Integrating a Sustainability Framework with Assessment of Treatment and Resource Recovery Technologies

Qiong (Jane) Zhang Associate Professor Department of Civil and Environmental Engineering University of South Florida

Prepared for NSF Metrics Workshop Date: May 16, 2016

Sustainability

- Ability to be sustained
- What to be sustained?

Sustainability at Different Scale

https://en.wikipedia.o rg/wiki/Tampa_Bay_ Area

Image obtained from google earth

Sustainability Framework

- A way to organize thinking about sustainability
- An organized structure informing the evaluation of activities or technologies
 - Define the system to be assessed
 - Define sustainable scenarios

3

- Identify the elements of the framework
- Choose or construct metrics to assess the status of the system

A Sustainability Framework

economic

Definition	Metric
treatment effectiveness	removal of targeted contaminants
ability to cope with fluctuations in the influent	ratio of the SD of effluent quality to the SD of influent quality
ease of construction	time and labor needed for construction
possibility to implement the technology in various scales	the range of applicable scales

Definition	Metric
energy consumption rate	electricity consumed per unit water treated
chemical use rate	mass and type of chemical used per unit water treated
resources recovered	amount and type of resources recovered per unit water treated
gas, liquid and solid waste	amount and type of waste generated per unit water treated

Definition	Metric
cost over the life of technology for targeted performance	life cycle cost per unit water treated
ability to afford the technology	ratio of the cost of technology to the financial ability
cost savings/profit from resource recovery	The ratio of cost savings/profit to total cost

Definition	Metric
awareness of risk	rating from survey
acceptance of technology and risk	rating from survey
competence and information requirements	rating from survey

Definition	Metric
monitoring status and data management	automatically, semi-automatically or manually, data organization and storage
preparedness for hazard	emergency response plan
resource adequacy	sufficient labor and experts
methods for information dissemination	visitor tour, official website

Application to Wastewater Treatment

Technical Performance

		Scenario	Scenarios	Scenarios	Scenario	Scenario
	Unit	1	2-4	5-6	7	8
TN in influent	[mg/L]	77.4	77.4	77.4	77.4	77.4
TN in effluent	[mg/L]	77.4	77.4	25.5	2.1	2.2
TN at 100 cm below DF	[mg/L]	38	53	12	0.1	0.1
TN removed	[mg/L]	39	24	65	77	77
Percent TN removed	[-]	50%	31%	84%	99%	99%
Lifetime TN removed	[kg]	315	199	540	639	639

Environmental Metrics

Economic Metric

Application to Wastewater Resource Recovery

- ≫ Water Reuse O&M
- Water Reuse Infrastructure
- Treatment O&M
- III Treatment Infrastructure
- ■Collection O&M
- Collection Infrastructure

Pablo K. Cornejo

Ref: **Cornejo** et al. (2016) *Environ. Sci. Technol.*, DOI: 10.1021/acs.est.5b05055

Embodied energy of resource recovery

- Water reuse
 - Dominant form of resource recovery at all scale (16-25% offset)
 - Greatest benefits at the household scale
- Integrated Resource Recovery
 - City scale provides greatest percent offset of embodied energy (49% offset)
 - Embodied energy offsets = embodied energy of treatment (city scale)

Embodied Energy Reduction potential of resource recovery strategies, MJ/m ³ (% of total)					
Description	Household	Community	City		
Water Reuse - Potable Water Offsets	7.2 (18%)	5.5 (16%)	4.0 (25%)		
Nutrient Recycling - Fertilizer Offsets	1.3 (3%)	0.2 (1%)	0.8 (5%)		
Energy Recovery - Energy Offsets	-	-	3.0 (18%)		
Integrated Resource Recovery Offsets	8.5 (21%)	5.7 (17%)	7.8 (49%)		

Eutrophication potential trends & Trade-offs

- Decreases from household to community scale
 - Shifts in nutrient removal
- Direct sources
 - Highest at household scale
 - Lowest at community scale
- Trade-offs of nutrient removal
 - Eutrophication potential lower
 - Higher embodied energy of treatment

Eutrophication potential of resource recovery

- Integrated offsets comparable at all scales
- Water reuse (potable water offsets) Decrease with scale
 - % of water reclaimed lowest at city scale, less potable water offsets
- Nutrient recycling (fertilizer offsets) Increase with scale
 - Increased biosolids production with increased scale, more fertilizer offsets

Eutrophication potential reduction of resource recovery strategies, g PO₄eq/m³ (% of total)

Description	Household	Community	City
Water Reuse - Potable Water Offsets	0.7 (7%)	0.6 (16%)	0.4 (10%)
Nutrient Recycling - Fertilizer Offsets	0.1 (1%)	0.2 (6%)	0.4 (8%)
Energy Recovery - Energy Offsets	-	-	0.02 (0.4%)
Integrated Resource Recovery Offsets	0.8 (8%)	0.8 (22%)	0.8 (18%)

Application to Drinking Water Treatment

Ref: Zhang et al. (2016) Water Research, in revision

A National Center for Innovative Small Drinking Wate

Sustainable Small Systems

Sustainability Assessment of Design

Sustainability Assessment of Design

Key Points

- Include environmental, societal and managerial metrics in addition to technological and economic metrics.
- Involve stakeholders to determine key indicators.
- Framework can be flexible in application.
- Environmental impacts offset can be used as one indicator for resource recovery.

Acknowledgement

- National Science Foundation Partnerships for International Research and Education (PIRE) grant (No. 1243510)
- EPA RAINmgt nutrient center grant (No. 83556901)
- EPA WINSSS center grant (No. 83560201)
- Research group