COLLAPSED-CAN STEEL LINERS-DESIGN

Stephen F. Shumaker, P.E | Senior Civil Engineer, CDM Smith
Carlsbad, CA | shumakersf@cdmsmith.com

Jan 20, 2016
at MWD-Los Angeles, CA

Water Research Foundation Large Pressure Pipe Structural Rehabilitation Conference
Presentation Topics

- Principle of Collapsed-Can Liner
- Steel Liner Design
- Layout and Access Pits
- Installing in Place
- Grouting and Mortar Lining
PRINCIPLE OF COLLAPSED-CAN LINER
Collapsible Steel Liner

- Collapsed can provides maximum installed diameter for minimum hydraulic loss

- Collapsed configuration, allows for:
 - Transport and maneuvering
 - Negotiation of small bends
Collapsible Steel Liner

- Fabricated from rolled steel plate with one unwelded longitudinal seam
- Held in collapsed configuration with external steel bands and internal tie-bars
STEEL LINER DESIGN
Longitudinal Field Weld

- Some past designs utilized field fillet welds
 - Backer bar was structural
 - Eccentricity induced bending moment
 - Overlapping heat-affected zones decreased ductility
 - Positions of max bending moment and decreased ductility coincided
Longitudinal Field Weld

- Longitudinal back up bar
 - Non-structural
 - Acts as backer plate for full penetration weld
 - Avoids moment-inducing eccentricity
 - Radius matches pipe
 - Fabricated from rolled plate or cut from completed steel pipe
Longitudinal Field Weld

- Alternate position of weld prevents propagation of potential failure
Steel Liner Material

- Mild steel; typically 36 to 42 ksi yield
- Ductility important:
 - Charpy V-notch test
 - Elongation of tensile test specimen 22% min
 - Fully killed, fine-grained, continuous cast
- Initial design for internal pressure, typically:
 - Maximum 50% of yield at working pressure
 - Maximum 75% of yield at max transient pressure
- Also check for handling and grout pressure
LAYOUT AND ACCESS PITS
Layout and Access Pits

- Bends generally require cut-and-cover excavation and replacement of host pipe with standard fabricated steel pipe bends
- Access pits required to insert liner
- Co-location of pits at bends reduce total number
- Liner pieces transported from pits with specialized mechanized carts
Layout and Access Pits

- On gently sloping pipe, liners can be delivered each direction from pits
 - e.g. 1,200’ pit spacing = 600’ max transport length
- Access pits typically require removing 2 lengths of host pipe
- Alternatively, can cut and remove top half of host pipe at pit
Closing Access Pits

- Pipe at pits replaced by standard fabricated steel pipe
- Replaced pipe at pits generally encased in reinforced concrete
INSTALLING IN PLACE
Liner Preparation

- Liner “collapsed” to tighter radius
 - Compression of can must be limited so bending stresses don’t exceed yield stress
 - Thin wall helps
- Tack welded in collapsed configuration with temporary tie bars
- Banded with steel straps lined-up with grout ports
Liner Delivery

- Liner transported from access pit with mechanized delivery system or “cart”
- Temporary tie bars removed and bands cut through grout ports
- “Cart” has mechanized controls which orient and push the liner into proper position
GROUTING
Grout Ports

- Threaded plug; seal weld in place after grouting
Spacers

- Keep liner centered in pipe during installation and grouting
- Height, “H” as required to center liner in host pipe
Grout Port and Spacer Spacing

- Goal: reduce grout flow resistance
Grout Rings or “Dams”

- Confine grout flow
- Required at transitions
- Continuous grouting operation between rings
- Grout port required at top to release air
Grout Pressure

- Calculating collapse pressure, P_c

 $P_c = \frac{2E_s}{1-\nu^2} \left(\frac{t_s}{d_n}\right)^3$

 AWWA M11 4th ed. Eqn 4-2

- Where,

 $E_s =$ modulus of elasticity of steel cylinder

 $t_s =$ thickness of steel cylinder

 $\nu_s =$ Poission’s ratio for steel cylinder

 $d_n =$ diameter to neutral axis of steel cylinder

- Substituting for E_s and ν_s,

 $P_c = 66,666,667 \left(\frac{t_s}{d_n}\right)^3$

 AWWA M11 4th ed. Eqn 4-3
Grout Pressure

- External collapse pressures calculated per the AWWA equations assume uniform external pressure on the steel cylinder.
- For 84" ID, ½" thick steel liner, uniform collapse pressure is 13.8 psi – Grouting near this pressure will collapse the pipe!
 - Actual grouting conditions must account for dynamic friction of grout flow, distance between grout ports, differing static pressure between top and bottom of the pipe, etc., which result in non-uniform external pressure distribution.
 - Typical grouting pressures run about 3 to 5 psi.
- Spacing of grout ports is critical!
Field Mortar Lining

- Collapsed-can liner requires mortar lining in the field.
- Per AWWA C602
- Standard (non-collapsed) closure sections and fittings can be shop-lined with joints hand-mortared in the field.
General Observations

- Contractor experience requirements written into specifications
- Full time certified weld inspection
- Full time installation inspection including field mortar lining.
COLLAPSED-CAN STEEL LINERS-DESIGN

Stephen F. Shumaker, P.E | Senior Civil Engineer, CDM Smith
Carlsbad, CA | shumakersf@cdmsmith.com

Jan 20, 2016
at MWD-Los Angeles, CA

Water Research Foundation Large Pressure Pipe Structural Rehabilitation Conference