CHAR technologies

Pyrolysis for Biosolids Management

LIFT Technology Scan: Pyrolysis – October 19th, 2020

Overview

CHAR Technologies Ltd

- Publicly traded on the TSXV, ticker 'YES'
- Two divisions:

• Environmental Engineering Services & Compliance

SOLUTIONS

 Advanced Industrial Clean Technologies for: Clean Air Clean Water Organic Waste Reduction & Renewable Energy

Reference Installations

Acid Mist Scrubber: Chilean mining operation

Reverse Osmosis Plant: Canadian food & beverage manufacturer

Membrane Bioreactor: First system in the world to upgrade effluent water for reuse in production in compliance with Federal Food Regulations in beverage manufacturing

Pyrolysis Inspiration

Digestate Value-Add?

Feedstock

Low value digestate or compost

Production

High Temperature Pyrolysis (in the absence of oxygen). The secret sauce (IP protected)

Use

Simple vessel to allow for gas to flow through SulfaCHAR

End-of-Life

Sulfur-rich biochar for soil application. University of Guelph validated enhanced growth of corn using SulfaCHAR

High Temperature Pyrolysis

High-Temp Pyrolysis Facility

Watch the video: https://youtu.be/-UDjNEO6WcE

CHARTECH

High-Temp Pyrolysis Technology CHARTECH

Carbon Negative – Reduces net greenhouse gas (GHG) emissions

Reduce Mass - Reduces organics waste mass by up to 90%

Energy Generation - Pyrolysis gas fuels the system, and generates energy

Value-Added Outputs – Low-value organic waste streams converted into high value biocarbon products

CHAR HAS MULTIPLE PROCESS PATENTS FOR VALUE-ADD PRODUCTS FROM ORGANIC WASTES:

Pyrolysis Process

Untreated Product Yields

Species	Biosolids	Digestate
Helium	0.66 ± 0.03	0.75 ± 0.15
Hydrogen	18.0 ± 1.3	17.5 ± 1.1
Carbon Dioxide	18.8 ± 0.5	19.0 ± 0.5
Methane	22.0 ± 0.9	22.5 ± 0.5
Ethane	1.7 ± 0.1	1.5 ± 0.1
Ethylene	5.0 ± 0.1	4.5 ± 0.15
Acetylene	0.04 ± 0.01	0.02 ± 0.01
Oxygen	0 ± 0	0 ± 0
Nitrogen	15.1 ± 2.9	15.6 ± 1.7
Carbon Monoxide	17.4 ± 0.7	17.4 ± 0.7
Propane/Propylene	0.53 ± n.d.	0.2 ± n.d.
All others (C4+)	0.77 ± n.d.	0.97 ± n.d.
Average Molecular Weight (g/mol)	24.08	24.22
Gross Calorific Value (MJ/kg)	16.7	16.3

Syngas – Net Energy

- Syngas is cleaned, and some reused in the system burners
- Net available syngas (after some used for system heat):
 - 10 MJ gas/kg biosolids (dry)
 - 8.6 MMBTU gas/ton biosolids (dry)
- 50,000 TPA (dry) gives 430,000 MMBTU

Renewable Natural Gas

- Renewable Natural Gas (RNG) is methane produced from organic matter, which can be injected directly into the Natural Gas pipeline
- RNG targets & mandates exist (examples below)
- First-generation RNG comes from anaerobic digestion biogas plants
- Pyrolysis is a second-generation technology
- Recent study shows 82% of RNG in Québec will need to come from Second Generation RNG (Énergir)

Jurisdiction	RNG Target	Utility
California	20% by 2030	SoCalGas
Vermont	20% by 2030	Vermont Gas
British Columbia	15% by 2030	FortisBC
Québec	5% by 2025	Énergir

Biocarbon Value

Feedstock

Low value digestate or compost

Production

High Temperature Pyrolysis (in the absence of oxygen). The secret sauce (IP protected)

Use

Simple vessel to allow for gas to flow through SulfaCHAR

End-of-Life

Sulfur-rich biochar for soil application

Other Uses:

Odour Control Water Treatment (Phosphorous)

Biocarbon Value

Biochar (700°C)

Fertilizer Analysis			
Nitrogen (Total)	2.18%		
Phosphorous (avail P ₂ O ₅)	5.3%		
Potassium (Soluble K ₂ O)	0.5%		

Ash Analysis (wt.%)				
SiO ₂	17.4%			
Al ₂ O ₃	4.0%			
TiO ₂	0.07%			
Fe ₂ O ₃	17.8%			
CaO	10.4%			
MgO	2.7%			
Na ₂ O	0.6%			

PFAS in Solid Phase

Presented in Aggregate of 28 Recognized PFAS Contaminants

Base Business Case

Parameter	Total
Digestate Quantity (TPY)	40,000
Moisture Content	65%
Dried Sludge Quantity (TPY)	14,000
Biocarbon Production (TPY)	5,600
Quantity Reduction	86%
Net Thermal Power (MMBtu/hr)	6.3

Parameter	Factor	Total
Tip Fee Avoidance	\$50/ton	\$2,000,000
GHG Avoidance	\$TBD	\$TBD
LCFS Credit, additional	\$4 - \$7+/MMBTU	\$TBD
Biocarbon Sale/Value	\$250/ton	\$1,400,000
Natural Gas offset savings	\$4/MMBTU	\$200,000
Total:		\$3,600,000

Proprietary Pyrolysis Technology CHARTECH

Carbon Negative – Reduces net greenhouse gas (GHG) emissions

Reduce Mass - Reduces organics waste mass by up to 90%

Energy Generation - Pyrolysis gas fuels the system, and generates energy

Value-Added Outputs – Low-value organic waste streams converted into high value biocarbon products

WRF LIFT ASK:

- Full-scale demonstrations and installations
- We have full lab capabilities to run small scale and tote bag scale tests/validations

SOLUTIONS

Head Office: 403-789 Don Mills Rd Toronto, ON Canada M3C 1T5 Andrew White CEO <u>andrew.white@CHARtechnologies.com</u> (647) 968-5347

