Feed Rate of Alkalinity Chemical
7.00	DayTankRunTime		day	1	Fime to empty day tank
	saturation	1	g/l	~ 5	Saturation point for Alkalinity Chemical Employed

Alkalinity for Nitrification Copyright Enviro/Sci Corporation 2017

Innut Data

In this example the flow, NH₃, **Effluent NH3** and Desired Effluent Alkalinity are input values.

The Tank Volume and Mass of Chemical as well as Alkalinity form were input values.

The Day Tank run time was an Input, the **Day Tank Mass** determined.

Copyright Enviro/Sci Corp. 2020 Click Image above to access application

Advantages - Cloud Based Modelling Applications

Plant operators will be provided assistance with process optimization and data management.

For specific problems and calculations, operators can use a diagnostic application to assess the process modification.

Engineers will benefit from plant modeling and input into design and redesign decisions.

Import and Export of data from Data Historians for Predictive Analytics.

Operators benefit from online training and certification.

The community benefits from energy savings, process optimization, and enhanced troubleshooting in the course of compliance with environmental discharge standards.

Additional Courses & Applications

Environmental Water and Waste Water Calculations

Universal Technical Systems in association with Enviro/Sci Corp. have develop a compendium of CalcEdge applications for the water and wastewater industry. These applications are specifically tailored to the operation and troubleshooting of water and wastewater operations as well as their operation personnel. A subscription service is available for storage of specifically configured applications as a data historian.

Registration & Disclaimer

There is a free trial available for these calculations. To get full access to the calculations you need to purchase the calculations or you can register for our course.

C CalcEdge Click CalcEdge Icon to access applications

Environmental Water and Wastewater Courses

Universal Technical Systems in association with Enviro/Sci Corp. have developed a compendium of Water & Wastewater training courses with interactive CalcEdge applications for the water and wastewater industry. These courses are specifically tailored to the operation and troubleshooting of water and wastewater operations as well as the training of the operating personnel.

CalcEdge Click CalcEdge Icon to access additional courses

Please contact Bill Smith for more information - w.smith@enviroscicorp.com

WRF LIFT Advantages & Potential

- Expand exposure to Water & Wastewater Operators
- Expand Exposure to Environmental & Sanitary Engineering Firms
- Expand exposure to Operator Training Providers
- Expand exposure of State & Local Professional Associations
- Provide access to potential teaming partners
- Expand the use of the software platform
- Introduce software to e-Publishers
- Evaluate Joint Ventures and/or Sale of Application/Courses
- Coauthoring of similar type applications & course for other domains

Developer of Wastewater Software

- Bill Smith, an inventor and process consultant, has developed several interrelated technologies that optimize wastewater plant performance and provide a means to train and educate a new generation of plant operators.
- Bill is President and Founder of Enviro/Sci Corporation and holds a total of 8 patents in 3 countries for wastewater treatment methods. Organic memory and knowledge has been converted to digital memory and models.
- The software models and applications have been made available to particular plants and are available for installation at other plants.

Disclaimer: Neither this presentation, the courses nor the technology has been provided as a replacement for the following technology.

Tobacco Smoke Enema (1750s-1810s)

CONTACT INFORMATION

Enviro/Sci Corporation

Internet: <u>WWW.enviroScicorp.com</u> Bill Smith - The Shitective **©** P.O. Box 2063 Southeastern, PA 19399-2063 Mobile: <u>215-704-7448</u> Fax: <u>484-380-2161</u> Email: <u>w.smith@enviroscicorp.com</u>

If you think that experts are expensive, wait until you see what it costs to hire an amateur!