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FOREWORD

The Awwa Research Foundation (AwwaRF) is a nonprofit corporation that is dedicated to
the implementation of a research effort to help utilities respond to regulatory requirements and
traditional high-priority concerns of the industry. The research agenda is developed through a pro-
cess of consultation with subscribers and drinking water professionals. Under the umbrella of a
Strategic Research Plan, the Research Advisory Council prioritizes the suggested projects based
upon current and future needs, applicability, and past work; the recommendations are forwarded
to the Board of Trustees for final selection. The foundation also sponsors research projects
through an unsolicited proposal process; the Collaborative Research, Research Applications, and
Tailored Collaboration programs; and various joint research efforts with organizations such as the
U.S. Environmental Protection Agency, the U.S. Bureau of Reclamation, and the Association of
California Water Agencies.

This publication is a result of one of these sponsored studies, and it is hoped that its find-
ings will be applied in communities throughout the world. The following report serves not only as
a means of communicating the results of the water industry’s centralized research program but
also as a tool to enlist the further support of the nonmember utilities and individuals.

Projects are managed closely from their inception to the final report by the foundation’s
staff and large cadre of volunteers who willingly contribute their time and expertise. The founda-
tion serves a planning and management function and awards contracts to other institutions such as
water utilities, universities, and engineering firms. The funding for this research effort comes
primarily from the Subscription Program, through which water utilities subscribe to the research
program and make an annual payment proportionate to the volume of water they deliver and
consultants and manufacturers subscribe based on their annual billings. The program offers a cost-
effective and fair method for funding research in the public interest.

A broad spectrum of water supply issues is addressed by the foundation’s research agenda:
resources, treatment and operations, distribution and storage, water quality and analysis, toxicol-
ogy, economics, and management. The ultimate purpose of the coordinated effort is to assist water
suppliers to provide the highest possible quality of water economically and reliably. The true ben-
efits are realized when the results are implemented at the utility level. The foundation’s trustees
are pleased to offer this publication as a contribution toward that end.

This project was jointly funded by AwwaRF and the California Energy Commission
(Energy Commission). The Energy Commission is the state’s primary energy policy and planning
agency.

David E. Rager Robert C. Renner, P.E.
Chair, Board of Trustees Executive Director
Awwa Research Foundation Awwa Research Foundation
xvii
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EXECUTIVE SUMMARY

Pumping operations at water utilities are typically consumption-following. That is, wells
and booster pumps are automatically controlled based on reservoir levels and distribution pres-
sures relative to programmed setpoints. As consumption increases, levels and pressures fall and
pumps are turned on. As consumption decreases, reservoir levels rise, distribution pressures
increase, and wells and booster pumps turn off. The pumps follow consumption during the day to
maintain reservoir levels and system pressures within normal operating ranges.

While this reactive mode of operation meets operating criteria from a reliability perspec-
tive, it does not leverage the opportunity to reduce operating costs as do proactive system opera-
tions. Progressing to proactive system operations requires methods by which it is possible to
accurately forecast consumption on a daily (Figure ES.1) and/or hourly (Figure ES.2) basis and
then schedule water supplies, treatment, and pumping to minimize cost and maximize quality.

The objective of this research was to identify, test, and evaluate methods and tools avail-
able to make short-term water consumption forecasts as required for optimizing pump schedules
and energy use and support the implementation of an Energy and Water Quality Management Sys-
tem (EWQMS).

The focus of this project is on Short-Term Consumption Forecasting (STCF) as it relates
to energy, water quality, and water supply management in an operations environment. The best
representation of integration of the STCF into water system operations is the EWQMS model
(Figure ES.3). As shown in Figure ES.3, the Operations Planner and Scheduler (OPS), which is a
function consisting of people and software programs (system simulator and optimizer), develops a
System Operating Plan based on the Water Consumption Forecast, Maintenance Construction
Schedule, Energy Cost Schedule, Water Quality, Water Supply, and “The Utility’s Performance
Criteria.” The System Operating Plan is used by system operations to optimally control treatment
plants, pumping plants, and the distribution system. The cost savings and effectiveness of optimi-
zation programs are dependent on and proportional to the accuracy of the forecast. Over or under
estimating consumption will result in running plants or pumps during periods of high energy and
water supply costs. Assumptions made for water quality management may be invalidated if there
are significant errors in the forecast.

SHORT-TERM CONSUMPTION FORECASTING FOR ENERGY MANAGEMENT

The water system energy management problem is essentially a mass-balance exercise. As
illustrated in Figure ES.4, the key is to move water from source to consumption area at the lowest
possible cost to take advantage of time-based electric energy rates, demand charges, pump effi-
ciencies, energy production (hydro generation) and block rate energy supply contracts. It is a
multi-dimensional energy supply and demand optimization problem with the common denomina-
tor of time.

Short-term consumption forecasting provides the mechanism to give water customers just-
in-time water supplies at minimum energy cost, considering the constraints of reservoir fire stor-
age, distribution system pressure, water quality, and supply restrictions.

By accurately forecasting consumption at 15–60 minute resolution at multiple consump-
tion areas in the system, water utilities have the means to leverage multiple energy management
xxi
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opportunities that can minimize cost. Opportunity can be represented from a supply and demand
side perspective from the electric utility viewpoint. These opportunities are outlined as follows.

Time-of-Use Electric Rate (Demand Side)

Predicting tomorrow’s consumption provides the opportunity to use storage to shift pump-
ing from Peak and Intermediate Peak periods to OFF-Peak periods (illustrated in Figure ES.5 and
the solid circle in Table ES.1). Depending on the quantity of storage, the shift could be fairly
small (Figure ES.5) or 100% as shown in the different example in Table ES.1.

Demand Charge (Demand Side)

Demand charges are reduced by predicting consumption and minimizing simultaneous
pumping (Table ES.1). Note that three pumps are used historically and the optimized schedule
does not require running more than two pumps.

Energy Efficiency (Demand Side)

If future consumption is known, efficiency can be improved by utilizing higher efficiency
pumps over lower efficiency pumps or operating multiple pumps, considering pump curves and
minimizing head losses. The example in Table ES.1 (dashed oval) illustrates shifting pumping
from the lower efficiency Pump 2 to the higher efficiency Pump 3.

Multi-Dimensioned Demand Side Solution

Forecasting consumption permits the use of even limited storage to minimize the cost of
pumping considering time-based (Time-of-Use or Real-Time) energy rates, demand charges, and

Table ES.1
Example of using an STCF to minimize energy cost
xxii
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efficiency separately or simultaneously. The optimizer that minimized energy and demand cost of
well field production shown in Table ES.1 produced a slightly higher volume of water during the
24-hour period (Historical Production = 693,487 gallons, Optimized Production = 693,900 gal-
lons). Pumping was rescheduled during the day to improve efficiency, minimize demand charges,
and shift production to periods of the day with lower energy costs. Water consumption for the day
was satisfied with the revised schedule and tank levels were maintained within an acceptable
operating range.

Energy Resale (Supply Side)

Many public and private entities own both electric and water utilities. Combined water and
electric utilities, water utilities with hydro generation, and water utilities that purchase power in
blocks, can leverage the value of energy during high cost periods if water consumption can be
accurately forecasted. During periods of the day when the value of energy is higher, pumping is
reduced so energy can be sold on the spot market. When the value of energy drops during the
night, pumps are run.

Interruption (Supply and Demand Side)

Many electric utilities offer industrial customers, such as water utilities, the opportunity to
substantially reduce energy costs with interruptible rates. If water utilities can accurately forecast
consumption, they can evaluate the impact of reduced pumping during the interruption period and
buy-through (pay a penalty) or accept the interruption period through rescheduling operations.

The decision to forecast consumption on a daily or hourly basis is significant and depends
on business needs of the utility. For example, if the STCF is used for water supply and treatment
only, then a daily forecast may be the only requirement. However, if the utility is to minimize
time-based energy cost or demand charges, then an hourly forecast is required.

Another key requirement for the STCF is the number of service areas required for fore-
casting. In some cases, only a system forecast is required to satisfy optimization requirements. In
other applications it is important, from a mass-balance perspective and water conveyance perspec-
tive, to forecast consumption for multiple service areas in the water system. The number of fore-
casted service areas depends on the size of the utility. Large utilities may have as many as 40 or 50
services areas for which forecasts are required. 

METHODS AND TOOLS

Research conducted for this project identified several STCF techniques used by water, gas
and electric utilities. The most common are:

• Heuristic
• Linear Regression
• Similar Day
• Artificial Neural Network
• Hybrid
xxiii
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The classic and most utilized forecasting approach by water utilities today is Heuristic, in
which a system operator or treatment plant operator estimates today’s or tomorrow’s consumption
based on recent consumption trends, predicted weather report, day of the week, knowledge of
future events (e.g., athletic, political, cultural), and historical knowledge of utility system perfor-
mance.

Linear Regression estimates consumption based on recent consumption trends, day of the
week, weather, nonconforming and random consumption components.

The Similar Day technique searches a historical database for days in the past that had
conditions matching the projected conditions for the upcoming day. The consumption patterns for
each of these similar days are used to generate an average consumption forecast for upcoming
days.

Artificial Neural Networks (ANN) are mathematical models inspired by our understand-
ing of biological nervous systems. They accept a large number of inputs which affect consump-
tion and learn, from training samples, the relationships to output consumption.

Forecasting systems often use a Hybrid approach to consumption forecasting—that is, a
blending of two or more methodologies. For example, a utility may choose to blend similar day
and linear regression, or ANN with statistical techniques. Again, there is one common thread
through all the approaches—the heuristics of the human forecaster. Knowledge of the utility sys-
tem, consumption patterns, and influences of other factors is required to develop a consistently
accurate forecast.

RESEARCH APPROACH

The approach used in the project consisted of the following phases:

• Phase 1 Initiation Researched existing STCF tools used in water, gas and
electric industries

• Phase 2 Analysis Analyzed and benchmarked STCF systems in operation at
several utilities; developed and analyzed STCF prototypes
at utilities that are not currently forecasting consumption

• Phase 3 Documentation Documented performance of the STCF systems, defined
benchmarks and develop product selection criteria

It was important that participating utilities represented multiple climatic zones (e.g.,
desert, tropical, oceanic, rain forest, alpine) with multiple customer demographics. Four of the
utilities had STCFs in operation or experience using STCFs.

Utility STCF Technique

Colorado Springs Utilities Similar Day

JEA ANN

San Diego ANN

Las Vegas Valley Water District Regression, ANN, Heuristic
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Prototype STCFs were developed and tested at utilities that did not have operational
STCFs:

RESULTS

Table ES.2 illustrates the average accuracy of the prototype models over a one week test
period during each of the four seasons. Accuracy of the forecasts is based on Absolute Relative
Error which is calculated as follows:

Absolute Relative Error (ARE) = 100*ABS((Forecast – Actual) ÷ Actual) 

where ABS = Absolute Value

Hourly Average ARE (Hourly AARE) = Average of the hourly ARE values

Daily Average ARE (Daily AARE) = Average of the daily ARE values

The hourly averages ranged from 5.7–8.5% and the daily averages ranged from 2.5–5.1%.
Table ES.3 defines the accuracy of operating forecasting systems. The accuracy of hourly

forecasts for operational systems ranged from 8.0% to 10.8% and daily averages ranged from

Table ES.2
Summary of prototype testing

Utilities

Hourly AARE Daily AARE

Heuristic ANN Regression Heuristic ANN Regression

Toronto 6.0% 8.4% 5.9% 3.0% 4.8% 3.5%

WSSC 6.2% 5.8% 5.7% 2.9% 2.6% 2.5%

EBMUD 7.2% 6.7% None 2.6% 3.2% None

SPU None None None 5.1% 4.8% None

GVRD 8.5% 5.9% None 4.2% 3.4% None

Average 7.0% 6.7% 5.8% 3.5% 3.8% 3.0%

Utility STCF Technique

Toronto Water Regression, ANN, Heuristic

Washington Suburban Sanitary Commission Regression, ANN, Heuristic

East Bay Municipal Utility District ANN, Heuristic

Greater Vancouver Regional District ANN, Heuristic
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3.2% to 4.7%. The accuracy data for operational systems was derived from weekly sample peri-
ods for each season of a year.

A utility’s selection of a forecasting technique and its expected accuracy depend on the
application(s) that are to use the forecast; initial cost and maintenance of the forecasting soft-
ware/method; and complexity of the forecast (daily, hourly, system, multi-area). 

Improvement in the benchmark accuracies defined in this research depends on a number of
factors:

• Accuracy and repeatability of SCADA data used in the forecasts
• Sophistication and calibration of the software tools
• Continuous maintenance of the software tools

The accuracy of the forecasts at JEA, CSU, LVVWD and San Diego reflect real world
conditions. This includes short-term loss of SCADA data, adverse weather conditions and other
adverse/abnormal conditions. The prototypes were tested in an environment with reasonable con-
trol over the operational conditions. The prototype ANN models were developed in less than a
week for each utility and the regression models were developed in a couple of days for each util-
ity. The development costs were low.

Electric utilities expect average absolute percentage errors of 2.5–3.0% for hourly fore-
casts in operating environments. The up front cost of achieving forecasting accuracies consistent
with this level of accuracy is high. It necessitates the purchase of an acceptable software package
that is typically based on advanced statistical methods or Neural Network techniques. Develop-
ment time for the forecaster is 12 to 14 person-months. The ongoing level of required support and
maintenance are also significant. One to two full time staff with substantial knowledge of analyti-
cal forecasting techniques and system operational expertise is required. The forecasting model
requires frequent calibration to reflect new data and system conditions. Furthermore, the forecast-
ing model must be executed several times a day to reflect the changing weather conditions.

The value of an accurate short-term load forecast is very high for electric utilities. If the
forecasts are inaccurate, utilities and Independent System Operators (ISOs) are forced to commit
expensive generating units at the last minute and purchase imported power at high prices. Further-
more, in deregulated energy markets, load forecasts drive the clearing of the energy markets.

Table ES.3
Summary of operational systems

Utilities Hourly AARE Daily AARE

JEA (ANN) 10.8% 3.9%

CSU (Similar day) 8.0% 4.1%

LVVWD* None 3.2%

San Diego (ANN) 8.0% 4.7%

Average 8.9% 4.0%

*Multiple Models—Regression, ANN, Heuristic
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Errors in load forecast have a direct impact on the resulting locational prices and the dispatch lev-
els of generating resources. In addition to the economic burden imposed on systems with poor
load forecasts, forecast accuracy also directly affects the reliability of the electric network. The
stakes for accurate forecasts are obviously very high for electric utilities.

OBSERVATIONS AND LESSONS LEARNED

The following are observations and lessons learned in the execution of this 18 month
research project. Observations include:

• All tested methods worked well to forecast daily consumption
• Daily forecasts improved when hourly data is also forecasted
• ANN models appear to have better accuracy on an hour-by-hour basis than other

methods
• All methods require an initial investment of labor to develop the model
• ANN requires the least maintenance support
• All models share a degradation in performance during seasonal and daily peak periods
• Regression model requires new hourly data every day with no historical data gaps
• ANN handles gaps in historical data better than regression model—only requires data

from previous day
• Error or noise in recent past are reflected directly in the forecasts for both ANN and

regression models
• Daily consumption correlates with type of day (weekday vs. weekend)
• ANN models can be highly automated with little human intervention and support for

more complex applications
• If requirements for forecasting are simple (e.g., daily and system-wide only, heuristic

approach works well

Lessons learned include:

• Accuracy of STCF is highly dependent on quality of historical data
• Weather factors, other than precipitation, may not be critical to accurate forecasting
• ANN models hold up well over time
• Retraining an ANN may degrade the model—take care
• Training ANN models with a full year of data provides better results than training with

only a single season of data
• Daylight Savings Time must be accounted for to ensure data accuracy
• Forecast accuracy is limited by accuracy of measurement equipment
• A large number of input parameters can make models less responsive and more

difficult to maintain
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Figure ES.1 Daily consumption profile 

Figure ES.2 Hourly consumption profile 

Figure ES.3 Energy and water quality management system (EWQMS) model 
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Figure ES.4 Energy management opportunity—move water from source to consumption
area at lowest cost 

Figure ES.5 Shifting system pumping from peak to intermediate/off-peak periods 
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CHAPTER 1
BACKGROUND AND INTRODUCTION

BACKGROUND

Water utilities have traditionally used computer based tools for forecasting consumption; prima-
rily for long term master planning. Water systems were planned, designed, and constructed to
meet the future needs of the community. However, experience of the industry in short-term fore-
casting for optimizing operations is limited. 

Pumping operations at water utilities are typically consumption-following. That is, wells
and booster pumps are automatically controlled based on changes in reservoir levels and distribu-
tion pressures. As consumption increases, levels and pressures fall and pumps are turned on. As
consumption decreases, reservoir levels rise, distribution pressures increase, and wells and
booster pumps turn off. The pumps “follow” consumption during the day to keep reservoir levels
and system pressures within normal operating ranges.

While this reactive mode of operation meets operating criteria from a reliability perspec-
tive, it fails to leverage the opportunity to reduce operating cost and maximize water quality and
supply associated with proactive system operations.

The objective of this research was to identify, test and evaluate available methods and
tools for making short-term water consumption forecasts. These short-term forecasts are required
for optimizing pumping schedules and energy use and to support the implementation of an Energy
and Water Quality Management System (EWQMS).

Long-Term Consumption Forecasting

A Long-Term Consumption Forecast (LTCF) typically covers a period of 10 to 20 years.
Key factors in developing the forecast include industrial, commercial and residential growth;
rates; conservation; and weather conditions. The LTCF is then used by system planners and engi-
neers to finance, design and construct new water facilities. The LTCF is a key component of the
hydraulic model used to simulate and analyze expansion of new facilities and pipelines. The
system planner is typically interested in peak and average day analysis of the system. The models
are often integrated with Geographic Information Systems (GIS) and represent thousands of pipe
sections and nodes.

Short-Term Consumption Forecasting

The planning horizon for a Short-Term Consumption Forecast (STCF) is significantly
shorter than the LTCF. The STCF is used for day-to-day water system operations planning with a
typical horizon from one hour to one week. The operations planner requires a forecasted
consumption profile with daily (Figure 1.1) and, hourly (Figure 1.2) resolution to schedule raw
water delivery, treatment plant production and distribution system pumping. The STCF is
prepared on a system and operating area basis (e.g., area, zone, subgrid, tank). The objective is to
minimize the cost of operation to meet consumption considering the constraints of reservoir
1
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levels, pressures, and system configuration. Significant savings in energy, water supply, and treat-
ment costs can be achieved through optimized scheduling of the system assets based on the STCF.
Application of an STCF can move a water utility from a reactive to a proactive mode of operation.

APPLICATIONS FOR SHORT-TERM CONSUMPTION FORECASTING

An STCF enables many operational applications for a water utility—energy, water quality,
water supply and maintenance management. An example of the integration of an STCF into opti-
mization of operations at JEA (Jacksonville, Florida) is shown in Figure 1.3.

JEA forecasts consumption for multiple areas or subgrids as the key driver to their Opera-
tions Optimization System. Daily and weekly forecasts are used by the Operations
Planner/Scheduler to schedule well field production and high service pumping. An annual fore-
cast is used by the Water Supply Analyzer to schedule water plants to meet the consumptive use
permit of the Floridan aquifer.

Energy Management 

Forecasting daily consumption with one hour resolution is a key factor for water utilities
who deal with Time-of-Use (TOU) or real-time pricing schedules from their energy suppliers.
Forecasting hourly consumption at an operating area, zone or reservoir provides the means to
produce and transfer water during off-peak hours or low cost periods. The strategy is to use
storage to minimize pumping during the on-peak or higher cost periods of the day. An effective
forecast provides the means for “Just-in-Time” production and supply of water to customers by
using reservoir storage capacity efficiently.

Figure 1.4 illustrates how effectively Albuquerque produces water from wells and trans-
fers the water to reservoirs during off-peak hours. Figure 1.4 is a trend of aggregate water system
energy consumption for 24 hours. The graph illustrates the low level of pumping during on-peak
hours (8:00 AM–8:00 PM) and the high level of pumping during off-peak hours (8:00 PM–
8:00 AM). Consumption is calculated and heuristically forecasted for each reservoir in the system.
The savings in energy costs is over a million dollars a year.

Some water utilities have flat or constant energy rates with a demand charge. The demand
charge is based on the peak power consumed at a facility over a set period of time-typically one
month. In this case, simultaneous pumping from multiple pumps can be reduced to minimize the
demand change and meet forecasted consumption. The strategy is to run pumps consecutively for
longer periods with as few pumps run concurrently as necessary to meet forecasted consumption.

Other utilities have real-time pricing for electrical or gas energy. In this case, the cost of
energy varies by the hour during the day. Again, if water consumption is accurately forecasted, the
water utility can minimize cost by pumping during low cost periods.

Figure 1.5 illustrates well field pumping at JEA in response to a real-time cost structure.
In a similar manner to reducing demand charges, energy efficiency can be improved

through selection of pumping combinations that take into account pump discharge head curves.
By considering the consumption forecast, a pump schedule can be generated that maximizes
station efficiency and maintains distribution pressures and reservoir levels within acceptable oper-
ating ranges.

Finally, hourly and daily consumption forecasts are useful for scheduling hydro generation
units to maximize the value of energy production from these units. Power produced during
2
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on-peak hours has more value than power produced off-peak. The strategy is to move water within
the water distribution system in such a way that storage is available for hydro generation during
on-peak hours.

Water Supply

Daily, hourly, and annual consumption forecasts are used to schedule raw water supplies
and production from water treatment plants. Many water utilities have multiple sources of supply
and optimally scheduling these supplies to minimize operating cost can yield significant results.
San Diego Water Department had substantial savings in water supply costs through the use of a
consumption forecaster and water supply optimizer. The savings in the first year of operation of
the Water Supply Optimizer was approximately $800,000. This is in addition to over $300,000
savings in annual energy costs.

Water Quality

Water quality can be enhanced by proactive operation of the water system with a
consumption forecaster. Drafting reservoirs on a regular basis to minimize water age is one
example. In this case, pumps are scheduled to draft and then fill reservoirs based on daily and
weekly forecasted consumption.

Scheduling Maintenance and Construction

Proactive scheduling of maintenance and construction to minimize cost, maintain high
system reliability, and optimize system water quality is facilitated by consumption forecasting. An
hourly and daily schedule for system operations to minimize disruption from maintenance and
construction can be developed based on forecasted consumption.

Proactive System Operations

These examples illustrate the opportunities for proactive operations. Consumption fore-
casting provides the means for the Operations Planner to substantially reduce operating costs and
deliver a high quality product to customers. One or several of these examples may provide a basis
for development of a valid business case to move the utility to implement short-term consumption
forecasting.

Integration of Consumption Forecasting Into Operations Management

A consumption forecast is typically prepared on an annual, weekly, and daily basis to opti-
mally plan and schedule system operations. Figure 1.3 illustrates the model for integration of
consumption forecasting for energy, water supply and water quality management at JEA.

Figure 1.6 illustrates a conceptual workflow for development of a daily system operating
plan based on consumption forecasting. Note that an Annual Consumption Forecaster (Step 3) is
used to develop the water production schedule for the year. The Daily Water Consumption Fore-
cast (Step 5) is used to schedule maintenance (Clearance Requests), water production and
pumping. Prior to accepting the Operating Plan at midnight, operation conditions are reviewed. If
3
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there is significant deviation from the plan (Step 13), a new forecast is regenerated (Step 16).
Then, during the operating day, if actual consumption significantly varies from forecast, another
forecast and plan is generated.

ORGANIZATION OF REPORT

The following is an overview of each chapter in the report:

• Chapter 2—STCF Tools and Methods—defines the methodologies used by electric,
gas and water utilities to develop short-term consumption forecasts.

• Chapter 3—STCF Development Procedures—defines the process utilities use to
specify and implement short-term consumption forecasts.

• Chapter 4—Analysis—Existing STCF Systems—documents performance of
forecasting systems at JEA, Las Vegas Valley Water District, San Diego Water
Department and Colorado Springs Utilities.

• Chapter 5—Analysis—Prototype STCF Systems—provides an overview of the
approach used to develop prototype forecasting systems and execute 28 days of testing
over four seasons at Toronto Water, Washington Suburban Sanitary District, East Bay
Municipal Utility District, Seattle Public Utilities and Greater Vancouver Regional
District.

• Chapter 6—Electric Utility Experience and Value of Forecasting Accuracy—defines
the level of accuracy expected by electric utilities in the operation of their forecasting
systems. The commitment required to achieve this level of accuracy is also defined.
Finally, an energy management example illustrates the value of forecasting accuracy at
a hypothetical water utility.

• Chapter 7—STCF Performance Criteria, Benchmarks, Selection Criteria, Functional
Requirements—provides information that water utilities can use to select, define
requirements and compare performance of their forecasting systems.

Figure 1.1 Daily consumption profile
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Figure 1.2 Hourly consumption profile

Figure 1.3 JEA operations optimization model
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Figure 1.4 Hourly energy consumption at Albuquerque Bernalillo County Water Utility

Figure 1.5 Hourly energy consumption at JEA well field
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Figure 1.6 Development of system operating plan using consumption forecasting
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CHAPTER 2
STCF TOOLS AND METHODS

INTRODUCTION

This chapter identifies short-term consumption forecasting tools and methods in current
use by electric, gas and water utilities. The research on existing tools and methods was conducted
to focus the STCF prototype work on this project to methodologies which would be most likely
implemented by water utilities. This background work should be useful to any water utility
considering consumption forecasting.

An STCF is an important operational tool for all utilities. Research indicates the fore-
casting tools and procedures used in the various utility sectors are very similar.

WATER UTILITY FORECASTING BACKGROUND

Until recently, water utility consumption forecasting efforts were limited to long-term
consumption forecasts used for water supply and facility planning. Interest in short-term
consumption forecasting for day-to-day operations use began in the 1980s. 

U.S. research into short-term consumption forecasting methods and tools includes Maid-
ment et al. (1985) and Jain and Ormsbee (2002). European water utilities have also investigated
short-term consumption forecasting, including Coulbeck et al. (1985) and Crommelynck et al.
(1991 approx). In general, early research used regression and time-series modeling techniques,
while more recent research has focused on Artificial Intelligence (AI) techniques including Expert
Systems and Artificial Neural Networks (ANN).

Jain and Ormsbee’s July 2002 Journal AWWA article provides a concise summary of
various short-term water consumption forecasting methods, and compares their performance in
forecasting water consumption at Lexington, Kentucky.

ELECTRIC UTILITY FORECASTING BACKGROUND

Compared to water utilities, electric utilities have longer experience using short-term
consumption forecasting. Short-term consumption forecasting is an integral component of electric
utility Energy Management Systems (EMS) which has been in wide use since the late 1970s and
early 1980s.

Like the water utility industry, the earliest short-term electrical consumption forecasting
techniques used regression models, while more recent implementations have used Expert
Systems, ANNs, “Fuzzy Logic” and various combinations of the above.

Papalexopoulos and his associates (1990 and 1994) have implemented both regression and
ANN forecasting models and compared their performance. Sugianto and Lu have prepared a
bibliography survey of the consumption forecasting techniques used in the electric utility
industry.
9
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GAS UTILITY FORECASTING BACKGROUND

Gas utilities also routinely use short-term gas consumption forecasting in their daily oper-
ations. Forecasting is important in scheduling effective use of gas pipeline transmission capacity.

As in the water and electric utility industries, the most recent short-term gas consumption
forecasting implementations have focused on ANN models. Lamb and Logue (2001) presented an
insightful summary of the design, implementation, training and testing process for an ANN-based
gas consumption forecasting application. This paper provides good background material for any
entity considering implementation of consumption forecasting. Another treatise on gas consump-
tion forecasting is presented by Khotanzad (1999).

WATER CONSUMPTION PATTERNS, TERMINOLOGY, AND FORECASTING 
CONCEPTS

The following section describes basic water consumption patterns and forecasting
concepts in terms of:

• Daily water use variations over a yearly period
• Daily water use variations over a weekly period
• Hourly water use variations over a daily period

Daily consumption forecasts are required for optimal production management applica-
tions. Thus, daily consumption variations over yearly and weekly time periods are evaluated.
Hourly consumption forecasts are required for optimal energy and water quality management
applications. Thus, hourly consumption variations over daily time periods are evaluated as well.

Daily Water Use Variations Over a Yearly Period

Figure 2.1 shows a representative water utility daily total consumption profile for a one-
year period beginning in September, 1996. For most water utilities in the United States, daily
consumption follows the general pattern illustrated in Figure 2.1. Water consumption is lowest in
the winter, with relatively small variations in daily consumption. In the spring, consumption
begins to rise, peaking in mid summer, and dropping again in the fall. During high consumption
periods, daily consumption variations can be quite large, depending on conditions and individual
utility circumstances.

Many water utilities explain this general pattern by classifying water use into two parts:
Base Consumption—which includes normal indoor residential and industrial water use; and
Irrigation Consumption—which includes all outdoor water uses. Figure 2.1 shows the base and
irrigation components of consumption.

Base Consumption

Base Consumption is primarily based on and determined by the number of water users. It
can change over time with migration, due to permanent population growth or decline; or due to
seasonal migration in and out of the service area. For combined water/wastewater utilities, where
the water and wastewater service areas are essentially the same, wastewater treatment plant flow
10
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can provide an accurate estimate of Base Consumption if Infiltration and Inflow (I&I) effects are
small. Also, for northern cities with minimal winter Irrigation Consumption, winter consumption
trends provide a good estimate of base consumption.

Irrigation (Seasonal) Consumption

Given these assumptions, Irrigation Consumption generally only occurs when the air
temperature is above freezing. In the northern states, winter irrigation consumption is essentially
zero. In southern states, irrigation occurs throughout the year.

In the scenario described above, winter Irrigation Consumption is primarily driven by air
temperature, especially in the colder states. In warmer states, where irrigation occurs all year
long, the secondary drivers for winter Irrigation Consumption include rainfall, temperature and
solar radiation (i.e., length of the day and amount of cloud cover.)

Assuming that most summer Irrigation Consumption is used for lawn and garden
watering, the fundamental driving force for summer Irrigation Consumption is the additional
water required for healthy plant growth (e.g., lawn and garden plant evapotranspiration require-
ments minus the amount of rainfall.) This explains the typical seasonal variation that starts low in
spring, peaks in mid summer, and tapers off in the fall.

In this scenario, Summer Irrigation consumption is primarily driven by the following
factors:

• Number of water users
• Percent of the service area under irrigation
• Irrigation rules or restrictions placed by the water utility
• Irrigation practices of the water users (including factors associated with automatic

sprinkler system use)
• Rainfall
• Air temperature

Secondary drivers for summer Irrigation Consumption include other factors that affect
evapotranspiration requirements including:

• Amount of solar radiation (length of day and amount of cloud cover)
• Wind speed
• Humidity

Daily Water Use Variations Over a Weekly Period

In many water utilities, consumption follows a periodic weekly pattern. However, the
consistency and details of the weekly pattern depend on individual utility conditions and circum-
stances. When evaluating weekly consumption patterns, it is important to recognize that major
holidays usually disrupt the normal weekly cycle. Often, consumption on these days must be
treated as a special case.

During spring, summer, and fall when significant irrigation consumption occurs, the
hourly consumption pattern shifts to reflect irrigation practices of water users.
11
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Hourly Water Use Variations Over a Daily Period

For most utilities, hourly water consumption usually follows a fairly regular 24-hour
pattern, with the pattern changing according to day of the week and season.

Figure 2.2 shows average hourly consumption for each day of the week during July 2005
in Colorado Springs. The hourly consumption patterns for all days except Friday are very similar
with peak flow occurring at 06:00–07:00 and 20:00–22:00. The hourly consumption pattern for
Friday appears unique. This could be an anomaly in this data, or it could represent the fact that
Friday is a transition day between the normal work week and the weekend.

During spring, summer and fall when significant Irrigation Consumption occurs, the
hourly consumption patterns shift to reflect irrigation practices of water users.

In summary, hourly consumption variations over a daily time frame are generally driven by:

• Water use practices and lifestyle of the utility customers
• Day of the week
• Season 
• Irrigation practices of utility customers, including preferences for watering during the

day or at night, and automatic sprinkler system timer settings
• Irrigation rules or restrictions placed by the water utility

WATER CONSUMPTION FORECASTING PROBLEM DEFINITION

The objectives of this project are to identify, test, and evaluate available methods and tools
for making short-term water consumption forecasts, necessary for optimizing pumping schedules
and energy use, to support the implementation of an Energy and Water Quality Management
System (EWQMS). Meeting this objective requires forecasting daily consumption for one or
more days into the future. It also requires forecasting hourly consumption for 24 or more hours
into the future.

With this in mind, the formal definition of the forecasting problem addressed by this
project is to:

• For a well-defined service area, forecast daily total water consumption for one to seven
days into the future

• For a well-defined service area, forecast hourly average water consumption for 24 to
48 hours into the future

INTRODUCTION TO FORECASTING METHODS

This section presents a brief overview of the most common short-term consumption fore-
casting techniques used in the water, electric and gas utility industries. This overview is not
rigorous, and focuses on concepts over mathematical and statistical theory. Readers who desire a
more in-depth discussion of the various forecasting techniques should consult the references listed
at the end of this report.

Short-term consumption forecasting is broken into two separate problems—daily consump-
tion forecasting and hourly consumption forecasting. With this in mind, common methods for fore-
casting daily and hourly consumption are discussed separately in the following text.
12
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DAILY CONSUMPTION FORECASTING METHODS

The most common utility industry daily consumption forecasting techniques are:

• Regression Models
• Time Series Models
• Artificial Neural Network Models
• Expert System (Rule-Based) Models
• Similar Day Models
• Heuristic Models
• Various Combinations of the Above

The basic concepts behind each of these techniques are briefly summarized in this section.

Regression Model Techniques

A regression model is a standard statistical technique which relates various input variables
to an output variable using a multi-variable linear equation. Equation parameters are computed so
as to minimize the overall error between predicted output and observed output values.

The following regression model form is often used in a daily consumption forecasting
application:

Today’s Forecasted Consumption
= Constant
+ A * Previous Day Demand
+ B * Previous Day (or Days) Rainfall
+ C * Today’s Forecasted Max Temperature
+ D * Today’s Forecasted Rainfall

However, for any given utility, the appropriate regression model inputs have to be selected
based on which input variables are most highly correlated to daily consumption.

Figure 2.3 shows an example of a regression model for daily consumption. The figure
shows the raw data, regression coefficients, and a plot of the actual and predicted total daily
consumption. In this particular model, daily consumption was regressed against yesterday’s
consumption, current day rainfall, current day maximum temperature, and current day solar radia-
tion using data from the past two weeks. At the beginning of any day, today’s consumption is fore-
casted by inputting yesterday’s consumption and today’s forecasted rainfall, maximum
temperature, and estimate of solar radiation based on the “cloudiness” forecast.

To compensate for the fact that regression model parameters are non-linear and vary with
time, this particular model updated the regression model parameters every day using the last two
weeks of data. This approach had acceptable performance under normal circumstances, but was
adversely affected by unusual events (holidays, etc.) that disrupted the normal consumption
pattern for any given day. In the figure, one of these events occurred on June 17th, where the
actual consumption was significantly less than predicted. Not only did the regression model give a
poor estimate for this day, this error was also propagated into future days where the regression
13

©2007 AwwaRF. All Rights Reserved.



       
model significantly underestimated the consumption. This simple implementation did not have a
mechanism for screening unusual events out of the regression calculation.

Time Series Model Techniques

Time series modeling seeks to decompose daily consumption trends into the following
component parts:

• Base Consumption which is equivalent to normal indoor water use. The Base
Consumption component is usually estimated using winter consumption data.

• Long-term trends for growth in Base Consumption and Peak Consumption.
• A Seasonal Consumption component which is basically equivalent to normal expected

Irrigation Consumption.
• A regressive component that accounts for variations between the normal Seasonal

Consumption component and actual observed consumption values. These differences
are most often attributed to weather factors; with rainfall and temperature the most
commonly used indicators of weather.

• A residual error component that represents the inherent noise in the consumption
calculation, forecasted weather parameters, and other uncertainties in the forecasting
process. The residual error component is modeled using a normal error function.

Figure 2.4 illustrates the basic components of a time series model. This figure shows total
water system consumption plotted against rainfall, wastewater treatment plant flow, and estimated
base consumption. 

Base Component

The first step in time-series model development is to separate out the Base Consumption
component. In this example the water and wastewater service areas are essentially equal. The
example is from a cold-weather utility with minimal Irrigation Consumption in winter. Flow
trends showed that water system consumption and wastewater treatment plant flows correspond
well during winter months. Given these observations, wastewater treatment plant flow is a good
estimate of Base Consumption. The dashed line in Figure 2.4 shows the base flow. Base
Consumption is estimated by subtracting estimated Intrusion and Infiltration from wastewater
treatment plant flow and applying filtering to smooth the results. It is also obvious that consump-
tion (irrigation) closely follows rainfall events. The decline in total consumption, a reduction in
irrigation, is shown in Figure 2.4. The estimated seasonal (irrigation) consumption component is
calculated by subtracting Base Consumption from Total Consumption.

Long-Term Trend Components

For most utilities, Base Consumption changes over time as the number of customers and
their water use practices change. This trend is usually identified visually by looking at several
years of consumption data, typically five or more years. Slope of the trend line (% increase or
decrease per year) is usually evaluated by linear regression.
14
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Many water utilities also show a long-term trend in peak water use over several years, and
again, this trend is usually identified by visual examination of several years of data. Changes in
peak use result from changes in the number of customers and their irrigation practices. If a peak
use trend exists, various statistical methods are used to subtract the trend from the data set prior to
further analysis.

The next step in time series analysis is to develop a function that represents the average
overall shape of the Irrigation Consumption component. In this example, a trigonometric expres-
sion called the Sinc Function is used to represent the normal seasonal variations in Irrigation
Consumption, assuming average weather conditions. 

The final step is to model the difference between the expected irrigation (seasonal) compo-
nent and actual observed irrigation. In time series forecasting, this is the point where developing
the appropriate model is as much an art as it is a science. In this example, temperature and rainfall
are used. 

This illustrative example uses a very simple technique to relate rainfall and changes in
consumption. The basic assumption is this: if it rains today, today’s total irrigation consumption
will decrease by a given percentage. If it is dry today, today’s irrigation consumption will increase
toward the maximum expected dry-period irrigation amount (Sinc Function) by a given
percentage of the difference between yesterday’s irrigation and the maximum expected irrigation.
This technique was implemented in a forecasting application using a yes/no rain forecast based on
the forecasted chance of rain. The Total Consumption forecast for the day is the sum of Base and
the seasonal forecast components.

Time series models do not expect to be 100% accurate. As a result, they include a random
error component that mimics the normal expected variations in actual consumption and the
consumption forecasting process. The residual error between forecasted and actual irrigation is
modeled as a normal distribution with mean of zero and standard deviation of the residual error
results.

The Average Absolute Relative Error (AARE) measurement is used to benchmark STCF
accuracy. AARE is a standard measure of forecasting accuracy and is defined as:

Relative Error = 100*(Forecasted Value – Observed Value)/Observed Value
AARE = Sum of absolute value of relative errors divided by number of observations.

Artificial Neural Network (ANN) Model Technique

An ANN mimics the way a human brain processes data by simulating the action of biolog-
ical neurons as shown in Figure 2.5. The upper half of Figure 2.5 shows a biological neuron, and
the lower half shows the computer analog used in ANN models.

The human brain is composed of a countless number of neurons linked through a web of
nervous system connectors called Axons, which transmit the nervous system’s “signal” between
neurons. Each neuron can receive input signals from many other neurons via Axon connector sites
called Dendrites. The input signals pass between Axon and Dendrite through a Synaptic Junction.
The neuron’s cell body—called the Soma—processes the combined signal and passes it to and
output Axon, which carries the output signal to other neurons.

A baby is born with about 100 billion neurons, with each neuron connected to about 1000
other neurons. The baby’s brain learns by adjusting the “signal strength” passing through every
Synaptic Junctions between Axon and Dendrite.
15
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ANN models are built by assembling a network of artificial neurons. ANN models can
contain only a few dozen or a few hundred neurons, so they are much simpler and more limited than
the human brain. However, a simple ANN network can “learn” to do one specific task very well.

As shown in Figure 2.5, the artificial neuron has a number of inputs from other neurons.
Each input signal is multiplied by a weighting factor, and the resulting weighted signals are
summed within the artificial neuron. This mimics the process that happens in biological neurons,
with the input weights representing signal strength crossing a synaptic junction. 

Within the artificial neuron, the weighted sum of inputs is processed through an activation
function before sending the output to other neurons. Many different activation functions are avail-
able, with the selection of activation function tailored to the specific application. In forecasting
applications, the most common activation function is the Logistic Sigmoid Function. This partic-
ular sigmoid function is non-linear. Use of a non-linear activation function is what gives ANN
models their ability to handle non-linear relationships between model inputs and outputs. 

ANN models are constructed by configuring a network of artificial neurons built in layers.
A simple example illustrates how an ANN works. Table 2.1 contains data collected for a process,
the nature of which is not important for this discussion.

Parameters A and B are input variables, and the requirement is to predict the value of C for
combinations of A and B. The ANN model can be thought of as a process estimator where A and
B are inputs and a predicted value of C is the output, as shown in Figure 2.6.

Inside the process predictor, the ANN consists of nodes that are arranged in layers as
shown in Figure 2.6. The nodes (u) in each layer are connected to the nodes of the next layer to
create a network. Each connection is assigned a weight (w) that is used to calculate values for
each node. To solve more complex problems, more layers are configured and more nodes are
added to each layer.

This ANN consists of three (3) layers. In the first layer, the nodes contain the input values
(A and B) and a constant value of 1. The second layer consists of three nodes that will contain the
results of calculations resulting from the values in the nodes of layer 1 and the weighted connec-
tions between layer 1 and layer 2. The third layer, in this case the output layer, contain only one
node that contains the results of calculations resulting from the values in the nodes of layer 2 and

Table 2.1
ANN inputs and predicted output

Input A Input B Output C ANN Predicted C

5 5 1 0.999991

12 4 3 2.999993

15 3 5 4.999995

21 3 7 6.999999

27 3 9 9.000007

40 4 10 10.000009

40 5 8 8.000004

42 7 6 5.999999

44 11 4 4.000001

50 25 2 2.000006
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weighted connections between layer 2 and layer 3. The equations that are derived from the
network shown in Figure 2.6 are as follows:

u11 = A
u21 = B
u31 = 1
u12 = 2/(1 + exp(-(w111 * u11 + w211 * u21 + w311 * u31))) – 1
u22 = 2/(1 + exp(-(w121 * u11 + w221 * u21 + w321 * u31))) – 1
u32 = 2/(1 + exp(-(w131 * u11 + w231 * u21 + w331 * u31))) – 1
u42 = 1
u13 = w112 * u12 + w212 * u22 + w312 * u32 + w412 * u42
C = u13

The secret of ANN is assigning the weights. Using the data from Table 2.1 as a “training”
set, a program can be written to adjust the weights to achieve the value C (or close to it) for each
pair of A and B. The algorithms for doing this are complex and there are commercially available
ANN products that “learn” the relationships, and weights between the inputs and outputs.

The weights for this example are shown below. The predicted values for C based on these
weights are shown in Table 2.1.

The equations and weights can be entered into a spreadsheet to calculate the predicted
values for C or a software module can be created where all of the equations and weights are
hidden from view.

When should an ANN model be used? The data set in Table 2.1 was simple and using the
equation C = A/B. Therefore, an ANN model is not the best solution for this problem. However,
for complex problems involving multiple inputs and outputs, with no clear correlation between
the parameters, like a multiple area consumption forecast, the ANN can be a useful prediction
model.

An ANN model is trained by presenting it with a historical data set of observed inputs and
the resulting observed outputs. The ANN model then uses an iterative process to adjust all of its

Weight Value Weight Value

w111 0.119856846 w112 –7.928598812

w121 –0.088943183 w212 –18.299027911

w131 0.071371382 w312 –2.780742440

w211 0.491699756 w412 7.295160503

w221 0.051787070

w231 0.382694444

w311 –5.368670945

w321 2.542653735

w331 –4.721639399
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neuron input weights to minimize the total error between model outputs and observed outputs.
After the training process, the ANN model can be applied as long as:

• Physical conditions do not change, affecting the actual relationship between inputs and
outputs

• The range of any input does not exceed the range of inputs used in model training

Most ANN model configurations used in consumption forecasting applications usually
consist of an input layer, one hidden layer and an output layer. The number of outputs correspond
to the number of days forecasted into the future. Inputs would be selected by reviewing historical
data to identify the most important variables which affect consumption. A typical template for
input variable choices might include:

• Forecasted temperature for one or more days, depending on the number of days
forecasted into the future

• Forecasted rainfall for one or more days, again depending on the number of days
forecast

• Other forecasted weather variables including humidity, dew point, wind speed, solar
radiation

• Rainfall history for up to 7 days in the past
• Temperature history for up to 7 days in the past
• Daily consumption history for the last seven days 
• Seasonal parameters like season of the year, month of the year, day of the year
• Calendar variables like day of the week, major holidays

Actual input variables to use in the ANN depend on the unique consumption patterns of
the water utility’s customers.

JEA in Jacksonville, Florida, implemented an ANN consumption forecast model which
predicts consumption for a number of operating areas in the water system called Subgrids. Two
ANN forecasting models are used, one to forecast daily total consumption and one to forecast
hourly consumption. Figure 2.7 shows actual daily versus forecast consumption for the Ridenour
Subgrid. JEA’s model inputs are:

• 7 Days of Hourly Average Flow History
• Average Flow Over Period of 1 to 7 Days
• 3 Days of Hourly Temperature History
• 2 Days of Hourly Temperature Forecast
• 4 Days of Hourly Relative Humidity History
• 2 Days of Hourly Relative Humidity Forecast
• 2 Days of Hourly Dew Point History
• 2 Days of Hourly Dew Point Forecast

Artificial Intelligence—Expert System (Rule-Based) Techniques

Expert Systems have also been investigated for consumption forecasting and other engi-
neering applications like process troubleshooting. Expert Systems analyze information and produce
18
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results by processing inputs through a series of questions, or rules. The answer to each question
presents the next appropriate questions. Expert Systems are best visualized as a decision tree.

The series of questions and answers encoded into an Expert System are based on the
knowledge, judgment and experience of human experts in the field. In a consumption forecasting
application, water system operators would be the human experts, and the foundation of the fore-
casting application would come from their heuristic knowledge of consumption behavior under
different conditions.

Expert System forecasting models have been evaluated in the water utility industry. Jain
and Ormsbee (2002) implemented an Expert System application to forecast daily water consump-
tion at Lexington, Kentucky. They developed the expert system rule set by observation of histor-
ical consumption and discussions with water system operators. This resulted in the following
rules:

• If water consumption is below a threshold value, consumption on the next day will not
change significantly. This accounts for winter consumption periods.

• If water consumption is above a threshold value, and it does not rain today or the next
day, consumption on the next day will increase as a function of today’s consumption
and temperature. This accounts for dry periods during the summer.

• If water consumption is above a threshold value, and it rained yesterday and/or today,
consumption on the next day will decrease as a function of consumption today and
amount of rainfall yesterday and today. This accounts for rainy periods during the
summer.

Jain and Ormsbee (2002) incorporated these rules into two simple expert system models
with a forecasting accuracy of 5–6% AARE.

Similar Day Technique

The basis for similar day forecasting rests on a relatively long-term historical database of
consumption, weather data and other factors that make up a “similar day.” A forecast is made by
searching this database for days that closely match previous demands, day of week, season, fore-
casted temperature, etc. Similar day forecasting has been used by electric and gas utilities. It
requires an extensive and consistent historical record 4–5 years in length. This type of record is
difficult to obtain for most water utilities.

Heuristic Technique

The heuristic forecast is prepared by an “expert” in the utility who understands the day-to-
day consumption patterns of the utility. This expert is often found in operations, a water system
operator, or in strategic planning.

In the Operations environment, a senior operator or manager typically estimates
tomorrow’s daily forecast based on today’s weather conditions and tomorrow’s forecast. Mainte-
nance activities and pumping schedules are based on this consumption forecast. This forecast is
based on knowledge and experience with few, if any, computer based tools. An hourly forecast is
typically based on a 24-hour consumption profile which is biased up or down based on
yesterday’s consumption, recent historical trends, and tomorrow’s forecast.
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The accuracy of a heuristically prepared forecast can be very good as indicated in the data
presented later in the report. Daily AARE’s of the five prototype systems averaged 3.5%. The cost
is low considering the heuristic forecaster performs many other duties associated with operations
and maintenance of the utility. The heuristic forecast will work well for many applications such as
treatment plant production scheduling. However, the feasibility of the heuristic forecast dimin-
ishes when hourly forecasts are required every day for multiple consumption zones in the water
system to support optimized pump scheduling. In that case, a computer-based forecast model is
required. However, consumption forecasting is an art as much as a science and the heuristic
component is required to build, calibrate, and maintain any computer-based model.

Combination Techniques 

Often the most effective forecasting strategy uses a combination of several techniques.
Many large scale electric consumption forecasting applications combine regression, expert system
and ANN models into one larger application. The Expert System component makes decisions
about which tool to use for various conditions.

Large forecasting applications will include decision-making elements. Many of the factors
affecting water consumption are inherently discrete yes/no events. This is particularly true if the
utility has lawn watering rules and restrictions in place, and the forecasting model must take them
into account. Some calendar-based factors like consumption changes due to major holidays also
lend themselves to a yes/no decision making algorithm. These considerations mean that water
consumption models must incorporate rules. The rules are established with experience and knowl-
edge of utility consumption patterns.

HOURLY CONSUMPTION FORECASTING METHODS

Common hourly consumption forecasting methods are:

• Standard hourly profiles for disaggregating the daily forecast
• Previous day’s hourly profile or hourly profile from a week ago
• ANN model producing an hourly forecast
• Regression
• Hourly time series model

Standard Hourly Profile Techniques

This method uses historical consumption data to develop typical hourly profiles for
different circumstances; usually based on day of week, weekday vs. weekend, major holidays,
winter vs. summer, etc. The hourly profiles are similar to the example shown in Figure 2.2, except
that all profiles are normalized by dividing each day’s 24 hourly average consumption values by
daily total consumption for that day. These normalized profiles are more convenient for compari-
sons between different days, and make it easy to generate an hourly forecast from the daily total
forecast.

Once the standard hourly profile set is developed, generating an hourly forecast is a simple
process. A decision making algorithm selects the standard profile for current conditions and the
application multiplies daily total forecast by the standard profile values.
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Previous Day Techniques

This method assumes that a normalized hourly profile from a previous day, typically
yesterday or one week ago, is a good representation of the upcoming hourly profile. Again, the
hourly forecast is simple. Call up the previous day normalized profile and multiply it by the daily
total consumption forecast.

Hourly ANN Model Techniques

Using an ANN model to produce hourly forecasts is common in both the electric and
water utility industry. The two ANN applications previously defined produce both hourly and
daily forecasts.

Regression

A regression model first estimates daily consumption and then estimates how that flow
was distributed across the day. Several weeks of historical data are used to estimate daily and
hourly consumption.

Time Series Modeling Techniques

This method uses mathematical and statistical techniques to model the diurnal hourly use
pattern. Modeling the diurnal curve as a Fourier series is one commonly used method. 

The simplest time series models just use season and day of week as variables for adjusting
the hourly profile. In a sense, these models are one level of sophistication above standard hourly
profiles selected for season and day of the week.

More sophisticated hourly time series models include temperature and rainfall parameters
to account for changes in the hourly profile due to weather conditions.

FORECASTING TECHNIQUES SELECTED FOR PROTOTYPING

Based on research on forecasting techniques, experience of the researchers, and review by
the Project Advisory Committee, it was decided to prototype Heuristic and ANN models at five
utilities as defined in Chapter 5. Regression models were then added later as prototypes at Toronto
Water and Washington Suburban Sanitary Commission. These short-term consumption fore-
casting techniques were selected because of their popularity and successful results from
electric/gas utilities, accuracy, cost, and ease of use in an operating environment.

Chapter 4 of the Report defines the experience of Colorado Springs, JEA, San Diego, and
Las Vegas Valley Water District using Similar Day, ANN, and Regression techniques.
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Figure 2.1 Daily consumption profile over a yearly period

Figure 2.2 Hourly consumption profiles over a daily period
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Figure 2.3 Regression model example

Figure 2.4 Summer consumption, WWTP inflow, and rainfall
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Figure 2.5 Artificial neuron construction
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Figure 2.6 ANN network configuration

Figure 2.7 JEA Ridenour sub grid daily total forecasting results—Spring (March 2005)
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CHAPTER 3
STCF DEVELOPMENT PROCEDURES

This chapter presents a brief description of a process used to select, configure, test and
implement a consumption forecasting application.

FORECASTING APPLICATION DEVELOPMENT OVERVIEW

Figure 3.1 is a flow chart of a typical forecasting application development process.
This process begins by defining the application requirements for the forecaster. The service

area and any sub-areas to be covered in the forecast are defined. The next steps involve gathering,
assembling and analyzing historical consumption and weather data for the service area(s).

The analysis phase concludes with a description or definition of the key patterns and asso-
ciated drivers that characterize consumption in the service area. This is the basis for selecting the
appropriate forecasting technique and configuring the associated forecasting model.

Once the forecasting model is configured, the next phase is to calibrate the model parame-
ters or train the ANN, until the fit between observed and forecasted consumption is within accept-
able limits. If possible, the calibrated model is then verified against a different data set than was
used for calibration. An alternative is to run the model for a period of time with “real-time” oper-
ating data and track model forecasting error. Results of the verification step provide the expected
AARE and error distribution for the production forecasting application. If these values are not
acceptable, different modeling techniques and/or model formulations should be investigated.

In an operations environment, the forecasting model is integrated with a user interface and
other applications, run on a daily basis, monitored for accuracy, and modified if accuracy fails to
be within acceptable limits. 

The following paragraphs describe the consumption development steps in more detail, up
through and including the model verification step.

Define Forecasting Requirements

The first step is to define the applications that will use the output of the forecaster. It is
important to clearly define the applications that will use the consumption forecast. Data needs of
applications such as energy cost minimization and water treatment plant scheduling will drive the
specifications for the forecaster. Accuracy, number of service areas, sensitivity factors and type of
model are attributes which are developed based on the projected use of the forecaster.

Identify the Service Area

For pump control, it is important to formally define the service area(s) requiring a forecast
and begin gathering the required data. Figure 3.2 shows an example service area to illustrate these
concepts.

The first step is to develop a water system schematic as shown in Figure 3.2. The sche-
matic is used to delineate service area boundaries, and the boundaries of any sub-areas that will be
broken out of the main service area.
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The next step is to identify all water system facilities that put water into or transfer water
out of the service area. Types of facilities include water treatment plants, wells, pumping stations,
flow transfer valves, pressure regulating valves, etc. Also identify all water storage reservoirs
within the service area.

This stage of the development process is also the best time to gather the necessary infor-
mation about water system facilities. For water treatment plants define and identify maximum and
minimum treatment capacity and treated water flows. For pumping stations or wells, define and
identify the source for total station flow capacity, number of pumps, and horsepower and flow
rating of each pump. For valve sites, identify and define the source for total site flow transfer
capacity, number of valves, and type, size and capacity of each valve. For storage reservoir sites,
define and identify the type of site (elevated vs. ground), reservoir volume, reservoir depth, eleva-
tion of the reservoir overflow, and the reservoir’s depth to volume relationship. 

Facility information is necessary to develop an understanding of how the water system
operates. The flow, reservoir volume and level information is required to estimate historical
consumption in the service area.

This initial information gathering step is also critical in identifying missing information
that may prevent further work until the information is available, or acceptable work-a-rounds are
identified. Un-metered flows into or out of the service area are the most common problem.

Gather Historical Data

Once the service area is defined, the next step is to gather the historical data needed to
quantify historical consumption, examine consumption trends in conjunction with significant
weather data like temperature and rainfall trends, and calibrate and verify the forecasting model.

A minimum of two years daily and hourly consumption data are typically required to
develop a good forecasting model. Daily and hourly consumptions for the service area are typi-
cally calculated based on total flow into, total flow out of, and change in total reservoir storage
volume over each hourly and daily period. This is where the flow meter and reservoir
level/volume data are required. It is best to obtain hourly data, which can be used to calculate both
daily and hourly consumption.

Daily weather data for the relevant time period is usually sufficient. Hourly weather data is
helpful if it can be obtained. Daily total rainfall, maximum daily temperature, minimum daily
temperature and average daily temperature are often required. Other useful daily weather data
includes degree of cloudiness (or actual total daily solar radiation readings if available), average
wind speed and direction, humidity, relative humidity, etc.

Data from more than one weather monitoring site should be obtained if possible. Data from
weather monitoring sites in and surrounding the service area should be examined to find the site—
or combination of sites—where weather parameters correlate most closely with consumption.

Assemble the Data Set

After the base historical data set is gathered, it must be assembled into a form that can be
used for the rest of the model development process. A database application is usually the most
convenient way to handle the large amounts of data.

The first step is evaluating the base historical data to identify missing data and/or data
outliers. If blocks of data are missing, the model developer must find out if it can be backfilled by
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some reasonable method, or decide if the periods with missing data should be excluded from the
analysis. Also, if the base data set contains outliers or obviously bad values, the model developer
must decide if these data points can be adjusted by some reasonable method, or should be
excluded from the analysis. The model developer should evaluate both the base operational data
and the base weather data.

After the base historical data set has been evaluated and “groomed,” the next step is to
perform the estimated consumption calculation. These estimated consumption results must also
be evaluated for outliers. Since the base data set was groomed prior to the consumption calcula-
tion, there is a high likelihood that the outlying consumption values are real, and the result of
some unusual event. The model developer must consult with the water system operators to try and
identify the reason for the outlying consumption points. Based on this, the model developer must
then decide if the outlying consumption points should be excluded from the analysis.

After these data verification steps, the data set is ready for the actual model development
steps.

Analyze the Data for Correlations

After a clean historical record of consumption and weather is available, the actual model
development process begins. The first thing to do is to identify the factors that affect consumption
in a statistically similar way. These factors will become the forecasting model inputs.

It is usually best to start by examining the consumption trend against the primary weather
factors temperature and rainfall. This gives the model developer a chance to identify the important
consumption phenomena described in Chapter 2. It also gives the developer a feel for the
consumption response patterns of the particular service area under evaluation.

The next step is to perform a statistical correlation analysis between what appear to be the
key driving events and observed consumption. This should confirm the responses that show up via
visual analysis. The statistical analysis often includes auto-correlation which identifies correla-
tions between the current day’s data and previous day’s data. Auto-correlation helps to identify
whether or not the previous day’s events significantly affect today, and also help to identify signif-
icant weekly patterns.

Note that ANN packages often include tools to help perform these statistical analyses.
Other specialized statistical analysis packages are available, or the calculations can be performed
with standard spreadsheet tools.

This step should result in a list of the input variables for the forecasting model.

Formulate the Model

At this point, the model developer must make a final decision about what forecasting model
technique would be best for the current application, and decide how the resulting forecasting model
should be formulated. This decision can wait to this point, because all of the previous steps have to
be performed no matter what modeling technique the model developer uses.

The forecasting model’s construction will depend on the selected modeling technique. The
following is a list of some of the decisions involved:

• Make the final selection of model input variables. Only use input variables proved to
be significant during correlation analysis. When in doubt, use fewer variables rather
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than more, at least for the first cut. Remember that many forecasting models achieve
adequate performance using only past consumption, temperature and rainfall as inputs.

• If applicable, make the final selection of model output variables.
• For time series-type models, make the final selection of the transfer functions used to

model the time series.
• For an ANN-type model, decide if there should be more than one hidden layer.
• For an Expert System-type model, formally define the model decision questions.

After the appropriate decisions are made, the model developer can configure (program)
the forecasting model.

Calibrate (Train) the Model

Once the forecasting model has been formulated and configured into the model tool, the
next step is to adjust model parameters until the model forecasts match observed values with a
minimum of error. This process is called model calibration. Or in the case of an ANN-type model,
it is called model training.

Calibration is an iterative process that can be very time consuming. The model developer
has to use a systematic method of adjusting model parameters one at a time and keep track of
which combination of parameters work best. The model developer should use Average Absolute
Relative Error (AARE) and error distribution to guide parameter adjustments and decide when the
model is sufficiently calibrated.

ANN-type models provide an advantage during calibration, because they have built-in
tools to automate the training process. ANN models store all of the connection weights in an
internal database, and use an optimization routine to iteratively zero in on the combination of
connection weights that minimizes total overall error.

When the forecasting model has been calibrated, it is ready for testing. This is called the
model verification step.

Verify the Model

The model verification step is the final model test before placing it into operation. The best
way to do this is to use a separate data set that is independent of the data set used for calibration.
The model is run using this verification data set, and forecasts are compared against actual
observed consumption. The errors between actual and forecast consumptions are processed to
generate the AARE and error distribution. If AARE and error distribution fall within acceptable
limits, the forecast model is ready to go into operation.

Some utilities may not have a long enough or consistent enough historical data set to allow
a separate historical data set for verification. If this is the case, the forecasting model should be
verified by running it on-line in real-time. The model errors can be processed to track AARE and
error distribution over time. Note that on-line verification may take 12 months or more because
the forecaster should be evaluated for every possible seasonal condition.
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Integrate the Model

After the model is calibrated, it can be integrated with the operations applications that use
the STCF. This may be other software applications or human processes which will use the fore-
caster for operations planning and scheduling.

Evaluate Performance

To insure the STCF remains in calibration during operation, it is necessary to measure
performance daily, or in the case of real-time applications—hourly. When actual consumption
compared to the forecast exceeds a specified dead band, alarms or alerts should be generated to
alert the operations planner that the forecast error is excessive and appropriate measures should be
taken. For real-time adaptive applications, a new forecast may be generated automatically.
Consistent high error rates should trigger the need to analyze and potentially recalibrate the STCF.

EVALUATION CRITERIA

Short-term consumption forecasting can be a highly technical process involving sophisti-
cated mathematical and statistical techniques. Because of this, there may be a tendency to focus
only on the statistical accuracy or mathematical elegance of different forecasting methods. Obvi-
ously accuracy is critical and must be considered in any evaluation. Mathematical elegance is
nice, but in the end, these forecasting applications must be maintained in an operations environ-
ment. With this in mind, cost of maintenance and ease-of-use are important considerations. 

The software tools needed to implement the forecasting model are another important
consideration. Software tools affect initial cost of the application, amount of time and effort
required to learn the application, and amount of time and effort required to maintain the applica-
tion on an ongoing basis.

Based on the discussion above, this preliminary evaluation uses the following criteria:

• Accuracy—How well do forecasted values match actual values as measured by the
AARE parameter?

• Implementation complexity—How complex is the mathematical and statistical
knowledge required to set up and configure the application?

• Ease of maintenance—What is the level of complexity and time required evaluate
model performance and update the model when necessary?

• Tools required—What types of software tools are required to implement the
application? How difficult will they be for water utility personnel to learn and use?

EVALUATION OF DAILY FORECASTING METHODS

As previously stated, selection of the forecasting methodology depends on a number of
factors. This section of the report defines advantages and disadvantages of each type of model. 

Note that all forecasting methods require some type of database tool to help assemble and
analyze the historical data needed for application design, calibration and testing. The same data-
base tool can be used for ongoing performance evaluation and model re-calibration as necessary.
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Regression Models

The electric utility industry has had good success with regression models for forecasting
hourly electric consumption. The prototype regression models developed in this study performed
well.

Regression models can be difficult to implement. Once the regression equations are
defined, the regression parameters can be easily obtained using standard spreadsheet tools, or
other statistical software packages. However, because water consumption is an inherently non-
linear process, the regression parameters change with season, day of week, weather, and
consumption levels. To compensate, different regression models are often defined and calibrated
for different conditions and circumstances. The amount of effort required to calibrate and main-
tain the application increases exponentially as the number of regression equations increases.

Regression models are also difficult to maintain over time. As discussed above, the regres-
sion parameters and appropriate regression equation change as conditions change. This can take
considerable time, especially if there are various regression models for different conditions.
Regression models do not require special tools. They can be implemented with standard database
and spreadsheet tools that most water utility personnel are familiar with. This tends to keep the
initial cost of the model low and reduces the training requirements for utility personnel.

Time Series Models

Time series models can be quite accurate. However, time series models can be difficult to
implement. The mathematical and statistical basis of time series models is complex, although
advanced statistical analysis packages are available to help simplify time series model develop-
ment. Time series models typically require many different parameters, which can cause the cali-
bration process to be time consuming, and management of those parameters challenging. Model
parameters are often obtained by non-linear regression, which can be difficult.

Because of their complexity, time series models are difficult to maintain over time. As
with regression models, the model parameters change over time as conditions change, requiring
periodic recalibration. Water utility personnel responsible for maintaining the forecasting model
will require training in the model’s mathematical and statistical basis, and in the computational
tools used to develop and implement the model. Even if the model is implemented on standard
spreadsheet tools, model users need to be familiar with the special statistical functions used. As
previously discussed, time series models have many parameters, which makes parameter mainte-
nance difficult and time consuming.

On the other hand, time series models can generally be implemented using standard data-
base and spreadsheet tools. Like the regression models, the initial cost can be low. However, time
series models may have a higher training requirement because of the complexity. 

Statistical software packages can reduce the time and effort required to implement and
maintain a time series model, but these software packages add to the initial cost of installation.

ANN Models

Experience in the electric and gas industries, have shown ANN models to be quite accu-
rate. The ANN models analyzed in this study performed well considering the labor expended in
calibration and maintenance.
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Experience with recent ANN forecasting implementations and the prototypes developed
on this project have shown that the effort required to implement an ANN model is generally less
than a comparable regression or time series model. This is because model developers and users
don’t have to understand the underlying mathematics of an ANN engine to effectively use it. Also,
most ANN engines come with built-in analysis tools that help users select appropriate input
parameters and navigate the model training process.

ANN models do not require calibration in the same sense as regression and time series
models, but they do undergo a training process. Training does take time. However, once the
training data set is organized, it is possible to evaluate several alternative ANN model formula-
tions in a short time, which helps model developers and users quickly identify the most effective
ANN model. 

Another advantage of an ANN model is that the ANN tool manages the model parameters
internally, taking this burden off of the user.

Long-term maintenance requirements for ANN models are less than that of comparable
regression or time series models. However, most water utility personnel will require training in
the ANN tool. 

The primary disadvantage of ANN models is that the ANN engine can be costly. This
increases the initial cost of an ANN model implementation.

Expert System (Rule-Based) Models

Developing a rule-based model is moderately difficult. Rule-based models do not require
sophisticated mathematics and statistics, but they do require model developers to spend time eval-
uating historical data and interviewing water system operators, understanding the key things that
drive consumption variations, and distilling them into a set of rules that can be implemented with
a computer algorithm.

Long-term maintenance requirements for rule-based models are moderate as well. This
involves keeping track of water system conditions and updating the model as the rules change.

Expert System tools are available to simplify implementation of a rule-based model. The
main advantage of an Expert System tool is in simplifying the process for encoding, storing and
updating the rules. Using an Expert System tool increases the initial cost of the application soft-
ware, but reduces the cost of model configuration and long-term maintenance.

Combined Models

Combined models may be more accurate than using a single forecasting method. Experi-
ence of electric and more sophisticated water utilities supports this statement. For example, Jain
and Orsmbee chose to combine rule-based decision-making with an ANN model. However, rules
and heuristics are combined with ANN and regression techniques. 

Adding additional rules to any of the forecasting methods previously discussed will
increase implementation effort, and is likely to increase the long-term maintenance effort as well.
This is because both the forecasting model (possibly multiple models for different conditions) and
the associated rules need to be configured and updated as conditions change.

A combined model will also add to initial cost of the model implementation, because
some method of automatically executing the rules in conjunction with the forecasting model, or
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models, will be required. An Expert System software package may be required depending on the
complexity of the rules involved.

PROTOTYPE RECOMMENDATIONS

If time and budget were not an issue, the research team for this project would have evalu-
ated and tested each of the forecasting model types at every utility in this study. Unfortunately,
time and budget were limitations. This study focused on the most promising forecasting tech-
niques based on the previously defined research.

This study prototyped and tested the following short-term forecasting techniques. 

1. ANN Models—ANN techniques have a good balance of high accuracy and moderate
implementation and maintenance requirements. Their chief drawback is cost of the
ANN engine. This selection was also made on the observation that electric and gas
utilities currently favor ANN models based on operational experience.

2. Regression Models—Regression models can be developed using off-the-shelf soft-
ware and database tools. As with the ANN recommendation, regression techniques are
frequently used by electric utilities. The primary issue is the maintenance cost where
consumption forecasts are required in multiple operating areas.

3. Heuristic—Forecasts are developed with the use of a seasonal and day-of-the-week
hourly consumption profile adjusted up or down considering the experience of the
operations planner or operator. This is the least expensive initial cost method, but
requires a skilled operations planner. It would be very time consuming and difficult to
implement if forecasting is required on an hourly basis for multiple operating areas.
However, if applications for a consumption forecast only require a daily forecast for
the system, this is an attractive approach.

Two to three methods were selected for prototyping and evaluation at each of the partici-
pating utilities who were currently not forecasting consumption (Toronto, WSSC, EBMUD, SPU,
GVRD). Selection was based on factors such as the application for the forecaster, data availability,
consumption patterns and staff preference.

Role of the Operator/Operations Planner in Consumption Forecasting

Even with an automated consumption forecasting application, there is no real substitute
for operations knowledge, experience and intuition. This was confirmed in the prototype work for
this project. 

No forecasting method is perfect, and there will always be unusual events that put water
system conditions outside of the forecasting model’s calibration zone. For this reason, consump-
tion forecasts should be reviewed before they are released to applications. Or, the applications will
require adaptive measures to automatically correct for actual conditions which significantly
deviate from the forecast.
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Figure 3.1 Forecasting application development process

Figure 3.2 Example consumption forecasting service area
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CHAPTER 4
ANALYSIS—EXISTING STCF SYSTEMS

INTRODUCTION

This section of the report provides information on operational STCF systems at JEA,
Colorado Springs Utilities, San Diego Water Department and Las Vegas Valley Water District.
These utilities provide good diversity in climatic conditions and customer demographics. The
STCF tool used at each utility is listed below:

JEA

JEA is a multi-service utility providing potable water, wastewater, and electric service to a
population of approximately 800,000 people in the Jacksonville, Florida area (Figure 4.1). 

The JEA water system is a ground water source system. The ground water supply is from
the Floridan Aquifer and is delivered using well fields, reservoirs for storage and high service
pumps for delivery. There are a total of 39 plants and 138 wells within the total system which
deliver approximately 121 million gallons daily. There are 3,400 miles of distribution mains in the
JEA water delivery system. The JEA water system is physically separated by the St. Johns River
into a North Grid distribution system and a South Grid distribution system with various other
satellite facilities in St. John’s and Nassau Counties.

The North Grid system consists of 10 water treatment plants and 49 wells. The South Grid
System consists of 18 water treatment plants and 67 wells. 

Water is pumped from the Floridan aquifer through aerators on each reservoir for hydrogen
sulfide stripping. Water is then pumped into the distribution system and chlorinated as it leaves the
plant. Currently, 72 reservoirs located at water treatment plants have a combined capacity of
71 million gallons of water. Pressure is normally maintained at each water treatment plant between
70 and 80 psi via high service pumping. There are no elevated storage tanks in the distribution
system. Distribution system pressure is maintained by the high service pumps at the plants.

STCF Requirements

The primary purpose of the JEA Water Consumption Forecaster (WCF) is to forecast
water consumption for each sub grid (or consumption point) in the JEA South Grid. JEA uses an
Artificial Neural Network (ANN) model for their STCF. An optimized pump schedule is gener-
ated to meet forecasted consumption. Wells are scheduled to meet JEA’s Consumptive Use Permit
(CUP), provide high quality water and minimize cost. This is achieved by optimally scheduling

Utility STCF Technique

JEA ANN

Colorado Springs Utilities Similar Day

San Diego ANN

Las Vegas Valley Water District Regression, ANN, Heuristic
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wells and high service pump stations in the South Grid. An accurate forecast is mandatory for
successful optimization.

The WCF is one of the ten modules developed in an Operations Optimization (OO)
Project. The outputs of the forecaster are essential inputs to the Simulator, the Water Supply
Analyzer, and the System Scheduler (Optimizer).

The WCF calculates a consumption forecast at a sub grid level. The Sought Grid is parti-
tioned into sub grids according to the distribution system topology. Figure 4.2 shows the concept
of sub grid and consumption points.

A Treatment Plant supplies water to one sub grid or consumption point. Pumpage between
sub grids is assumed to be negligible. 

Nine sub grids were defined in the South Grid. The WCF generates a 48-hour forecast for
each sub grid. The forecast resolution is hourly. The forecast is executed automatically at
midnight or by user command. An Optimization Monitor automatically initiates a new consump-
tion forecast if the actual consumption significantly deviates from forecast. The revised forecast
then triggers the System Scheduler to develop a new pump schedule.

The WCF stores forecast results so previously generated forecasts can be recovered and
reused. In the case that the WCF is not able to generate a forecast, the last successfully generated
forecast is recovered and reused.

The input to the WCF consists of the following:

• Seven days of hourly average flow history of each sub grid
• Average flow over a period of one to seven days of each sub grid
• Three days hourly temperature history and 48 hour forecast
• Four days hourly relative humidity history and 48 hour forecast
• Two days hourly dew point history and 48 hour forecast
• Seven days of daily rainfall history and 48 hour forecast

Neural network models for each sub grid were initially trained using historical data. The
WCF input data is stored and used to retrain the neural network models online. Requirements for
the WCF are categorized as follows:

• Accuracy—The total daily forecast accuracy is 90% or better, with a goal of 95%. The
hourly average forecast accuracy is 85% or better, for 75% of the hours of the forecast.

• Resolution—Hourly 
• Distribution—Nine sub grids
• Input Data—Historical consumption data from SCADA and weather data from an

Internet weather proxy.
• Human Forecaster—Operations Planner Scheduler (OPS)
• Optimization Dynamics—Pump schedule is developed once a day and run for the

entire day. OPS can initiate a new forecast at any time.
• Weather Sensitive Consumption Parameters—air temperature, dew point, and rainfall.

STCF Experience

The initial step in development of the WCF model was to acquire historical consumption
data from the SCADA system. Gaps and errors in the data were identified and corrected.
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Historical weather data was obtained from the National Weather Service for the same period as
the historical consumption data. Using the Neural Network modeling software, trends of the data
were examined to determine correlations between the consumption data and the weather data, as
well as other indicators. Air temperature, relative humidity, dew point and rainfall had good corre-
lation with the consumption data. Wind speed, wind direction and wind gusts had little or no
correlation. Other indicators, such as day of the week, also had little or no correlation.

Next, prototype models were developed to calibrate the model to find the best combination
of input parameters. The final model was then integrated with the Operations Optimization
System. Preliminary tests of the model were performed to verify accuracy of the model.

The WCF obtains operations data through an interface to the SCADA system. Output
results of the WCF are passed automatically to the System Scheduler that creates the optimized
pump schedule for the SCADA System.

Lessons learned include the following:

• Data Quality is Important—Valid real time data are needed to provide accurate
forecasts. In addition, valid historical data are required to correctly retrain the WCF
model.

• Keep the Design Simple and Flexible—The model design should not use parameters
that are poorly correlated. The model needs to be simple and easy to modify.

• Keep the User in the Loop—The model is retrainable online, but the re-training is not
automatic. Automatic re-training is not used because consumption can be substantially
affected by short-term weather events and operational factors such as maintenance. To
keep the model properly updated, the OPS reviews forecast accuracy and initiates the
re-training process when the accuracy has drift away from acceptable norms. 

STCF Operational Performance

Data from the Ridenour Sub grid were collected for twenty-eight days, seven days from
each season for analysis. Figures 4.3 to 4.10 are graphs of the hourly and daily forecasts and
actual consumption for each season.

Extreme Weather

During the 2004 Hurricane Season, the Jacksonville area was affected by Hurricane
Jeanne. Over the three day period from September 25, 2004 to September 27, 2004 the average
wind speed was 18 mph with maximum wind speeds up to 35 mph. The average precipitation
from September 24, 2004 to September 30, 2004 was 0.67 inches, with most of the precipitation,
4.12 inches, occurring on September 27, 2004. Schools and a number of businesses were closed.
Figures 4.11 and 4.12 illustrate STCF accuracy during the hurricane period.

Error Analysis

In general, the ANN forecast closely followed the actual consumption. Table 4.1 is a
summary of the Average Absolute Relative Errors (AARE). Large errors in the forecast during the
hurricane illustrate the need for intervention when an extreme weather event occurs.
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Benchmark

The Average Hourly AARE of 10.8% indicates that a benchmark of 10% for the hourly
forecast AARE is a reasonable goal. Likewise, the Average Daily AARE of 3.9% would suggest
that a 5% daily forecast AARE is also reasonable.

As would be expected, Operations and consumption are both affected by significant
weather events, such as hurricanes. As a result, the forecasts during these periods have larger
errors.

LAS VEGAS VALLEY WATER DISTRICT 

The Las Vegas Valley Water District is the primary purveyor of water for residents and visi-
tors in the Las Vegas Valley (Figure 4.13). The District services over 1.3 million residents and
approximately 3.3 million annual visitors through approximately 325,000 accounts. The size and
complexity of the system is as follows. In the valley, it spans over 23 pressure zones and has
805 million gallons of storage capacity in 35 reservoirs and 16 tanks. The District operates
223 pumps in 31 pump stations; 68 wells; and 25 recharge wells.

LVVWD also operates two reclaimed water delivery systems to various golf courses. The
maximum delivery in 2006 was about 475 million gallons for a singe day. It receives approxi-
mately 80% of its water through 10 turnouts from the Southern Nevada Water System (Lake
Mead). In addition to the valley, the District serves three rural communities within Clark County
as shown in Figure 4.13. These are: Searchlight, Blue Diamond, and Kyle Canyon.

STCF Requirements

Las Vegas Valley Water District (LVVWD) uses consumption forecasting as a key input
into an Energy and Water Quality Management System (EWQMS). Pumps are automatically
controlled to reduce energy cost. 

Table 4.1
Effect of weather on consumption forecast

Season Hourly AARE Average Daily AARE Average

Fall 11.1% 5.4%

Winter 11.1% 2.8%

Spring 11.7% 4.3%

Summer 9.1% 3.2%

Four Seasons 10.8% 3.9%

Hurricane 27.6% 15.7%
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LVVWD’s first daily consumption forecast models consisted of little more than a trend
fitted to existing data. Forecasts were derived by extrapolating the trend and comparing to
heuristic predictions. This process was simple, quick and reasonably accurate.

Then conditions changed. Water quality management and power purchasing programs
changed the operating environment to one where knowledge of (near) future system consumption
is crucial. The ultimate goal of the Water Consumption Forecaster (WCF) is to produce the most
accurate predictions possible. The requirement is to calculate the water consumption forecast at a
system level.

The input to the WCF consists of the following:

• Previous Consumption
• Weather Observations
• Water Policy Status
• Day of the Month
• Season of the Year

Requirements of the STCF are categorized as follows:

• Accuracy—None specified
• Resolution—Daily
• Distribution—System
• Input Data—Manually entered by Water Resource Department staff
• Human Forecaster—Water Resource Department staff
• Optimization Dynamics—Data currently used only as a research tool

LVVWD, through the Southern Nevada Water Authority (SNWA), also participates in a
program to purchase and actively resell blocks of electric power on a daily basis. Consumption
forecasting is used as a significant component in development of strategies to schedule pumping
in order to maximize the value of power to LVVWD and SNWA.

STCF Experience

The current consumption forecast system consists of seven, multivariate regression models
and one neural network model. The neural network model inputs include daily consumption,
lagged consumption, climate and other seasonal variables. A neural network for daily usage is
“trained” against the list of independent variables using data beginning on January 1, 2001. 

There are four general categories of variables that are regressed against daily water
consumption. These classes include lagged usage, climate, water policy and time. Time variables
relate water use to a particular day, month or season.

With the exception of one model, which was estimated using an automated, step-wise
regression approach, the remaining six multivariate models were estimated using expert opinion
and goodness-of-fit statistics. There is no statistical rule for using seven regression models and
one neural network model. A few of the regression models are similar in variable complement and
coefficient value. The actual daily forecast is generally determined by taking the average across
the eight models. The role of the forecast begins at the moment the average is taken to assist an
expert opinion. 
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Lessons learned include the following:

• Weather prediction in Las Vegas is problematic, especially during summer months. A
forecast of rain does not necessarily mean rain will fall, when rain will fall, or where it
will fall. If rain falls early in the day over an area populated with golf courses, water
consumption will likely be reduced by a greater amount than if the rain fell at the
airport late in the afternoon. In other words, rain can occur in such a way as to
influence large irrigator decisions or it will occur after those decisions have been made
and implemented. Sometimes rainfall does not occur when indicators all point to a
good soaking. And, on occasion, a predicted 20% chance of rain will result in four
consecutive days of rain. Local knowledge and a look out the window are often
required to improve the forecast.

• Day of the week is an important part of the forecast. LVVWD typically sees Sunday
summer consumption drop significantly on Sunday with a large increase on Monday,
often in excess of 40 MGD. Drought restrictions that limit irrigating on Sunday are not
imposed after June 1st. So what causes this swing in consumption? One theory is that
turf managers “dry off” their courses to handle higher weekend traffic. They make up
the reduced water application on Monday. Other behaviors may also be influencing
consumption. The forecast models tend to over estimate Sunday consumption and
under estimate that for Monday. Judgment must be applied to adjust Sunday’s forecast
downward and Monday’s upward.

STCF Operational Performance

Three measures were used by LVVWD to judge forecast accuracy. The forecast test period
was from July 1, 2004 through August 31, 2005. Average percentage error (APE) of the daily
forecast ranged from 0.01% to 0.39% across models. Unfortunately, APE is a somewhat
misleading error measurement. For example, given two forecasts, one 2% high the other 2% low,
APE would equal 0%. 

A more meaningful error measure is mean, absolute percentage error (MAPE), which
takes the absolute value of errors before it calculates the average. Over-predictions are not
canceled out by under-predictions. MAPE varied from a low of 3.13% to a high of 3.28%. MAPE
is analogous to Average Absolute Relative Error (AARE) used in this study.

A third error measure is the root mean squared error (RMSE). Since the error values are
squared, RMSE also avoids the problem of errors opposite in sign canceling each other out. In
addition, the squaring operation penalizes large errors more than small errors. RMSE varies from
12.4 million gallons to 15.2 million gallons.

SAN DIEGO WATER DEPARTMENT

Operating Background

The City of San Diego Water Department (SDWD) provides water for a population in excess
of 1.4 million people, covering an area of more than 403 square miles (Figure 4.14). The San Diego
Water Distribution System consists of more than 2,890 miles of water lines, 50 water pump plants,
110 pressure zones, and more than 220 million gallons (MG) of potable water storage.
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San Diego is an importer of water; on average, nearly 90 percent of its water supply origi-
nates from northern California and the Colorado River by way of the San Diego County Water
Authority (CWA). Imported water is treated before distribution through one of three water treat-
ment plants.

The San Diego Water Distribution System supplies water to over 280,000 metered connec-
tions; the City of Del Mar, the Santa Fe and San Dieguito Irrigation Districts, and the California
American Water Company, which in turn serves the Cities of Coronado and Imperial Beach and
portions of south San Diego. In addition, San Diego Water maintains emergency water connec-
tions with neighboring water agencies.

The operating environment for San Diego is complex and will be more challenging in the
future. The San Diego area is one of the fastest growing areas in the United States and population
increases continue to create pressures for San Diego to do more with less. Energy prices in the
California region have fluctuated greatly over the last few years and are projected to grow in the
future. In addition, energy shortages require new strategies for demand load management and
energy conservation.

STCF Requirements

The primary purpose of the SDWD Water Demand Forecaster (WDF) is to provide
consumption data to support Operations Optimization applications. The WDF utilizes an ANN to
generate a STCF. The WDF uses historical SCADA information about water consumption for 48
operating areas to predict water consumption 72 hours into the future.

Historical consumption profiles are used to develop a neural network for prediction of
future patterns. The WDF uses historical weather information to develop daily forecasts with one-
hour resolution. The WDF also generates annual forecasts with daily and monthly resolution.

The WDF prepares forecasts for multiple areas in the water system and incorporates
historical weather information and weather forecasts. The water system operating areas include
the following:

• Total system consumption
• Consumption in major pressure zones (or aggregated zones)
• Consumption for major water supply customers
• Consumption for areas supplied by the three water treatment plants

The neural network model generates a 72-hour forecast based on the following:

• Historical flow and tank volume data (up to 7 days) including:
– Hourly Average Flow history for each zone
– Hourly Tank Volume history for each zone

• Historical Weather data (up to 7 days) from seven weather sites including:
– Hourly Temperature 
– Daily Rainfall 

• Weather Forecast data for seven weather sites (up to 72 hours) including:
– Hourly Temperature forecast (High and Low)
– Hourly Rainfall forecast 
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WDF requirements are categorized as follows:

• Accuracy—The total daily forecast accuracy less than 5%, and the hourly forecast
accuracy less than 10%.

• Resolution—Hourly
• Distribution—48 Operating Areas
• Data—SCADA and NOAA weather data from the Internet
• Human Forecaster—An engineer in the Optimization Group
• Optimization Dynamics—Pump Schedule is developed once a day and run for the

entire day. 
• Weather Sensitive Consumption Parameters—air temperature and rainfall

STCF Experience

Based on a series of interviews with operations staff and water system documentation, a
schematic diagram of the SDWD system was created to identify water suppliers, interconnections,
water storage sites, and consumption points. The diagram was then divided into consumption
areas and equations were developed to calculate consumption. After the equations were verified
using real time data, historical SCADA data was used to calculate hourly consumptions over the
previous year.

Neural network models were created using historical consumption and weather data from
the San Diego airport. The development of a prototype model involved several phases. In the first
phase, historical daily consumption for the entire system and daily weather parameters, including
maximum temperature, minimum temperature, maximum dew point, minimum dew point, rain-
fall, average wind speed, average wind direction, cloud cover, and solar index were used to predict
the daily system consumption for one day in the future. Using the statistics generated by the WDF,
it was determined that average wind speed, average wind direction, cloud cover, and solar index
had no correlation with the consumption data and they were therefore removed from the model.
Furthermore, the maximum and minimum dew point parameters had no more effect on the model
than the maximum and minimum temperature, so these values were also removed.

The second phase of development involved checking the correlation between previous
consumption and future consumption. Previous day’s consumption had a better correlation than
any of the weather parameters due, most likely, to the normally temperate weather in San Diego.
Several models were tested with multiple previous days of consumption with little improvement
in the model, so previous day’s consumption was retained as the best indicator.

The third phase of development involved identification of other parameters that might
improve the prediction. Many forecasts models use a day ID (Monday = 1, Tuesday = 2 etc.) or
day type (weekday = 1, weekend = 2, holiday = 3) to account for variations in consumption due to
the day of the week. For San Diego, these two parameters had little or no correlation with the
consumption pattern. However, based on interviews with operations personnel and examination of
the historical data, it was determined that consumption tended to be highest on Monday,
Wednesday, and Friday, lower on Tuesday and Thursday, even lower on Saturday, and the lowest
on Sunday. The historical data was manipulated to obtain an average consumption for each day of
the week. Using the average Sunday as a reference, the percentage by which consumption for
each average day of the week exceeded that of the average Sunday was calculated and then used
to create the day codes shown in the Table 4.2.
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For example, Monday’s consumption, on average, was 11% higher than Sunday’s
consumption, and Tuesday’s was 9% higher than Sunday’s. This “Day Code” had a strong correla-
tion and was therefore retained.

The fourth phase of development involved improvement in the model during “unusual”
weather events. In a typical year, San Diego may receive rainfall on only six days, and rarely for
more than a day at a time. Dips in consumption were observed in the historical consumption data
following the rainfall events that were not accurately forecasted. To improve the “long-term”
memory of the model, a parameter was added that indicated the average rainfall over the previous
three days. In this way, a rain event on a single day would have an affect on the consumption fore-
cast for a longer period of time.

The output of the basic model is hourly consumption for the forecast day. The input values
to the model are as follows:

• Temperature (Maximum) for forecast day
• Temperature (Minimum) for forecast day
• Rainfall (inches) on previous day
• Rainfall Accumulation (inches) over three previous days
• Day code for forecast day
• Consumption on previous day

The fifth phase was automating execution of the WDF. The system consumption prototype
model was integrated into the Operations Optimization System. A program was written that auto-
matically accessed historical consumption data, past and forecasted weather parameters, and the
day code to create a consumption forecast one day in the future. To create multiple day forecasts,
the program is called recursively, that is, the forecasted consumption of one day was used as the
previous consumption for the next day. This technique was found to be accurate for up to three
days since uncertainties in the model tended to increase on each call. An alternate model was
tested that created the 3-day forecast directly from the neural network model, however the model
was much more complex, took significantly longer to train, and created no more accurate a fore-
cast than the recursively called 1-day model.

Table 4.2
Day codes

Day of Week Day Code

Sunday 0

Monday 11

Tuesday 9

Wednesday 10

Thursday 9

Friday 11

Saturday 4
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During phase six, the basic model approach was used to train neural network models for
each consumption area (48) in the water system and integrated into the Operations Optimization
System.

Lessons learned included the following:

1. Missing or Invalid Weather Data—Occasionally there are gaps in the historical
weather data record or weather forecast that is not available. Care must be taken to use
reliable sources of weather data, preferably a source that provides “corrected” data
rather than “raw” data.

2. Missing or Invalid Historical Consumption Data—Similar to missing weather data,
missing or invalid consumption data must be corrected to enable an accurate forecast.

3. Sensitivity to System Maintenance—Field maintenance, which affects water system
topology, can affect consumption in one or more operating areas.

4. Sensitivity to Weather Events—Neural Networks are very good at “interpolation”, but
not at “extrapolation.” In the case of San Diego, extended periods of rainfall can affect
the accuracy of the forecasts.

5. Re-training of Neural Network—For small systems with limited operating areas that
change infrequently, manually re-training the neural networks is acceptable. Auto-
matic re-training increases development costs. However, with more complex systems,
maintenance costs are reduced by automatic retraining.

STCF Operational Performance

Data from one operating area was collected for twenty-eight days, seven days from each
season, for analysis. Figures 4.15 to 4.22 are graphs of the hourly and daily consumptions for each
season.

Extreme Weather

San Diego’s climate is very dry. Total precipitation for 2004 was 15.3 inches. Winter of
2005 was unusually wet, with 4.8 inches in January and 5.8 inches in February. Over the period of
February 18, 2005 through February 24, 2005, a total of 4.17 inches of rain fell; 2.14 inches on
February 22 alone. The heavy rains resulted in flooding and mud slides. Figure 4.23 illustrates the
hourly accuracy of the forecast during a week with heavy rains in February 2005. Note the large
errors in the forecast between hours 97 and 121 as the result of heavy rainfall. Figure 4.24 illus-
trates the daily forecast for the same week. The daily forecast was not significantly impaired
during this week.

Error Analysis

The ANN Forecast closely followed consumption. Table 4.3 is a summary of the Average
Absolute Relative Errors (AARE).
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Benchmark

The Average Hourly AARE of 8.0% indicates that a benchmark of 10% for the hourly
forecast AARE is a reasonable goal. Likewise, the Average Daily AARE of 4.7% would suggest
that a 5% daily forecast AARE is also reasonable.

Accuracy of the forecast was not significantly degraded by the heavy rain event. The
Hourly AARE was higher, but still at the desired 10% level. The Daily AARE was within accept-
able limits.

COLORADO SPRINGS UTILITIES

Colorado Springs Utilities (CSU) is a multi-service utility providing potable and non-
potable water, wastewater, gas, and electric service to a population of approximately 450,000
people in the Greater Colorado Springs, Colorado area (Figure 4.25). The Colorado Springs Water
System is primarily a surface water source system. Less than one percent (1%) of the water supply
comes from groundwater.

Surface water supply delivery is accomplished through a complex system of diversions,
reservoirs, pipelines, and pumping stations. The system is supplied by eleven sources of water
whose annual average potable use is approximately 85,783 acre-feet. 

The water supply delivery currently terminates at four supply points for the distribution
system including five CSU-owned treatment plants (Pine Valley, McCullough, Mesa, Ute Pass,
Woodmen) and the Fountain Valley Authority Treatment Plant (partially owned by CSU). The
existing capacity for these six sources, based upon treatment plant capacities, is 232 million
gallons per day (MGD). These water sources vary in quality (especially fluoride concentrations,
which are relatively high in the local watersheds) and cost of delivery. Additionally, water storage
rights, diversion priorities, and exchange agreements mandate careful management and use of
both local and transmountain water (water diverted over or through the continental divide from
the Pacific drainage into the Atlantic drainage).

Colorado Springs’ water distribution is generally a gravity system extending about
11 miles from west to east and 16.5 miles from north to south. Areas not served by gravity are
generally served by pumping. Water flowing between service levels is monitored and controlled

Table 4.3
San Diego–Alvarado area AARE

Season
Hourly 

AARE Average
Daily 

AARE Average

Fall 8.0% 3.6%

Winter 8.3% 4.1%

Spring 9.9% 8.4%

Summer 5.8% 2.6%

Four Seasons 8.0% 4.7%

Heavy Rain 10.0% 4.2%
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by over 200 PRVs. All treated water is stored in covered reservoirs and tanks. 36 treated water
storage tanks and reservoirs occupy 28 sites with a combined capacity of 101.4 million gallons of
water. There are four raw water pump stations and 25 potable water pump stations. Additionally,
CSU has 33 Megawatts (MW) of hydroelectric generation capacity in its raw water delivery
system.

STCF Requirements

The purpose of the (CSU) Similar Day Consumption Forecaster is to forecast daily/hourly
total water consumption for use in treatment production scheduling. It is also used to forecast total
hourly distribution storage volume. CSU had the following objectives:

• Insure treatment production scheduling meets forecasted total daily consumption
• “Flatten” treatment production to reduce O&M costs (chemical and labor) 
• Improve water quality (fewer flow changes in treatment processes)

Requirements for the STCF are categorized as follows:

• Accuracy—The total daily forecast accuracy of 90%, or better (error less than 10%),
and the hourly forecast accuracy of 85%, or better (error less than 15%).

• Resolution—Hourly (daily average is used for production scheduling)
• Distribution—System
• Data—Oracle relational database
• Human Forecaster—Water System Control Operators select from several similar days

identified by the forecast program and modify the profile to adjust for operational
and/or climatic changes.

• Optimization Dynamics—The final forecasted consumption profile is input to a
production/scheduling spreadsheet that allows assignment of day-ahead hourly
treatment production volume and calculation of the day-ahead hourly distribution
system total volume. 

• Weather Sensitive Consumption Parameters—Air temperature

STCF Experience

Initially, a daily/hourly regression forecaster was developed that met the accuracy require-
ments. However, the regression model failed to accommodate changes that occurred during
drought conditions when water restrictions modified usage. The regression model was replaced by
a similar day forecaster.

A Microsoft Access application was utilized as a “front-end” for data retrieval. An Oracle
relational database was utilized to retrieve the temperature and water system total consumption
data (roll-up of treatment production adjusted for total storage volume). The Similar Day Fore-
caster searches the historical database to find days that match temperature and day-of-week
criteria. The operator reviews the retrieved data, modifies the data as necessary, and enters the
profile into the production/scheduling spreadsheet. Lessons learned include the following:
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• Unusual conditions, such as a drought, can modify usage patterns and have a negative
impact on regression forecast models

• Data quality is important to avoid significant errors in consumption profiles that could
cause incorrect production scheduling decisions and storage operation errors

The advantages of the Similar Day Forecaster include the following:

• Low Cost—Requires only a database application and readily available data
• Ease of Use—Profiles are easy to select and modify
• Takes advantage of operator experience and judgment

The disadvantages of the Similar Day Forecaster are:

• Inconsistency—Errors are introduced since different operators use the system through
the course of the day and week

• Time consuming—Although easy to use, time is required to review and update the
consumption profiles

STCF Operational Performance

The original objectives and requirements for the STCF were met with the Similar Day
Forecaster. A real time database application has been added to introduce near-real time data to
provide continuous feedback of model accuracy. In addition, CSU is considering other weather
sensitive factors beyond temperature for selection of the “similar days.”

The next step for CSU is to investigate other technologies, such as neural networks, to
support or replace the Similar Day Forecaster.

Data from the system were collected for twenty-eight days, seven days from each season,
for analysis. Figures 4.26 to 4.33 are graphs of the hourly and daily forecasts versus consumption
for each season.

Error Analysis

The Similar Day Forecast closely followed consumption. Table 4.4 is a summary of the
Average Absolute Relative Errors (AARE).

Benchmark

The Average Hourly AARE of 8.0% indicates that a benchmark of 10% for the hourly
forecast AARE is a reasonable goal. Likewise, the Average Daily AARE of 4.1% would suggest
that a 5% daily forecast AARE is also reasonable.

SUMMARY

Table 4.5 provides a summary of the analysis of STCF systems at the four utilities. They
reflect the results of operational STCF systems during four seasons of one year. Analysis of the
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data is a reflection of accuracy but not an average of STCF accuracy of all the operating areas at
these utilities.

Also note that there was no effort at these utilities to tune up or recalibrate their STCF
systems prior to this project. The data was sampled from systems which were in “normal”
operation.

Table 4.4
CSU system AARE

Season Hourly AARE Daily  AARE

Fall 11.1% 7.1%

Winter 5.9% 1.9%

Spring 6.6% 2.8%

Summer 8.2% 4.7%

Four Seasons 8.0% 4.1%

Table 4.5
Summary of accuracy—operational STCF systems

Utility Hourly AARE Daily AARE

JEA (ANN) 10.8% 3.9%

CSU (Similar Day) 8.0% 4.1%

LVVWD (ANN) none 3.2%

San Diego (ANN) 8.0% 4.7%

Average 8.9% 4.0%
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Figure 4.1 JEA service area

Figure 4.2 Example of sub grids and consumption points
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Figure 4.3 JEA Ridenour sub grid hourly consumption—Summer (July 2004)

Figure 4.4 JEA Ridenour sub grid daily consumption—Summer (July 2004)

Figure 4.5 JEA Ridenour sub grid hourly consumption—Fall (October 2004)
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Figure 4.6 JEA Ridenour sub grid daily consumption—Fall (October 2004)

Figure 4.7 JEA Ridenour sub grid hourly consumption—Winter (January 2005)
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Figure 4.8 JEA Ridenour sub grid daily consumption—Winter (January 2005)

Figure 4.9 JEA Ridenour sub grid hourly consumption—Spring (March 2005)
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Figure 4.10 JEA Ridenour sub grid daily consumption—Spring (March 2005)

Figure 4.11 JEA Ridenour sub grid hourly consumption—Hurricane Jeanne (September 2004)
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Figure 4.12 JEA Ridenour sub grid daily consumption—Hurricane Jeanne (September 2004)

Figure 4.13 LVVWD service area
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Figure 4.14 SDWD service area

Figure 4.15 San Diego–Alvarado area hourly consumption—Fall (October 2004)
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Figure 4.16 San Diego–Alvarado area daily consumption—Fall (October 2004)

Figure 4.17 San Diego–Alvarado area hourly consumption—Winter (January 2005)

Figure 4.18 San Diego–Alvarado area daily consumption—Winter (January 2005)
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Figure 4.19 San Diego–Alvarado area hourly consumption—Spring (April 2005)

Figure 4.20 San Diego–Alvarado area daily consumption—Spring (April 2005)

Figure 4.21 San Diego–Alvarado area hourly consumption—Summer (July 2005)
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Figure 4.22 San Diego–Alvarado area daily consumption—Summer (July 2005)

Figure 4.23 San Diego–Alvarado area hourly consumption—heavy rain  (February 2005)

Figure 4.24 San Diego–Alvarado area daily consumption—heavy rain  (February 2005)
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Figure 4.25 CSU service area
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Figure 4.26 CSU system hourly consumption—Fall (October 2005)

Figure 4.27 CSU system daily consumption—Fall (October 2005)

Figure 4.28 CSU system hourly consumption—Winter (January 2005)
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Figure 4.29 CSU system daily consumption—Winter (January 2005)

Figure 4.30 CSU system hourly consumption—Spring (April 2005)

Figure 4.31 CSU system daily consumption—Spring (April 2005)
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Figure 4.32 CSU system hourly consumption—Summer (July 2005)

Figure 4.33 CSU system daily consumption—Summer (July 2005)

50

100

150

200

250

1 25 49 73 97 121 145

Hour

)
D

G
M( 

n
oit

p
m

u
s

n
o

C r
et

a
W

Actual

Forecast

100

110

120

130

140

150

4/7
/

02
05

/7

5002/5 /7

002/6

5 5002/7/7 /7

002/8

5

/7
/9

02
05 5002/01/7

Date

)
D

G
M( 

n
oit

p
m

u
s

n
o

C r
et

a
W

Actual

Forecast
64

©2007 AwwaRF. All Rights Reserved.



        
CHAPTER 5
ANALYSIS—PROTOTYPE STCF SYSTEMS

OVERVIEW

STCF prototypes were developed for five utilities that did not have systems in operation at
the time of this study. Objectives of the prototypes were to expand the experience of short term
water consumption forecasting, under operating conditions, at utilities across North America. The
results of the prototype testing provide additional (benchmark) data for the water utility industry. 

Description of the Prototype Approach

Prototypes were developed for Seattle Public Utilities, Greater Vancouver Regional
District, East Bay Municipal Utility District, Toronto, and Washington Suburban Sanitary
Commission. The first step in the development process involved interviewing utility personnel to
understand their systems and facilities. The interviews also identified current uses of consumption
data in the operation of each water system, and any future plans to use historical and forecasted
consumption data. To support the prototype, each utility stated an expected accuracy for the
STCF, expected resolution of the forecasts (daily or hourly), and the area of the utility for which
water consumption was to be forecasted. The utilities then selected a contact person that would be
responsible for supporting the prototype development and testing.

The utilities provided historical data for development of the ANN and regression STCF
models. The historical data was reviewed closely to eliminate gaps, flat lines, and spikes in the
data set. Such problems were not extensive and were easily corrected by averaging or interpola-
tion techniques. The corrected data sets were used to generate the ANN and regression models. 

Prototype testing was conducted during each season. Test sessions started on a Monday,
ran for nine days and generated a seven day forecast from Tuesday through Monday. In the first
seven days of the session, the utility entered “yesterday’s” actual consumption and “tomorrow’s”
heuristic forecast in a spreadsheet. EMA also forecasted tomorrow’s consumption using ANN and
regression models.

EMA added weather observations to the worksheet for “yesterday” and weather forecasts
for “today” and “tomorrow.” In addition, prototype forecasts were entered.

On the last two days of the test session the utility provided “yesterday’s” actual consump-
tion and EMA provided “yesterday’s” weather observations to support data analysis at the end of
the session. This process simulated actual operational forecasting in the sense that EMA and the
utilities forecasted tomorrows’ consumption today.

APPLIED METHODOLOGIES

Heuristic Models

The utility’s heuristic forecast provided the baseline for comparison with the other fore-
casting methodologies. The objective of the heuristic forecast was to simulate the knowledge of
an experienced operations staff member who forecasts tomorrow’s consumption without the
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benefit of forecasting software. To maintain consistency among the utilities, the following ground
rules were established:

• Utility staff developed a heuristic forecast
• Utility did not use data from pre-existing forecast models
• Utility was allowed to use trends/past consumption data to support the forecast
• EMA would not be influenced by heuristic forecast results
• Worksheets would be write-protected to avoid “accidental” changes in data

SPU used a combination of existing forecasting tools and trends of historical data to create
their heuristic forecasts. 

The GVRD heuristic model was based on the “Last Four Day” method. To forecast for a
Monday, for example, the hourly consumption, daily consumption and maximum temperature for
the previous four Mondays, and the forecasted maximum temperature for the Monday to be fore-
casted were used to forecast the hourly and daily consumption for the “Fifth Day.” The basic steps
of the GVRD heuristic model were as follows:

1. An average daily consumption was calculated using the daily consumption from the
previous four days.

2. An adjustment factor was calculated based on a ratio of the forecasted next day maxi-
mum temperature and the average maximum temperatures on the previous four days.

3. The adjustment factor was applied to the average daily consumption from Step 1 to
obtain the forecasted daily consumption.

4. For each previous day, the hourly consumption for each hour was divided by the daily
consumption for the day to create a “normalized” hourly profile.

5. The “normalized” hourly profiles were averaged together and the resulting profile was
applied to the forecasted daily consumption to obtain the forecasted hourly consump-
tion profile.

The EBMUD heuristic model consisted of estimating daily consumption and applying an
hourly consumption pattern based on the time of the year, consumption ranges and day of the
week. The basic steps of the EBMUD heuristic model were:

1. Daily Consumption—Daily consumption one month prior to the test period was plot-
ted. The trend was used to identify how consumption varied with day of the week. The
previous day’s consumption was used as a starting point for prediction of the next day
consumption. Based on the next day weather forecast and day of the week, consump-
tion was added to or subtracted from the starting point consumption to develop the
daily consumption estimate.

2. Hourly Consumption—the development of the diurnal consumption pattern was based
on the same twenty-nine months of consumption data provided to EMA for develop-
ment of the ANN model. Patterns were organized by month, range of daily consump-
tion and weekend/weekday. The appropriate hourly consumption pattern was applied
to the daily consumption estimate to determine hourly consumption estimate.
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The Toronto heuristic model involved estimation of the daily forecast and the application
of hourly consumption pattern on a similar day. The following steps were used:

1. Daily consumption from a year ago was used to determine a seasonal trend.
2. Daily consumption from a week ago provided a more current daily forecast.
3. Historical and forecast weather data were used to adjust the daily forecast.
4. The adjusted daily forecast and weather data were used to identify a similar day.
5. The hourly profile on the similar day and the hourly profile from “yesterday” were

applied to the daily forecast to create the hourly forecast.

The WSSC heuristic model used day-of-the-week considerations, historical data and
weather information to predict the hourly consumption for future days. The forecasted daily
consumption was the average of the forecasted hourly values. Two cases were considered, as
follows:

• Weekday—The most recent weekday figures were used as a template and were
multiplied by a factor to take into account weather conditions and daily consumption
trends. For example, if the prediction day is expected to be warmer or dryer, the factor
might be something like 1.03. The factor was also increased if daily trends indicate an
increase in consumption due to lack of rain.

• Weekend—The hourly figures from previous Saturdays or Sundays (which had similar
weather conditions) were multiplied by a similar factor to arrive at predicted hourly
consumption figures. 

Artificial Neural Network (ANN) Models

For each utility, EMA created an Artificial Neural Network (ANN) Model. An ANN model
is a mathematical model inspired by biological nervous systems. Refer to Chapter 2 for a descrip-
tion of the ANN Model.

The Gensym Corporation NeurOn-Line tool was used to develop the ANN models for
each utility using the following steps:

1. Acquired historical consumption data from the utility
2. Identified and corrected missing/bad data in data set
3. Acquired, reviewed and corrected weather data from NOAA
4. Added temporal factors (Day of Week, Day Type, etc.) to data set
5. Trained several prototype models to determine best model

All of the models used previous day’s consumption and tomorrow’s weather forecast to
predict tomorrow’s consumption forecast.

Once the best model was identified, the same ANN model was used throughout the test for
EBMUD, SPU, and GVRD. To determine the impact of retraining the ANN model, the Toronto
and WSSC ANN models were retrained prior to the winter test period.
67

©2007 AwwaRF. All Rights Reserved.



               
Regression Model

In addition to the ANN model, a regression model was created by EMA for Toronto and
WSSC. The regression model first estimated the daily consumption and then estimated how that
consumption was distributed across the day. The algorithms used the previous six weeks of histor-
ical data in each calculation.

The daily total consumption for each day from the previous six weeks was arranged in
rows and columns with the columns corresponding to days of the week (Sunday, Monday, etc.).
Each column was calculated to come up with an average consumption for each day of the week.
Then the last known daily consumption was multiplied by the ratio of average consumption for
the day of the estimate and divided by the average consumption of the last known daily value.

For example, to estimate the consumption for Tuesday:

• The last known daily consumption rate was 1292 ML/day for a Sunday.
• The average consumption was 1430 ML/day for a Sunday and 1536 ML/day for a

Tuesday.
• The estimated consumption for Tuesday is (1292)*(1536/1430) = 1,388 ML/day

The hourly distribution of the daily consumption was calculated based on historical data
from the previous six weeks. Data from the six previous same days of the week were arranged in
columns and rows where each column represents an hour of the day. Data was normalized by
dividing each hour’s consumption by the daily total. The six normalized values for each hour were
averaged to calculate a normalized daily distribution. The forecasted daily consumption was
applied to this normalized profile to create the hourly forecast.

Using the example above:

• The normalized value for 3:00 AM was 0.66 and the normalized value for 10:00 PM

was 1.25. (Values were calculated for each hour of the day)
• The estimated consumption at 3:00 AM was 1,388*0.66 = 916 ML/day
• The estimated consumption at 10:00 PM was 1,388*1.25 = 1,735 ML/day
• This calculation was repeated for each hour to produce the hourly forecast

Measurement Criteria

The primary measure of performance is the Absolute Relative Error (ARE) calculated as
follows:

ARE (%) = 100 × | (Forecast – Actual) / Actual |

For example, assuming a forecast value of 90 and an actual value of 100 the ARE would be 10%.
Average Absolute Relative Error (AARE) is calculated by taking the average of the ARE

values. The Hourly AARE is the average of the Hourly ARE values. The Daily AARE is the
average of Daily AARE values. 
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SEATTLE PUBLIC UTILITIES

Description of Service Area and Facilities

Seattle Public Utilities (SPU) provides water supply and wastewater collection services to
the City of Seattle and King County. Seattle Public Utilities provides direct retail water service to
about 630,000 people in the City of Seattle, parts of Shoreline and small areas just south of the
city limits. Figure 5.1 shows an overview of the Seattle Water System.

Current Uses for Calculated and Forecasted Consumption Information

SPU currently uses a number of sophisticated modeling tools to forecast consumption to
support planning for future development. 

Future Uses for Forecasted Consumption Information

SPU plans to use a STCF to forecast daily and hourly consumption as a component of an
Operations Optimization System for water supply, treatment plant, and pump scheduling. 

Formal Definition of STCF Requirements

A daily forecast will be developed for the entire system. The Average Absolute Relative
Error (AARE) is expected to be less than 10% for the daily forecast. The daily forecast is
expected to be sensitive to variations in air temperature and rainfall.

Test Results

The results of daily consumption forecasting for the four seasons are shown in Figures 5.2
to 5.5.

Summary of Results

Table 5.1 is a summary of the Daily AARE values.

GREATER VANCOUVER REGIONAL DISTRICT

Description of Service Area and Facilities

The Greater Vancouver Regional District (GVRD) provides water, solid waste, sewage,
and drainage services to 21 member municipalities and one electoral area with a total service
population of 2 million. Surface water is supplied from three protected sources. The system
consists of over 500 km of large diameter welded steel transmission mains and 22 storage reser-
voirs to buffer daily demand variations. Figure 5.6 shows an overview of the GVRD service area.
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Current Uses for Calculated and Forecasted Consumption Information

GVRD currently does not calculate or forecast consumption as defined in this project. 

Future Uses for Forecasted Consumption Information

The STCF will provide data that drives applications to support operations optimization.
This includes optimally scheduling water treatment plants and transmission pumping. The STCF
will create water consumption profiles to be utilized system wide. As such, the STCF will use
historical water system flows to predict water system consumption 24 hours into the future. In
addition, the STCF Forecaster will provide the platform to develop historical consumption
profiles based on past SCADA data.

Formal Definition of STCF Requirements

Hourly and daily forecasts will be generated for the entire system. The AARE is expected
to be less than 10% for the daily forecasts. The forecasts are expected to be sensitive to variations
in air temperature and rainfall.

Test Results

Results from daily and hourly consumption forecasting for the four seasons are shown in
Figures 5.7 to 5.18.

Summary of Results

Table 5.2 summarizes the Hourly and Daily AARE values.

Table 5.1
SPU system daily AARE

Season

Daily AARE

Heuristic ANN

Fall 6.5% 7.5%

Winter 2.8% 3.0%

Spring 4.0% 3.4%

Summer 7.0% 5.3%

Four Seasons 5.1% 4.8%
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EAST BAY MUNICIPAL UTILITY DISTRICT

Description of Service Area and Facilities

The East Bay Municipal Utility District (EBMUD) supplies water and provides waste-
water service for parts of Alameda and Contra Costa counties on the eastern side of San Francisco
Bay in northern California. 

EBMUD’s water system serves approximately 1.3 million people in a 325-square-mile
area extending from Crockett on the north, southward to San Lorenzo (encompassing the major
cities of Oakland and Berkeley), eastward from San Francisco Bay to Walnut Creek, and south
through the San Ramon Valley. Figure 5.19 shows the EBMUD service area.

Current Uses for Calculated and Forecasted Consumption Information

Consumption Forecasting at EBMUD provides data that allows EBMUD to support the
operation of their pump optimization and scheduling application. Currently, EMBUD utilizes
historical averaging to produce a seasonal average consumption profile by which pumping opera-
tions are scheduled in a portion of the water system.

Future Uses for Forecasted Consumption Information

EBMUD is interested in the use of a more advanced model, such as an Artificial Neural
Network (ANN), to potentially improve their current method of forecasting. As such, the
EBMUD STCF will use historical information about water system flows to predict water system
consumption 24 hours into the future. 

In additional to historical flow patterns, the STCF will consider historical and forecasted
weather information and other operational parameters to develop a forecast model.

Formal Definition of STCF Requirements

Hourly and daily forecasts will be generated for the entire system. The AARE is expected
to be less than 10% for the daily forecasts. The forecasts are expected to be sensitive to variations
in air temperature and rainfall.

Table 5.2
GVRD system hourly and daily AARE

Season

Hourly AARE Daily AARE

Heuristic ANN Heuristic ANN

Fall 9.9% 5.6% 1.9% 1.7%

Winter 4.9% 4.2% 0.8% 0.6%

Spring 8.6% 7.3% 4.1% 5.5%

Summer 10.6% 6.4% 10.2% 5.8%

Four Seasons 8.5% 5.9% 4.2% 3.4%
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Test Results

Results from daily and hourly consumption forecasting for the four seasons is shown in
Figures 5.20 to 5.31.

Summary of Results

Table 5.3 is a summary of the Hourly and Daily AARE values.

TORONTO WATER

Description of Service Area and Facilities

The City of Toronto water system is a large complex integrated system consisting of
pumping, storage and transmission (water mains, meters, and valves). The Toronto Water
supply system is the largest in Canada and serves 3.1 million people. The water supply system
provides water to the City of Toronto and the Region of York. Figure 5.32 shows the City of
Toronto service area.

The system consists of treated water pumping at four filtration plants and eighteen
pumping stations. There is floating storage at 12 reservoirs and seven elevated tanks. Approxi-
mately 500 km of large transmission mains, ranging from 400 to 2500 mm in diameter, transport
treated water through the system. Filtration plants have a combined capacity of over 2,500
ML/day (661 MGD). Lake Ontario is the source of raw water for the filtration plants. Water is
pumped through a hierarchy of pressure districts with elevated storage facilities (reservoirs and
tanks). Within each district, there are a number of water supply connections from the transmission
water mains to the local water distribution systems. Combinations of the pumping stations and
floating storage facilities provide water to the City’s local water distribution systems.

Current Uses for Calculated and Forecasted Consumption Information

The utility forecasts daily consumption for the entire water system. Operators use these
forecasts to help schedule filtration plants and make decisions on manually running pumping
stations and reservoirs.

Table 5.3
EBMUD, west of Hills area, hourly and daily AARE

Season

Hourly AARE Daily AARE

Heuristic ANN Heuristic ANN

Fall 5.3% 6.1% 2.7% 3.4%

Winter 6.9% 6.1% 2.2% 2.8%

Spring 10.3% 8.9% 2.7% 3.8%

Summer 6.3% 5.9% 2.7% 2.8%

Four Seasons 7.2% 6.7% 2.6% 3.2%
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Future Uses for Forecasted Consumption Information

Toronto Water has plans to utilize forecasted consumption to operate their entire system in
an optimal manner to minimize energy costs and maintain high water quality. 

Formal Definition of STCF Requirements

Hourly and daily forecasts will be generated for the entire system. The AARE is expected
to be less than 10% for the daily forecasts. The forecasts are expected to be sensitive to variations
in air temperature and rainfall.

Test Results

Results from daily and hourly consumption forecasting for the four seasons is shown in
Figures 5.33 to 5.44.

Summary of Results

Table 5.4 is a summary of the Hourly and Daily AARE values.

WASHINGTON SUBURBAN SANITARY COMMISSION

Description of Service Area and Facilities

Washington Suburban Sanitary Commission (WSSC) provides water supply and waste-
water treatment services to a two-county area in suburban Washington DC. The service area,
shown in Figure 5.45, is located east and north of Washington DC, between Washington and Balti-
more, and encompasses Montgomery and Prince George counties in Maryland. The service area
includes about 1.6 million customers. WSSC takes raw water from the Potomac River on the
western boundary of its service area and also from the Patuxent River on the northeastern
boundary.

Table 5.4
Toronto water system hourly and daily AARE

Season

Hourly AARE Daily AARE

Heuristic ANN Regres. Heuristic ANN Regres.

Fall 6.2% 6.3% 6.5% 2.6% 2.4% 2.0%

Winter 6.3% 9.2% 4.6% 2.8% 4.6% 2.2%

Spring 5.0% 9.0% 5.1% 3.4% 5.6% 3.6%

Summer 6.4% 9.2% 7.2% 3.0% 6.8% 6.3%

Four Seasons 6.0% 8.4% 5.9% 3.0% 4.8% 3.5%
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Current Uses for Calculated and Forecasted Consumption Information

The WSSC System Control Group has overall functional responsibility for the entire water
system. The Group estimates next day consumption, and, based on that estimate, set treatment
plant production targets and finished water pump station flow schedules. 

Future Uses for Forecasted Consumption Information

WSSC is in the process of implementing an automated energy management system. This
application will automatically generate least-cost pumping schedules for the finished water distri-
bution pumps based on energy price schedules, forecasted consumption, maximum and minimum
storage constraints, pump capacities, and pump efficiencies. Successful use of the pump schedule
optimizer depends on an accurate hourly consumption forecast 24 hours in advance.

Formal Definition of STCF Requirements

Hourly and daily forecasts will be generated for the entire system. The AARE is expected
to be less than 10% for the daily forecasts. The forecasts are expected to be sensitive to variations
in air temperature and rainfall.

Test Results

Results from daily and hourly consumption forecasting for the four seasons is shown in
Figure 5.46 to 5.57.

Summary of Results

Table 5.5 is a summary of the Hourly and Daily AARE values.

SUMMARY AND OBSERVATIONS

This section provides summaries and observations of the prototype results.

Table 5.5
WSSC system hourly and daily AARE

Season

Hourly AARE Daily AARE

Heuristic ANN Regres. Heuristic ANN Regres.

Fall 6.6% 6.4% 4.8% 2.3% 2.9% 2.0%

Winter 4.8% 4.9% 5.8% 1.7% 1.1% 1.5%

Spring 6.2% 5.6% 4.8% 2.0% 2.1% 2.0%

Summer 7.2% 6.2% 7.5% 5.5% 4.2% 4.4%

Four Seasons 6.2% 5.8% 5.7% 2.9% 2.6% 2.5%
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Season

Table 5.6 contains Hourly and Daily AARE values organized by season. Each entry
contains the average AARE of all of the prototypes.

The heuristic and ANN models had the best performance (lowest error) during the fall and
winter seasons when consumption is lowest and most regular from day-to-day, and lower perfor-
mance (higher error) in the spring and summer seasons when consumption is highest and subject
to more day-to-day variability. The regression model, however, maintained good performance
during most of the seasons, except the Summer period. As a result, the regression model
performed best overall on a seasonal basis, with the heuristic and ANN models essentially tied for
second place.

Daily Forecast

Table 5.7 contains average daily errors arrange by day of the week.
All of the forecast models demonstrated the lowest performance (highest error) on Sunday

when consumption is generally lowest. In the case of the ANN model, the Sunday forecast uses

Table 5.6
Summary of prototype testing by season

 
Season

Hourly AARE Daily AARE

Heuristic ANN Regres. Heuristic ANN Regres.

Fall 7.0% 6.1% 5.7% 3.2% 3.6% 2.0%

Winter 5.7% 6.1% 5.2% 2.1% 2.4% 1.9%

Spring 7.5% 7.7% 5.0% 3.2% 4.1% 2.8%

Summer 7.6% 6.9% 7.3% 5.7% 5.0% 5.3%

Four Seasons 7.0% 6.7% 5.8% 3.5% 3.8% 3.0%

Table 5.7
Summary of pilot utilities results day-by-day

Day of Week

 Daily AARE

Heuristic ANN Regres.

Tuesday 3.2% 3.1% 3.6%

Wednesday 3.3% 4.5% 1.8%

Thursday 3.5% 3.5% 2.9%

Friday 3.8% 3.1% 2.7%

Saturday 3.0% 3.6% 3.3%

Sunday 4.0% 4.8% 4.1%

Monday 3.9% 3.8% 2.5%

Average 3.5% 3.8% 3.0%
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the Friday Consumption as an input to the model, and the Wednesday forecast uses the Monday
Consumption. This may explain the large errors on Sunday and Wednesday.

The regression model preformed best overall during the weekdays. The heuristic models
were the most consistent from day-to-day, with the AARE range between a low of 3.0% and a
high of 4.0%.

Hourly Forecast

Figure 5.58 is a plot of the average Hourly AARE for each model type displayed on an
hour-by-hour basis. Each hour is an average of all four seasons of the four utilities for which
hourly data were collected (GVRD, EBMUD, Toronto, and WSSC).

All of the models experienced peaks in error at the same hours as the daily peaks in
consumption. Consumption during non-peak hours, between hour 10 and hour 17, tends to remain
relatively constant from one hour to the next, and even one day to the next. The consumption at
peak hours, between hours 4 and 10, and hours 20 and 23 tend to have greater variability, from
both an hour-to-hour and day-to-day standpoint. These variations help explain the increased
magnitude of errors during those hours.

The regression model performed best of the three models, but since the regression model
was used at only two of the utilities, this may not be definitive. When compared to the heuristic
model, the ANN model performed slightly worse during the morning peak period and better
during all of the other hours of the day. Essentially, the three models performed equally well
overall from hour-to-hour.

Weather Sensitivity

After each test session, the ANN model was executed using actual observed weather
conditions in place of the predicted weather parameters used during for the forecasts. Table 5.8
displays the comparison of the AARE values for these two cases.

Based on the four season values, the ANN results did not change significantly when
observed weather parameters were used in place of predicted weather. These results indicate that
forecast weather parameters can be successfully used as forecast parameters.

Errors in weather forecasts were largest during the summer months when temperatures are
highest and have the largest range of variability. This could explain the difference between the

Table 5.8
Effect of weather on ANN results

Season

ANN Model All Utilities

Hourly AARE Daily AARE

Predicted Weather Observed Weather Predicted Weather Observed Weather

Fall 6.1% 6.0% 3.6% 3.7%

Winter 6.1% 6.1% 2.4% 2.9%

Spring 9.7% 9.8% 4.1% 3.8%

Summer 6.9% 7.8% 5.0% 5.8%

Four Seasons 7.2% 7.4% 3.8% 4.1%
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Predicted/Observed results during the summer. However, it is not clear why the ANN model,
trained using observed historical data, would generally perform better using predicted weather
inputs. Here are two possible explanations for this behavior.

First, the weather parameters have an impact on consumption, but the correlation may not
be as strong as with historical consumption. The models may tolerate errors in temperature values
of several degrees and still provide accurate forecast results. 

Second, consumption by utility customers may be driven more by what the customer
thinks the weather is going to be and less on the actual weather. For example, a home owner may
water their lawn based on the prediction of high temperatures whether or not the temperatures
actually increase. 

The second explanation would be difficult to confirm since “weather forecasts” are never
saved in historical databases. However, the “psychology of water consumption” tends to make the
impact of weather on consumption forecasting more complex than expected.

Location

An effort was made to select utilities for prototyping with different geographical locations
and different weather patterns. Although the utilities were spread across North America, all were
located in either the northern parts of the United States or southern parts of Canada. All of the util-
ities were also close to large bodies of water that may have affected their weather in similar ways.
None of the utilities experienced extremes in temperature or precipitation that are experienced by
utilities in the West, Southwest, or Southeast of the United States. 

For all of the utilities, the primary predictor of consumption was previous consumption.
Temperature (daily maximum and minimum) and day of the week also correlated well with
consumption, but not as strongly as previous consumption. Other weather parameters (wind
speed, wind direction, cloud cover, UV Index) had no correlation.

Both Seattle (SPU) and Washington, DC (WSSC) receive a great deal of annual precipita-
tion. Consequently, the ANN model was found to correlate well with precipitation at these two sites.

At EBMUD, the ANN model correlated better with a three-day accumulated precipitation
parameter. This type of parameter converts “instantaneous” precipitation events into a longer
lasting parameter. This implies that precipitation events at EBMUD have an impact on consump-
tion for several days beyond the precipitation event.

The GVRD and Toronto ANN models had low correlation to precipitation. Dew point, had
a much higher correlation, and was used in lieu of precipitation. It is not certain whether dew
point provided sufficient precipitation prediction, or merely reinforced the affect of
maximum/minimum temperature variations. However, dew point forecasts were more reliable
than precipitation forecasts and may be an adequate substitute in some cases.

Data Quality

All three model types; heuristic, ANN, and regression, depend on accurate consumption
data for both preparation and execution of the forecast models. Any gaps or errors in the historical
data set, especially in the cases of the heuristic and regression models can make forecasting either
difficult or impossible. The ANN model can tolerate some errors since the typical training data set
contains a year of data. However, the historical data set should be reviewed and corrected before
training the model in order to insure the best possible results.
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Once prepared, the models also need accurate recent consumption data for the final fore-
cast. Again, accurate and complete consumption is critical for an accurate forecast. Use of a data
quality software program may be advisable to review data prior to being used in a forecast to
either correct bad values or alert the administrator regarding data problems.

Another issue regarding data quality is data precision. A single consumption value may be
calculated from several sampled values of flow and reservoir levels. Each sampled value has a
level of precision based on the precision of the measuring device (flow meter, reservoir level
sensor), precision of the communication protocol, and precision of the data storage element. No
forecast can be better than the data used to create the forecast. Therefore attention should be paid
to regular calibration of sensors and improvement of data precision in communication protocols
and data storage.

Errors can also be introduced in the forecasts via the weather data. Typically, actual
temperature conditions are within a few degrees of a forecast made 24 hours earlier. However,
sensor problems, data-entry, and other human errors can introduce errors that will dramatically
affect the forecast. 

Daylight Savings Time must also be taken into account, especially for the ANN models
that use data that span both Standard and Daylight Savings time periods. A convention must be
established to insure that the forecasts match the temporal patterns of the local customers to insure
that the forecasts are synchronized. A shift by a single hour between the forecast and actual
consumptions can result in ARE values in excess of 30% during the peak consumption hours.

Figure 5.1 SPU service area
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Figure 5.2 SPU system daily consumption—Fall (October 2005)

Figure 5.3 SPU system daily consumption—Winter (March 2006)

Figure 5.4 SPU system daily consumption—Spring (May 2006)
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Figure 5.5 SPU system daily consumption—Summer (August 2006)

Figure 5.6 GVRD service area

Figure 5.7 GVRD system hourly consumption—Fall (November 2005)
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Figure 5.8 GVRD test day (Fall 2005)

Figure 5.9 GVRD system hourly consumption—Winter (February 2006)

Figure 5.10 GVRD test day—Winter (February 2006)

500

750

1000

1250

1500

1 3 5 7 9 11 13 15 17 19 21 23

Hour

)
D

L
M( 

n
oit

p
m

u
s

n
o

C r
et

a
W

Actual

Heuristic

ANN

250

500

750

1000

1250

1500

1 24 47 70 93 116 139 162
Hour

)
D

L
M( 

n
oit

p
m

u
s

n
o

C r
et

a
W

Actual

Heuristic

ANN

250

500

750

1000

1250

1500

1 3 5 7 9 11 13 15 17 19 21 23

Hour

)
D

L
M( 

n
oit

p
m

u
s

n
o

C r
et

a
W

Actual

Heuristic

ANN
81

©2007 AwwaRF. All Rights Reserved.



  
Figure 5.11 GVRD system hourly consumption—Spring (May 2006)

Figure 5.12 GVRD test day—Spring (May 2006)

Figure 5.13 GVRD system hourly consumption—Summer (August 2006)
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Figure 5.14 GVRD test day—Summer (August 2006)

Figure 5.15 GVRD system daily consumption—Fall (November 2005)

Figure 5.16 GVRD system daily consumption—Winter (February 2006)
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Figure 5.17 GVRD system daily consumption—Spring (May 2006)

Figure 5.18 GVRD system daily consumption—Summer (August 2006)
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Figure 5.19 EBMUD service area

Figure 5.20 EBMUD system hourly consumption—Fall (November 2005)
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Figure 5.21 EBMUD test day—Fall (November 2005)

Figure 5.22 EBMUD system hourly consumption—Winter (February 2006)

Figure 5.23 EBMUD test day—Winter (February 2006)
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Figure 5.24 EBMUD system hourly consumption—Spring (May 2006)

Figure 5.25 EBMUD test day—Spring (May 2006)

Figure 5.26 EBMUD system hourly consumption—Summer (August 2006)
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Figure 5.27 EBMUD test day—Summer (August 2006)

Figure 5.28 EBMUD system daily consumption—Fall (November 2005)

Figure 5.29 EBMUD system daily consumption—Winter (February 2006)
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Figure 5.30 EBMUD system daily consumption—Spring (May 2006)

Figure 5.31 EBMUD system daily consumption—Summer (August 2006)
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Figure 5.32 Toronto water service area (including region of York)

Figure 5.33 Toronto system hourly consumption—Fall (October 2005)
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Figure 5.34 Toronto test day—Fall (October 2005) 

Figure 5.35 Toronto system hourly consumption—Winter (January 2006)

Figure 5.36 Toronto test day—Winter (January 2006)
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Figure 5.37 Toronto system hourly consumption—Spring (April 2006)

Figure 5.38 Toronto test day—Spring (April 2006)

Figure 5.39 Toronto system hourly consumption—Summer (August 2006)
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Figure 5.40 Toronto test day—Summer (August 2006)

Figure 5.41 Toronto system daily consumption—Fall (October 2005)

Figure 5.42 Toronto system daily consumption—Winter (January 2006)
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Figure 5.43 Toronto system daily consumption—Spring (April 2006)

Figure 5.44 Toronto system daily consumption—Summer (August 2006)
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Figure 5.45 WSSC service area

Figure 5.46 WSSC system hourly consumption—Fall (October 2005)
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Figure 5.47 WSSC test day—Fall (October 2005)

Figure 5.48 WSSC system hourly consumption—Winter (January 2006)

Figure 5.49 WSSC test day—Winter (January 2006)
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Figure 5.50 WSSC system hourly consumption—Spring (April 2006)

Figure 5.51 WSSC test day—Spring (April 2006)

Figure 5.52 WSSC system hourly consumption—Summer (July 2006)
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Figure 5.53 WSSC test day—Summer (July 2006)

Figure 5.54 WSSC system daily consumption—Fall (October 2005)

Figure 5.55 WSSC system daily consumption—Winter (January 2006)
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Figure 5.56 WSSC system daily consumption—Spring (April 2006)

Figure 5.57 WSSC system daily consumption—Summer (July 2006)

Figure 5.58 Hourly AARE for all utilities
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CHAPTER 6 
ELECTRIC UTILITY EXPERIENCE AND VALUE 

OF FORECASTING ACCURACY

This section of the report reviews the necessary level of commitment and value to achieve a
high level of accuracy in short-term consumption forecasting. Electric utilities have substantially
more experience in STCF systems than do water utilities so their experience is cited as a valuable
reference. A hypothetical example which relates the cost of forecasting error to optimized control of
pumping to minimize energy cost is also provided. Together, these examples should assist water util-
ities in their efforts to evaluate the performance and value of STCF systems.

ELECTRIC UTILITY EXPERIENCE WITH SYSTEM LOAD FORECASTING (SLF) 
PERFORMANCE

The following provides a perspective of SLF systems and forecasting techniques used by
electrical utilities.

Electric utilities prepare short-term forecasts from both a system and an area perspective.

APPLICATION OF SLF SYSTEMS

Most short-term System Load Forecasting (SLF) software currently available in the
marketplace can handle forecasting for multiple areas and multiple utility companies within one
system. There are many reasons why utilities need to run SLF software for multiple areas. Specif-
ically, for reliability reasons, utilities and Independent System Operators (ISOs) responsible for
the reliability of the system need to know the short-term load demand in certain local areas to
ensure that sufficient generation is produced locally. For example, in electrical islands like the
City of San Francisco, a certain portion of the generating capacity required to meet local demand
needs to be met by local resources, i.e., reliance from outside generating resources should be kept
within limits. This means that it is important to know the short-term load forecast for the area of
San Francisco to satisfy the operational requirement. Typically, all utility systems are divided in
Local Reliability Areas (LRAs) to better manage local reliability. Short-term load forecasting is
required for all LRAs. 

There are two typical ways to forecast short-term load demand in multiple areas. One is to
develop separate forecasting models for each well defined geographical area. For each subsystem
weather and other data are required to support accurate short-term load forecasting. The sum of all
the subsystems’ load forecasts is the System Load Forecast (SLF) that is traditionally used for
scheduling and commitment. The other approach is to develop models to forecast the SLF for the
entire system, and then use Load Distribution Factors (LDFs) to calculate load forecasts at the
local level. The Load Distribution Factors are the percentages of an individual areas’ loads with
respect to the whole system load; their values can be updated hourly, daily or weekly. LDFs can
be computed using planning methods from off-line power flow models or using real time data
from the State Estimator (SE) of the EMS/SCADA system. These two methods can be used at the
same time. For example, for areas with weather information available, forecasting models can be
developed; while for areas without sufficient weather data, the LDF-based method is preferable.
101

©2007 AwwaRF. All Rights Reserved.



     
In general, the fundamental structure of load forecasting methodologies does not vary by
application. However, certain features related to output processing functionality can be expanded to
serve the requirements of specific applications for which load forecasts are used as inputs. Load
forecasting results can be presented at system level, areas level, or even at a bus level. The fore-
casting results can also be presented jointly with other hourly data related to planning and sched-
uling for generation, transmission and distribution; for example, the area load can be displayed with
an area’s energy prices, generation, imported/exported energy, and transmission line usage percent-
ages for the user to get a global view of the energy usage and associated prices for each area.

RESOLUTION OF SLF SYSTEMS

The forecast resolution depends on the application that requires the forecast. Typical
scheduling and resource commitment applications require hourly forecasts. In some countries,
like Australia, the load forecast resolution for scheduling applications is half hourly. The time
horizon for these models varies from one day to one week. The short-term load forecasting soft-
ware generates 24 hourly forecasts for each day and 168 hourly forecasts for up to one week.
Annual chronological simulation models also require hourly loads forecast resolution. In addition
to the hourly forecasts, it is a typical requirement to have forecasts for daily peak load and daily
minimal load for each day of forecasting in long-term chronological simulation models. Also day-
ahead energy market clearing applications in most jurisdictions with deregulated energy markets
require hourly forecasts. 

In recently deregulated energy markets in the U.S. and abroad, real time markets have
been developed that require very short-term load forecasts. The granularity of these forecasts
varies from 5 minutes to 15 minutes. The accuracy requirements of these forecasts are very strict
since they drive the clearing of the real time markets that produce dispatch schedules for gener-
ating resources and real time prices at various locations where loads and resources are settled. In
some cases weather forecasting data doesn’t match this level of resolution. Therefore, in these
cases the core models and algorithms are usually still hourly-based; however, the forecast values
for the sub-hour intervals are calculated by linear interpolation, or by using curve fitting based on
the average daily load profiles. 

SLF ACCURACY

SLF accuracy requirements vary from one utility to another and from application to appli-
cation. For scheduling and resource commitment applications that require hourly forecasts with
time horizon from one day to one week, the most significant factor that affects the SLF accuracy
is the weather forecast accuracy. Weather related data are the most important input variables to
SLF models, and inaccuracies in weather forecasts have a severe negative effect on the load fore-
cast performance. For example for the state of California, sensitivity studies give credence to the
claim that one degree error in temperature during the summer months results in about 300 MW
system load forecasting error. 

The most widely used measurement index for evaluating forecasting accuracy in the elec-
tric utility industry is Average Absolute Percentage Error, which is calculated as the following:

e(i) = 100 * |(Forecast(i) – Actual(i)) ÷ Actual| %,
102

©2007 AwwaRF. All Rights Reserved.



   
where i = 1,2, …, N, and N is the number of forecasts used for the performance evaluation.

Average Absolute Percentage Error for all samples, E, is defined as

E = [e(1) + e(2) + e(3) + ... + e(N)]/N

Typically, the acceptable forecasting accuracy for Average Absolute Percentage Errors is
about 2–2.5% when models are tested with actual weather data and historical load data for which
data errors have been excluded. However, when models are used in the production environment
with forecasted weather data, the average absolute percentage error is usually around 2.5–3%. It
should be noted that in many published papers on load forecasting, the accuracies reported are
less than 2%. These high performance levels on SLF accuracy result from well optimized models
with parameters and dataset well calibrated for optimal performance for certain conditions.
Furthermore, inmost cases these results are calculated from best-performed time periods with
worst-performed days excluded from the dataset. 

In some cases utilities use, in addition to the Average Absolute Percentage Error, the
number of maximum errors over a period of time, such as a year. The reason is that the Average
Absolute Percentage Error tends to mask large errors. A maximum error is defined as an error that
exceeds a certain threshold which is usually a percentage of the system load. The threshold is
sometimes updated to reflect the capacity of the biggest generating unit in the system. 

COMMITMENT REQUIRED TO ACHIEVE ACCURACY BENCHMARKS

The up front cost of achieving SLF accuracies consistent with acceptable levels as previ-
ously defined is significant. It involves the purchase of an acceptable software package that is
usually based on advanced statistical methods or Neural Network techniques. The time needed to
develop and deploy a short-term load forecaster for a medium-size electric utility varies by the
chosen overall software configuration as well as the detailed software modules that are required to
support the baseline functionality. The typical modules used in a baseline, short-term load fore-
caster include: 

1. A numerical engine for performing numerical calculations, which could be based on
the neural networks, multivariate regression, or other algorithms. It performs models
parameters estimation/training, and calculates forecasts on-line. 

2. A database for storing, managing and processing data, and handling inputs/outputs for
the numerical engine. 

3. Interfaces—There are two types of interfaces: user interface and data interfaces; the
user interface is used to command the software executions and to present the results;
the data interface is used to collect and process input data for running the forecasting,
such as that for weather data and for historical and real-time load data.

Development and implementation of these baseline modules of a short-term load forecaster
require about a 12 to 14 person-months. If a utility/ISO decides to purchase an SLF software
package it is expected that 7 person-months are required to calibrate, tune and optimize the perfor-
mance of the short-term load forecaster. Further modifications for performance enhancements,
training and stabilization of the software operation may need another 3 to 5 person-months.
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In addition to the baseline functionality of a short-term load forecaster, it may be required,
depending on the specific system conditions, to develop and implement auxiliary software modules
to support the baseline load forecaster. Examples of such auxiliary software modules include:

1. Adaptive error feedback mechanisms
2. Self-tuning parameter optimization 
3. Automated load error detector
4. Improved non-conforming load forecasting, such as pump storage forecasting
5. Sub-area load forecasting capability
6. Special forecasting capability to handle special events, holidays, etc.
7. Implementation of customized meteorological models to minimize forecasting tem-

perature errors.

The ongoing support and maintenance is relatively high. It requires one to two full time
staff with substantial knowledge on analytical SLF techniques and system operational expertise.
The SLF model needs to be constantly calibrated to reflect new data and system conditions.
Furthermore, the SLF model is executed several times a day to reflect the latest weather condi-
tions. As part of maintenance and software support and enhancements the SLF support staff needs
to perform ongoing activities such as implementation of automated load error detector methodol-
ogies, improving pump storage forecasts, optimization of self-tuning parameters, improving
weather forecasts, collection and maintenance of data for subsystem load forecasts, etc. 

The value of SLF accuracy is very high. Sometimes due to lack of accurate load forecasts,
utilities and ISOs are forced to commit expensive units at the last minute and purchase import
power at high prices. Furthermore, in deregulated energy markets, load forecasts drive the
clearing of the energy markets. Errors in load forecast have a direct impact on the resulting loca-
tional prices and the dispatch levels of generating resources. In addition to the economic burden
imposed on systems with poor load forecasts, SLF accuracy has a direct impact on the reliability
of the system.

METHODS USED BY ELECTRIC UTILITIES FOR LOAD FORECASTING

Neural networks and regression based approach are the two most widely used forecasting
methods in the power utility industry today. Similar Day methods are based on heuristics. They
are rarely used as stand alone methods today. Sometimes they are used in conjunction with
numerical algorithm-based models as a complement to augment the SLF results. Implementation
percentages for each approach are not currently available, nor are surveys that summarize such
statistical results. Based on anecdotal and empirical evidence, 60% of the currently used fore-
casting methods for short-load forecasters are Neural Network-based, 30% are regression-based
and the rest are based on Similar Day methodologies. 

Neural networks are currently considered the state-of-the-art of load forecast technologies.
They have gained great popularity and acceptance in both industrial and academic circles. Neural
networks are essentially statistical devices for performing inductive inference. From the statistical
point of view they are analogous to nonparametric, nonlinear regression models. They are particu-
larly useful to load forecasting, where load fluctuations are results of many random factors, and
much is assumed about nonlinear dependencies between loads and the influential variables, espe-
cially weather. However, the development and implementation of neural network-based
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short-term load forecasters require certain decisions regarding the design, structure, size, param-
eter optimization, and the optimal configuration of the neural networks which are based on trial
and error (i.e., no current standard method(s) exist for selecting the structure, size and optimal
configuration of the Neural Networks). Optimal performance is mainly dependent on the experi-
ence and expertise of the developer.

Also, the multiple regression approach is a quite mature technology in the statistical data
analysis domain and in its application to the implementation of short-term forecasting applica-
tions. In practical terms it is relatively easier to implement regression-based load forecasting
models than to implement neural network-based models. However, when regression-based
approaches are used for short-term load forecasting, one needs to effectively handle the nonlinear
relationships between load and weather inputs. This makes the modeling development process
intricate and taxing. Also when dealing with weather inputs from multiple geographical locations,
one needs to solve the co-linearity problem that sometimes exist among multiple weather inputs. 

The Similar Day based forecasting methodology is based on average load patterns for each
forecast area, for each day type and for each month of the year. This approach is intuitive in nature
and is mainly based on searching historical load records from the database based using given
criteria. Since it does not rely on the development and implementation of a numerical engine, the
development and implementation of such methods are easier than that of either neural network-
based or regression-based short-term load forecasting models. The development and implementa-
tion of such methods require the setting of proper criteria for the discrimination of weather condi-
tions. However, when there are multiple weather stations, the setting of the filters for similar day
determination is a task that needs much skill and experience. Usually, based on practical experi-
ence, the forecasting accuracy of such methods is highly dependent on the skill of the modeler.
The average accuracy of this approach is lower (or much lower) than the approaches that employ
a numerical engine.

All the above discussed methods are used for the day ahead forecasting for up to one week
with hourly increments. In a short-term load forecasting model, it is necessarily to perform hourly
updates when the actual hourly load for the current hour is collected. The load error for the current
hour can be calculated and be used as a feedback to improve the forecasts for the remaining hours
of the day or even the week. The approach used for the hourly forecast updates is based on auto-
correlation coefficients or a moving average algorithm. 

HYPOTHETICAL EXAMPLE—VALUE OF STCF ACCURACY 
FOR A WATER UTILITY

The monetary value of improvement in the accuracy of a STCF for a water utility is diffi-
cult to estimate. It depends on the applications which use the STCF and perceived value of the
improved accuracy.

A hypothetical energy management example illustrates the sensitivity of improved fore-
casting accuracy. Assume a water utility has a two-tier time-of-use tariff with the following rates:

On-peak Off-peak

Summer $.120/KWH $.095/KWH

Winter $.115/KWH $.085/KWH
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The water utility has 10 pump stations which consume an average amount of energy
shown in Table 6.1. The utility implements an EWQMS project and shifts on-peak and off-peak
pumping as also shown in Table 6.1. 

Assume this implementation is based on the benchmark forecasting accuracies defined in
Chapter 7. The resulting annual savings in energy cost is $395,396.

Assume the utility estimates that a 5% improvement in forecasting accuracy would result
in a direct 5% improvement in on-peak versus off-peak electric consumption. This would equate
to an additional savings of $60,802.

Table 6.1
Hypothetical example of the value of forecasting accuracy
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The utility is receiving a good return on the EWQMS investment. However, the labor cost
to improve the forecasting accuracy may not be justified from an energy perspective only.

Electric utility hourly forecasting benchmarks are lower than the proposed water utility
benchmarks in Chapter 7 (3% to 7%). However, the stakes are significantly higher as they relate to
the magnitude of annual cost savings (millions) and system reliability. The high cost to calibrate
and maintain the forecasters is justified based on the operational savings.

A similar magnitude of scale can be applied to water utilities. Large water utilities with
high operating costs may justify accuracy requirements approaching those of electric utilities.
However, medium to small water utilities may find the benchmark accuracies proposed in this
report to be quite acceptable. 
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CHAPTER 7
STCF PERFORMANCE CRITERIA, BENCHMARKS, SELECTION 

CRITERIA, FUNCTIONAL REQUIREMENTS

PERFORMANCE SUMMARY OF STCF TOOLS

Table 7.1 contains a summary of the results of the Prototype STCF testing.
Based on these averages, regression has a slight performance advantage over the Heuristic

and ANN models.
Accuracies of the prototypes are slightly better than operational systems. This may be

more a result of the controlled environment of the prototype tests. No effort was made to recali-
brate operational STCF models prior to this study.

Table 7.2 is a summary of the results of the Operational Forecasting Systems.

PERFORMANCE BENCHMARKS

The preliminary performance benchmarks set for this study were as follows:

• Hourly AARE less than 10%
• Daily ARRE less than 5%

The results of this study exceeded these preliminary benchmarks. However, it should be
emphasized that measurements were made under ideal conditions. Extremes in weather condi-
tions, such as heavy rains, extended drought, and hurricanes would result in higher forecast errors.

Forecast errors will never be zero and will always be greater than the accumulated
measurement and calculation errors. Chapter 6 documents the measures electric utilities take to
reduce error rates in their STCF systems. More aggressive, yet achievable, performance bench-
marks, for water utilities, may be:

• Hourly AARE less than 7%
• Daily AARE less than 4%

SELECTION CRITERIA

Chapter 2 provides a good overview and comparison of STCF methodologies based on the
operational and prototype analysis.

The following are comparisons of the four forecast methods (Heuristic, ANN, Similar
Day, and Regression):

• All tested methods worked well to forecast daily consumption
• Daily forecasts improved when hourly data is forecast
• ANN model appears to have a better accuracy on an hour-by-hour basis
• All of the models require an initial investment of labor to collect and analyze data
• ANN models require the least maintenance support
• All models share a degradation in performance during seasonal and daily peak periods
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• Regression model requires new hourly data every day, with no gaps, for an extended
period; ANN only requires data from the previous day

• ANN handles gaps in historical data better than the regression model
• Errors in recent data are reflected directly in the ANN and regression forecasts
• ANN models can be highly automated with little human intervention and support for

more complex applications
• If requirements for forecasting are simple (e.g., daily and system wide only), heuristic

approach works well.

The forecast method used depends on the application for the forecaster. If the application
requires daily consumption for only the overall system, any of the methods could be used.
However, if hourly consumption is needed, the ANN and regression models may be a better
choice. The ANN model works best for large systems with multiple consumption zones where the
labor required to generate a short-term forecast make it time and cost prohibitive.

FUNCTIONAL REQUIREMENTS—TECHNICAL

The initial step toward successful STCF is an infrastructure that provides information to
measure consumption. This involves identification of the operating areas and required flow meters

Table 7.1
Summary of prototype results

Utilities

Hourly AARE Daily AARE

Heuristic ANN Regres. Heuristic ANN Regres.

SPU None None None 5.1% 4.8% None

GVRD 8.5% 5.9% None 4.2% 3.4% None

EBMUD 7.2% 6.7% None 2.6% 3.2% None

Toronto 6.0% 8.4% 5.9% 3.0% 4.8% 3.5%

WSSC 6.2% 5.8% 5.7% 2.9% 2.6% 2.5%

Average 7.0% 6.7% 5.8% 3.5% 3.8% 3.0%

Table 7.2
Summary of operational forecasting systems

Utility Hourly AARE Daily AARE

JEA(ANN) 10.8% 3.9%

CSU (Similar Day) 8.0% 4.1%

LVVWD* None 3.2%

San Diego (ANN) 8.0% 4.7%

Average 8.9% 4.0%

*Multiple Models—Regression, ANN, Heuristic
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and other sensors used to calculate consumption. For applications related to automatic control of
pumping, new instrumentation may be required.

With the appropriate sensors in place, a preventive maintenance program is required to
keep the instrumentation operational and calibrated.

SCADA system data should be frequently reviewed to insure that data are collected and
processed without loss of precision. Data quality software tools may be required for advanced
systems to detect and correct invalid and missing data in order to ensure the integrity of both real-
time and historical consumption data.

If an hourly forecast is used for real-time pump control, a performance monitor is required
to detect significant deviations between forecast and actual consumption. Either human interven-
tion and/or automatic adaptive control software is required to reforecast and reschedule pumping
to minimize energy cost.

The following should be clearly defined in STCF specifications:

• Applications requiring forecast
• Accuracy
• Resolution—system, number of service areas
• Input data-consumption, weather
• System Administrator and human forecaster
• Optimization Dynamics—daily, hourly
• Regeneration—manual, auto
• Input/output data format
• System interfaces for data transfer

FUNCTIONAL REQUIREMENTS—HUMAN ELEMENT

Mastering the elements of accurate consumption forecasting is an art—especially for the
heuristic method.

Consumption forecasting in an operations environment requires human involvement to
review the STCF performance. A staff assignment is required to make adjustments to the forecast
based on changes to the utility system or unforeseen events. This person or persons should also
work directly with SCADA software personnel to ensure integrity of the database. They should
also work with maintenance staff to correct any field instrumentation problems.

Another important task is intelligence gathering. For example, electrical utilities work
closely with large customers to anticipate their needs. Water utilities should establish personal
contacts with their large customers, such as municipalities or industries, to gather advanced infor-
mation regarding changes in consumption patterns. 

LESSONS LEARNED IN DEVELOPMENT AND CALIBRATION OF STCF SYSTEMS

The following lessons were learned during development and calibration of the prototype
and operational STCF systems:

• Accuracy of the STCF is highly dependent on quality of historical data
• It is important to establish consistent standards for storage calculations
• Weather factors, other than precipitation, may not be critical to accurate forecasting
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• ANN models hold up well over time
• Retraining an ANN may degrade the model—take care
• Training an ANN with a full year of data provides better results than training with only

a single season of data
• Daylight Savings Time must be accounted for to ensure data accuracy
• Forecast accuracy is limited by accuracy of measurement equipment
• A large number of input parameters can make models less responsive and more

difficult to maintain
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ABBREVIATIONS

AARE Average Absolute Relative Error
ANN Artificial Neural Network
APE Absolute Percentage Error
AR autoregression
ARE Absolute Relative Error
AwwaRF Awwa Research Foundation

Energy Commission California Energy Commission
CSU Colorado Springs Utilities

EBMUD East Bay Municipal Utility District
EMS Energy Management System
EWQMS Energy and Water Quality Management System

GVRD Greater Vancouver Regional District

ISO Independent System Operator

KWH kilowatt hour

LDF Load Distribution Factor
LRA Local Reliability Area
LTCF Long-Term Consumption Forecast
LVVWD Las Vegas Valley Water District

MAPE Mean Absolute Percentage Error
MGD million gallons per day
ML million liters
MLD million liters per day
MPH miles per hour

OO Operations Optimization
OOS Operations Optimization System
OPS Operations Planner and Scheduler

PAC Project Advisory Committee
PSI pounds per square inch

RMSE root mean squared error
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SCADA Supervisory Control and Data Acquisition 
SDWD San Diego Water Department
SE State Estimator
SLF System Load Forecast
STCF Short-Term Consumption Forecaster

UV ultraviolet

WCF Water Consumption Forecaster
WDF Water Demand Forecaster
WSSC Washington Suburban Sanitary Commission
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